Inserting “brains” into software agents —
preliminary considerations

Maria Ganzha''3, Mariusz Marek Mesjasz!, Marcin Paprzycki', and Moussa
Ouedraogo?

! Systems Research Institute Polish Academy of Sciences, Warsaw, Poland,
<firstname>.<lastname>Q@ibspan.waw.pl
2 CRP Henri Tudor, Luxembourg,
<firstname>.<lastname>Qtudor.lu
3 Institute of Informatics, University of Gdansk, Gdansk, Poland

Abstract. Software agents are often seen as “intelligent, autonomous
software components.” Interestingly, the question of efficient implemen-
tation of “intelligence” remains open. In this paper we discuss, in some
details, the process of implementing software agents with “brains.” In
the context of an agent system supporting decisions of glider pilots, we
consider native implementation of “intelligent” behaviors, rule based en-
gines, and semantic data processing. Based on the analysis of the state-
of-the-art in these areas, we present a novel approach combining rule
based engines, semantic data processing and software agents.

1 Introduction

One of the interesting issues in design and implementation of agent systems
is: how to make agents “intelligent.” Note that, very often, software agents are
conceptualized as “intelligent, autonomous software components, which interact
with each other in order to achieve goals for benefits of their users” [29, 31].
However, as illustrated below, it is not easy to find an agent platform, where a
robust (and flexzible) method for making agents intelligent is available.

Separately, a number of rule-based expert systems have been developed. Typ-
ically, they are based on the RETE pattern matching algorithm [24]. Implemen-
tation of RETE has been completed, among others, in C, C++ and Java, and
provide user interfaces and/or definition of the API.

Finally, since the 1980’s (see, [22,30]) an explosion of research in ontologies
and semantic technologies ensued. This has culminated, over the last 10 years,
in rapid sprawl of ontology management tools (e.g. Protege [17]) and reasoners
(with Hermit [8], Pellet [16] and Fact++ [7] being the most popular).

Let us now consider an agent-based support system for glider pilots (for more
details, see [23,27]). The idea is to aid the glider pilot in events that may occur
during a flight. For instance, to detect life-treating situations, warn the pilot and,
autonomously, inform the ground station. The pilot-supporting agent runs on a
tablet or a smart-phone. For the system we have selected the Android OS [1] and
the JadeAndroid add-on [12] (which allows running full Jade agent container on

II

Android devices). The next step to be undertaken is to introduce “reasoning
capabilities” to the GliderAgent agents. This provides the conceptual backdrop
for the explorations reported below.

Note that we are interested in practical aspects of implementing agent sys-
tems (see, also, [26,28]). Furthermore, we believe in open source solutions and
reuse of state-of-the-art software. This gives the methodological foundation of our
work. Therefore, in the next section, we summarize approaches to implement-
ing “brains” of software agents. Specifically, we consider “native” approaches
(within agent platforms), rule-based expert systems, and semantic technologies.
We follow with details of the implementation of the selected approach.

2 Introducing intelligence into software agents

2.1 Native approaches

Large number of agent platforms have been written in different languages. Since
we are interested in agent systems running on Android devices, we discuss those
written in the Java. However, to the best of our knowledge, discussion presented
here applies to majority of agent platforms in use today.

Jade [12] (Java Agent DEvelopment Framework; version 4.3.2; 2014-03-28)
is written entirely in Java, with the lead developer being Telecom Italia. Jade
developers provided add-ons to run it on mobile devices. JadeAndroid is an
official add-on that allows to run Jade agents on Android OS. Jade agents store
their knowledge in a form of Java classes. As a result, after Java classes are
compiled, they cannot be changed without altering the entire application. Thus,
an agent has to be recompiled, each time when a change is introduced into
its “knowledge.” Therefore, it is not trivial to introduce changes to a running
Jade agent system (without taking the system down and restarting it; see [25]).
Obviously, in the GliderAgent system (as well as majority of real-world multi-
agent systems), a more flexible approach is desired. Namely, an intelligent agent
should be able to add, modify or delete a “behavior” (related to a “knowledge
fragment”) on-demand (or, at least, without the need of restarting the system).

JASON [11] (version 1.4.0a; 2013-12-17) is an interpreter for an extended ver-
sion of the AgentSpeak (based on the Belief Desire Intention (BDI) paradigm).
It is available as an Open Source software (GNU LGPL license). JASON agents
are written in AgentSpeak. Since no official version of JASON for mobile devices
exists, it is unclear how easy it would be to run it on smart-phones. Furthermore,
JASON requires additional infrastructure (e.g., Jade) to run it distributed over
a network. Thus, one may assume that JASON and an additional agent platform
have both to be ported to the Android API. This doubles the amount of required
programming work, and may also result in “doubling” resource consumption.

In the JadeX agent platform [10], “intelligence” is facilitated in the form of
XML-based BDI rules. However, in our context, JadeX has three disadvantages.
(1) Tt has somewhat irregular development cycle. (2) It is evolving from a high-
level BDI-agent platform to the agent-as-component model, which has much

111

smaller granularity and, as a result, it is not clear what, if any, will be the role
of the XML-demarcated BDI rules in its future releases. (3) It remains unclear
how easy / difficult it would be to run JadeX on mobile devices.

JACK agents (developed by the AOS Group; [9]) use the JACK Agent Lan-
guage, a super-set of Java. JACK compiler converts source code of JACK agents
into pure Java. Therefore, JACK agent platform has the same limitations as
Jade. Namely, agent code has to be recompiled each time when an update is
required. Furthermore, as of now, JACK does not provide official support for
the Android OS (or any other mobile device). Note that it may be quite difficult
to port JACK to Android because JACK agents have to be translated twice:
(1) from the JACK Agent Language to the Java programming language, and
(2) from the Java programming language to the Android API. Since (1) is done
by the JACK compiler, developers have limited control over this process. Con-
sequently, there is a substantial risk that the resulting Java code will not work
with the Android OS. Furthermore, any change in the agent system (e.g. change
in agent “knowledge”) would have to be done within the JACK subsystem first,
and then moved to the actual system. Therefore, perspective of using JACK on
mobile devices (or in a mixed mobile-non-mobile environment) is not appealing.

2.2 Rule-based expert systems for agent systems

Let us now consider the possibility of combining a Rule-based Expert System
(RES) with Jade agents running on the Android OS (however, this discussion
generalizes also to other agent systems and other mobile devices). First, note
that Java is not natively compatible with Android. While having the same syntax
and similar interfaces, there are key differences between the Java API and the
Android API. (1) Android does not use the Java Virtual Machine. Instead, it uses
the Dalvik or the ART (starting from Android 4.4); two runtime environments
written and maintained by Google. (2) Not all Java packages were included in the
Android API; e.g. the javaz package (Swing, XML libraries, etc.) is missing, and
has to be replaced by the Android’s native classes. Therefore, the RES should:

— Be an open source project (with license that permits modifications). Due to
the differences between the Java API and the Android API, the RES (and
its dependencies) will have to be ported (and possibly modified). Moreover,
parts of the RES may need to be replaced by the Android native libraries to
work and/or to achieve better performance.

— Be an “active project.” Note that many open source projects are being de-
veloped by “independent” / academic teams. Therefore, the risk of selecting
an unfinished or obsoleted project is high, and should be avoided. Moreover,
dealing with older versions of Java may increase the amount of work needed
to make the project operational.

Finally, an ideal RES should have a small number of dependencies and a sim-
ple structure. This should minimize rewriting the required libraries. Moreover,
complex projects are difficult to understand and modify, without introducing
errors. However, these considerations are secondary.

v

To compare the existing RESs, we used data found at [13]. After refreshing
the information, and selecting RES’s written in Java, we have summarized it
in Table 2.2. For each RES (row in the table) we include: name, latest stable
version (and release date), license type and website.

It is easy to notice that only three RESs (Roolie, Drools, OpenL Tablets)
are of interest in the current context. The remaining ones either are significantly
outdated, or have multiple licenses (depending on the type of the project / the
character of the licensee), which unnecessarily complicates their use “across the
board.” Therefore, we provide more information about these three.

— Roolie [18] (version 1.1, 2013-12-13) is an extremely simple RES. It chains
user-defined rules (stored in XML files) to create more complex rules. Due to
its size (only few kilobytes) and lack of dependencies, it seems that it could
be adapted to the Android API. Unfortunately, it does not include a pattern
matching algorithm. Thus, an additional algorithm (e.g. RETE) would have
to be implemented. Moreover, Roolie is poorly documented.

— Drools [5] (version 6.0.0, 2013-12-20) is a forward and backward chaining
rule engine. From the current version, it provides its own, enhanced, imple-
mentations of the RETE algorithm, called PHREAKY'. Rules are stored in a
Drools native language. The entire project is very well documented. Unfor-
tunately, while very robust, it has many external dependencies. This would
make Drools difficult to port to the Android API. Furthermore, its size and
scope poses question about its usability on resource-limited mobile devices.

— OpenL Tablets [14] (version 5.12, 2014-04-21) is a full-blown expert system.
Its rules and policies exist as an unstructured set of Excel and Word docu-
ments. This makes rules easier to understand and change by non-technical
users. Unfortunately, proprietary data formats (Excel and Word) are not
well-suited for an open source type system. Furthermore, the Android API
may require extra libraries to open / manage them.

2.3 Semantic technologies for agent systems

Finally, to implement “brains” of software agents one could use semantic tech-
nologies. Here, facts are stored inside ontologies in a form of triples (subject,
predicate, object), applications can use a reasoner to infer logical consequences
from them. Statements within an ontology can be divided into: (i) a set of facts
(A-box), and (ii) conceptualization associated with them (T-box). T-box defines
a schema in terms of controlled vocabularies (for example, a set of classes, prop-
erties and axioms), while A-box contains T-box-compliant facts. Combination of
the A-box and the T-box makes up a knowledge base. Interestingly, the Drools
developers officially stated that, in the future, they will try to bring OWL Lite to
Drools. This shows growing interest in combining these two technologies. Since,
we are interested in open source solutions, we have considered Apache Jena and
the OWL APL

Apache Jena [3] (Jena, version 2.11.1, 2013-09-18) is a, well-documented,
open source framework for building semantic web and Linked Data applications.

Tway
- 8us~\oxeNMUIS] /S3oNpOoxd

/en-agospes-mun//:daay YI0|91-90-1102 / €€°T Hyospreid QIBA\ULIAT,
/310
* Texjusoqonuss - syooloxd
"senIgesns//:daay TdOT| §5-70-G002 / 1°C TINVA pue ueols LIIN SO[NY100M g
/3eu-9310F905IN0S
oTT001//:d3ay TdDT| €1-¢I-€108 ‘T'T Apouuay] uedyy alooy
s300[01g [RIDIOWIO))
wod * seTnxuedo//:d12Y|I0] SOSUIIT T J5)-UON \ TdD|8T-G0-F10% \ €9 ouy ‘somyuad(sonyuad(

/30U’ 9810F00IN0S
‘sqeTqes-Tuedo//:daay

TdD'T

12-70-710¢ / 2T°S

sye[qe], Tued(

sye[qe], Tuad

810 uootxeTuedo//:daay

TSV

21-10-.00% / #'0°T

310 uoorxeruad()

uod1xer] ued()

/xexepueun/d

AOYUS[ZOY] X[y

\EOU ° wHwoow.WUOU\\“wQPPQ JQUQ @Nuﬂclﬁﬂom \ O.H.H F.H.w:ﬂm Q@QUOH BQUM.S@MQ mﬁw_w Nﬁ.ﬂm@ﬁﬁz
\Pw.ﬂ ° wm,Ho.ku.Hﬂom
-out8ueetnil//:daay TdOT| 91-70-800% / €1 [orure) omeyy ouIguG Y[
/39U
"e8xogestnos-estl//:daay TdD|03-1T-€00Z / #0°0 o[paag oI\ esII[L
/sdoal/sq00(0ad I01Ie)) JJor ‘IOYPI[YOS
/18U 8310g801m0s//:d11Y TdOT| 62-60-€002 / ¢'¢ |dod ‘erengue], ey Sdodr
/810 eyoede-eusl//:daqy 2 "ISVI|8T-60-€10Z ‘T'T1°¢| uonyepunoq arem)jog ayoedy [IoU0seal paseq-o[ILl U

/z1q" tdeanumrey - mnm//:daqy

TdOT

IT-10-600Z / 0°.'G

dnorr) idemuwwreyy

sony 1deinuwurey

/wodsaTniap//:daay

TSV

G0-L0-T10Z / €F

PUnP{IA SeaIpuy

soy. LA

/810" ssoql sTooap//:daay

¢ ISV

0Z2-21-€102 / 0°0°9

¥eH PoY

s[ooI(]

o1sqPM

9suadIT

osea[al a[qels

(s)aadopanag

aurSuy peseq-o[ny

VI

It provides an API to extract data from and write to RDF, RDFS and OWL
graphs. Graphs are loaded from: (i) file system, (ii) database, or (iii) the web
(via URLs) and represented as abstract structures called “models.” The Jena
works with a) RDF, b) OWL, and c¢) triple store. It includes popular semantic
reasoners: Fact++ [7], Pellet [16] and HermiT [8]. Furthermore, it provides its
own implementation of the SPARQL 1.1 engine (the AQR). Note that, even
though Jena was not designed as a rule-based engine, it implements the RETE
algorithm in a general purpose rule-based reasoner. This reasoner is used for
updating the loaded ontologies, when a certain rule is met. There existed two
community projects aiming at running Jena on Android. (1) The Androjena [2]
project supported only a subset of the Jena features and was discontinued in
2010. (2) The Apache Jena on Android [4] project tried to fully integrate Jena
(with all its features) with the Android OS. Unfortunately, the latest, stable
version of Apache Jena on Android was released for the outdated Jena, in version
2.7.3 released on August 7, 2012.

The OWL API [15] (version 3.50, 2014-04-07) is a Java API (and reference
implementation) for creating, manipulating and serialising OWL Ontologies. It
supports OWL 2.0 and offers an API to inference engines and ontology valida-
tion. Similarly to Jena, the OWL API provides interfaces for FaCT++, HermiT,
Pellet and Racer (but they are not build-in). Furthermore, it features: (1) an API
for OWL 2.0, (2) parsers and writers for RDF/XML, OWL/XML, OWL Func-
tional Syntax, Turtle, KRSS, and OBO Flat. To the best of our knowledge, are
no (“official” or community-driven) projects intended to port the OWL API to
the Android OS (or other mobile OS).

3 Implementing agents with “brains” on mobile devices —
proposed approach

We have considered different approaches to infuse software agents with intel-
ligence. Despite the fact that native methods provided by agent platforms are
sufficient for many scenarios, they lack flexibility. For instance, systems like the
GliderAgent that operate in constantly changing environment (e.g. cockpit of a
glider), should not relay on compiled Java classes.

Next, we have considered rule-based expert systems found at [13]. While we
report only those written in Java, neither of them satisfied our requirements.
The primary concern was related to need to re-implement the RETE (e.g. in
Roolie), or porting the RES to mobile devices (e.g. Drools, OpenL Tablets).

Finally, we considered two semantic frameworks — Apache Jena and the OWL
APT (in Section 2.3). Here, we decided to use Jena. First, it already did run
on the Android OS. Moreover, the Jena on Android creators summarized the
porting process, helping us to bring the newest version of Jena (2.11.1) to the
Android OS. Moreover, because Jena implements the RETE algorithm, we can
take advantages of two different frameworks — RES and semantic data processing.
Specifically, the system knowledge can be represented and stored in the form of

VII

an RDF / OWL ontology, while the decision making process can utilize rule-
based processing.

Porting Jena to Android proceeded in two stages: (1) creating a fully func-
tional prototype, and (2) rewriting the Java code to run on the Android OS.
Note that since the prototype was created first, we were able to remove unused
dependencies and, in this way, reduce the amount of work in the second stage.

Jena
RETE EI
|
@ Triples EI
InfModel
Triples

O @
i Ontology Model EI = Jade Agent EI

Inferred
Triples

£
g)] || () s

Deduction Model

Output Input

Fig. 1. The component diagram of the system

The component diagram is presented in Figure 1. There, we can see two
software components: (1) Jena and (2) a Jade agent. During the initialization,
a pair — an ontology and a set of rules — is loaded into Jena. They represent
the knowledge base of the system. The ontology is stored as an instance of the
InfModel class. Jade agent receives this information from the environment and
analyzes it (extracts facts). Next, these facts are transformed into triples (object,
predicate, subject) compliant with the loaded ontology. All triples are sent to
Jena, in order to update the InfModel. Note that the InfModel is a hybrid of
two different instances of the Model class: (i) the Ontology Model, and (ii) the
Deduction Model. The Ontology Model stores all initial facts (loaded with the
ontology) and the inserted triples (added by the Jade agent). On the other
hand, the Deduction Model stores all facts inferred by matching rules against
the ontology. When a new triple is added to the Ontology Model, Jena runs its
implementation of the RETE algorithm. During this process, new inferred facts

VIII

are added to the Deduction Model. Since a Jade agent is not “interested” in what
it already knows (facts added to the Ontology Model), Jena returns new triples
from the Deduction Model. In order to improve the system performance, these
triples are combined into batches. A batch is sent when the algorithm completes
the execution (all fulfilled rules were fired). Finally, the Jade agent analyses the
batch and executes the appropriate behavior.

In the second stage, the system was rewritten to work with the Android
API. First, it requires only a part of Jena functionality — for interacting with an
ontology and executing the RETE algorithm. Thus, it was easy to empirically
verify, that Jena requires the following libraries: i) jena-core, ii) jena-iri, iii) slf4j-
api, iv) xercesImpl and v) xml-apis. These libraries can be roughly divided into
three subsets: 1) Jena, 2) SLF4J, 3) Xerces. Here, SLF4J [19] and Xerces [20]
are external projects. SLF4J (Simple Logging Facade for Java) serves as a sim-
ple abstraction for various logging frameworks. It allows the user to plug in the
desired logging framework at the deployment time. According to the SLF4J web-
site, there exists a wrapped implementation for the Android OS. Unfortunately,
currently, the SLF4J is not available for download (the download site returns
the 404 error). Since the Android API provides its own logger classes, it is not
a crucial part of the application. Thus, during the implementation, we used the
repacked SLF4J libraries from the Jade on Android project (which, however,
may be outdated).

The Xerces (licensed to the Apache Software Foundation) is intended for
creation and maintenance of XML parsers. It is a very important dependence
in Jena and, thus, had to be rewritten. There exists Xerces for Android. This
community-driven project is based on the latest version of Xerces (2.11.0) and
is available for download at [21]. Unfortunately, Xerces for Android uses the
javaz.* namespace to provide the missing dependencies. The javaz. * namespace
is interpreted by the Dalvik (or ART) cross-compiler (as the “core” Java library),
thus it is “safe” to cross-compile. To overcome this limitation, one can either
compile the project with the “—core-library” flag (this suppresses the error in
the compiler), or rename the javaz. * namespace to javaz2.* (as the developer of
Jena on Android suggests). Overall, when SLF4J and Xerces are replaced, Jena
can be repacked to be supported on the Android OS.

3.1 Testing the solution

To test our system we proposed two scenarios. In the first scenario, an agent
system runs on a device with the latest stable version of the Android OS —4.4.4.
In the first step, initial facts and rules (presented in listing 1.1) are inserted
into the system. These rules were written based on the theory on psychosocial
development of human beings, articulated by Erik Erikson [6]. Then, we modify
the system knowledge by interacting with the Android application. Specifically,
we can increase or decrease the age by one. As a result, new triples (facts about
our current age) are inserted to the system. In response to user actions, the agent
display short information in the form of a “toast” notification (see Figure 2).
After the last triple is delivered (the number is greater than 65), the system

IX

prints out the outcome in the debug console. Each part of the result contains
the following information: the current age, the current Erikson’s stage of human
life and two triples (one inserted into the Ontology Model and one inserted into
Deduction Model). Finally, we can observe that all stages were reached by the
application. Specifically, the agent properly responded to all facts and the system
knowledge was correctly updated by the algorithm.

Listing 1.1. Facts and rules used in the first scenario
<!-- FACTS -->

<rdf :RDF
xmlns:rdf="http://www.w3.0rg/1999/02/22-rdf -syntax-ns#"
xmlns:eg="urn:x-hp:eg/" >
<rdf:Description rdf:about="urn:x-hp:eg/Person">
<eg:age rdf:datatype="http://www.w3.0rg/2001/XMLSchema#int">0</eg:age>
<eg:stage rdf:resource="urn:x-hp:eg/Infancy"/>
</rdf :Description>
</rdf :RDF>

<!-- RULES -->

[infancy: (7d eg:age 7a) ge(7a,0) lessThan(?7a,2)
-> (7d eg:stage eg:Infancy)]
[childhood: (?d eg:age 7a) ge(?7a,2) lessThan(7a,3)
-> (7d eg:stage eg:Childhood)]
[preschool: (?d eg:age 7a) ge(?a,3) lessThan(7a,6)
-> (7d eg:stage eg:Preschool)]
[school: (7d eg:age 7a) ge(?7a,6) lessThan(?7a,12)
-> (?7d eg:stage eg:School)]
[adolescence : (7d eg:age 7a) ge(7a,12) lessThan(?7a,19)
-> (7d eg:stage eg:Adolescence)]
[young_adulthood: (?d eg:age 7a) ge(?a,19) lessThan(?7a,40)
-> (7d eg:stage eg:Young_Adulthood)]
[middle_adulthood: (?d eg:age 7a) ge(?7a,40) lessThan(7a,65)
-> (7d eg:stage eg:Middle_Adulthood)]
[maturity: (?d eg:age 7a) ge(?7a,65)
-> (7d eg:stage eg:Maturity)]

In the second scenario, the rule-based decision making system is integrated
with the GliderAgent agent. Here, the system receives feeds from different sen-
sors (altitude, temperature, blood pressure etc.) and, based on such information,
triggers appropriate GliderAgent agent behaviors. Specifically, the rules and cor-
responding behaviors are listed in listing 1.2. Unlike the first scenario, the system
takes autonomous actions. Specifically, for the test purposes, we used the oxygen
scenario from the initial version of the system [23]. In this scenario, we model
two types of warnings: (1) low oxygen level generated at 9842.52 ft (3000 m
above the sea level), and (2) critical oxygen level generated at 13123.36 ft (4000
m above the sea level). At the beginning of the scenario, the glider stays on the
ground at the altitude of 0 m. The position of the glider and its altitude start to
change when the scenario is executed. It is assumed that the glider is conducting
a lee-wave flight, and its altitude is increasing fast. Each time, when an agent
receives data from sensors, the Ontology Model is modified accordingly. Namely,
the position of the glider changes with respect to the GPS feed. Figure 3 presents
the situation when the glider reaches the altitude of 4000 m. We can see that the

- i @ 01:24
1gs +*| [Loglevel: |Debug ﬂ Qo) app: (nre‘randﬂmgade_randﬂmn

i logeat

06-30 01:23:58.950 13456-13485/core. random.jade_random D/Rule fired?
[urn:x-hp:eg/Person, urn:x-hp:eg/stage, urn:x-hp:eg/Adolescence]

06-30 01:24:06.951 13456-13485/core. random.jade random D/New tripled
[urn:x-hp:eg/Person, urn:x-hpieg/age, "19"~*http://www.w3.org/2001/XMLSchema$int]
06-30 01:24:06.951 13456-13485/core. random.jade_random D/Rule fired:
[urn:x-hp:eg/Person, urn:x-hp:eg/stage, urn:x-hp:eg/Young_Rdulthood] 70
06-30 01:24:11.952 13456-13485/core. random.jade_random D/New triple?
[urn:x-hp:eg/Person, urn:x-hpreg/age, "33"~*http://www.w3.org/2001/XMLSchema$int]
06-30 01:24:15.953 13456-13485/core. random. jade_random D/New triple?
[urn:x-hp:eg/Person, urnix-hpieg/age, "38""*hTTP://www.w3.org/2001/XMLSchema$int]
06-30 01:24:16.953 13456-13485/core. random.jade_random D/New triple?
[urn:x-hp:eg/Person, urn:x-hp:eg/age, "38"~~http://www.w3.org/2001/XMLSchemakint]
06-30 01:24:18.954 13456-13485/core. random. jade_random D/New triple?
[urn:x-hp:eg/Person, urn:x-hpreg/age, "49"~*http://www.w3.org/2001/XMLSchema$int]
06-30 01:24:18.954 13456-13485/core. random.jade _random D/Rule fired:
[urn:x-hp:eg/Person, urn:x-hp:ieg/stage, urn:x-hp:eg/Middle Adulthood]

06-30 01:24:23.955 13456-13485/core. random.jade random D/New tripled
[urn:x-hp:eg/Person, urn:x-hp:eg/age, "S2"~~http://www.w3.org/2001/XMLSchema#int]
06-30 01:24:26.955 13456-13485/core. random. jade_random D/New triple?
[urn:x-hp:eg/Person, urn:x-hpreg/age, "64"~~hrtp://www.w3.org/2001/¥MLSchema$int]
06-30 01:24:32.956 13456-13485/core. random.jade random D/New triple?

-g/Person i i LFLISSNSN 3,0rg/2001/KMLSchena#int]
485/core. random. Jade_random D/Rule firedt
1eg/stage, urnix-hpieg/Maturity]
cozre.random.qa

[urn:x-hp:eg/Person, urn:x-hpreg/age, "70"~~hrip://www.w3.org/2001/¥MLSchema$int]
06-30 01:24:57.672 13685-13722/core. random.jade_random D/New triple?

Eb

o

SUBMIT

You are now in the Maturity stage!

[urn:x-hp:eg/Person, urn:x-hp:eg/age, "S"**http://www.w3.org/2001/XMLSchemagint]

O Messages [Terminal
1te ago)

Fig. 2. The outcome of the first scenario — the application properly notify the user

XCSoar program (which observes the altitude greater than 13123.36 ft) displays
warning “Critical oxygen level”. Overall, we can observe that the agent properly
identified a life-treating situation and informed the pilot about the danger. Thus
it can be said that the new GliderAgent agent “has its brain in place.” This will
also allow us to start building its knowledge base in form of rules and ontologies.

Listing 1.2. Facts and rules used in the second scenario
<!-- FACTS -->

<rdf :RDF
xmlns:rdf="http://www.w3.0rg/1999/02/22-rdf -syntax-ns#"
xmlns:eg="urn:x-hp:eg/" >
<rdf :Description rdf:about="urn:x-hp:eg/Glider">
<eg:altitude rdf:datatype="http://www.w3.0rg/2001/XMLSchema#double">0</eg
raltitude>
<eg:latitude rdf:datatype="http://www.w3.o0rg/2001/XMLSchema#double">0</eg
:latitude>
<eg:altitude rdf:datatype="http://www.w3.o0rg/2001/XMLSchema#int">0</eg:
altitude>
C...)
<eg:sensor_delay rdf:datatype="http://www.w3.0rg/2001/XMLSchema#int">300</
eg:sensor_delay>
<eg:state rdf:resource="urn:x-hp:eg/Normal"/>
C...)
</rdf :Description>
</rdf :RDF>

<!-- RULES -->

XI

[low_oxygen: (7g eg:altitude 7a) ge(?7a,3000) lessThan(?7a,4000)
-> (7g eg:sensor_delay 120) (?7g eg:state eg:Cautious)]
[critical_oxygen: (?7g eg:altitude ?7a) ge(?a,4000)
-> (7g eg:sensor_delay 60) (7g eg:state eg:Critical)]

C...)
¥~ 1=
A N
Log level: | Debug @ o)| app: coreandom.jede_random
W& logeat

i}
¥

[urn:x-hp:eg/Glider, urn:x-hp:eg/latitude, "52.25191275630596"~*http://www
.w3.0rg/2001/XML5chemasdouble]

06-30 02:31:53.475 18906-18948/core.random. jade randem D/New triple:
[urn:x-hp:eg/Glider, urn:x-hp:eg/longitude, "21.47170340493922"~~htop://ww
.w3.0rg/2001/¥MLSchemasdouble]

06-30 02:31:54.475 12906-18348/core.zandom. jade randem D/New triple:
[urn:x-hp:eg/Glider, urn:x-hp:eg/altitude, "3940"~~hcop://wi.w3
.0rg/2001/RMLSchema#int]

06-30 02:31:54.476 18906-128348/core.random. jade_randem D/New triple:

M| Adiander Trignarks
TP A4S Datwiwka wods Pucrreewsia
fworve Osrerrgena Srlschecks
Odap Tadzimaie Malyn Bryiond
Zywry Bab Erode
Preyrownca
Bogre s L cbuatebn
Wizgrawa Daiekl

[uzn:x-hpieg/Glider, uzaix-hpieg/latitude, "S52.25357639705607"* Ritp://www G Pk Kiokorks
.#3.07a/2001/¥MLSchemasdouble] I w Y A asiimiedele Glighovsi-Bnda
06-30 02:31:54.476 12906-18948/core. random. jade_random D/New triple: Warning Low Oxygen Level!
[uzn:x-hpieg/Glider, uzaix-hp:eg/longitude, "21.47079481392565"~*RTtp://ww .

s =y Wiresrcrewwe No
.#3.07a/2001/¥MLSchemasdouble] Pratioe | Oprodrim
06-30 02:31:55.476 13906-18948/core. random. Jade_random D/New triple . —

- %-hp:eq/G x-hp: " man R | e, Uieo% Sty Paskowe
[urn:x-hpieg/Glider, urn:x-hpieg/altitude, 40007~ http://wnw.w3 b
.0rg/2001/RMLSchemasint] | Dl gl Ly)

06-30 02:31:55.477 13906-18948/core. random. Jade_random D/New triple T 57
[urnix-hpieg/Glider, urnix-hpieg/latitude, "52.255240037210175"~~hTtp://wmae Coeoty1P4
.W3.0rg/2001/XMLS chemasdouble] Ot Poiiairee

06-30 02:31:55.477 12906-18948/core. random. jade_random D/New triple: Nolencry Pagrockle | Zaigeice

s g s "21.46982623201008 ~"bLLo. / /i g

.w3.0rg/ 2001 /XMLSchemasdouble]
06-30 02:31:55.477 18906-128348/core.random. jade_randem D/Rule fired:
[urn:x-hp:eg/Glider, urn:x-hp:eg/sensor delay, "60"~*htip://www.w3

.0rg/2001/XMLSchena#int]
06-30 02:31:55.478 18906-18948/core.random. jade randem D/Rule fired:
[urn:x-hp:eg/Glider, urn:x-hp:eg/state, urn:x-hp:eg/Crizical]

[Terminal

Fig. 3. The outcome of the second scenario — the GliderAgent system is running on
the Android device

4 Concluding remarks

In this paper, we considered implementation of “intelligent” software agents.
Based on a analysis of possible approaches (native methods in agent platforms,
rule-based expert systems and semantic frameworks), we have realized that none
of them is sufficient alone, when developing agent systems for mobile devices and
when agent knowledge has to be often updated. Therefore, we have combined
Jade and Jena to develop a solution, which supports both rule-based and se-
mantic technologies and tested the proposed approach on two simple scenarios.
While the implemented solution is restricted to Java-based agents running on
the Android OS, we believe that the presented results naturally generalize to
other programming languages and operating systems.

References

1. Android os. http://www.android. com/.

XII

A

10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
21.
22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

Androjena. https://code.google.com/p/androjena/.

Apache jena. http://openl-tablets.sourceforge.net/.

Apache jena on android. http://elite.polito.it/jena-on-android/.

Drools. http://drools. jboss.org/.

Erikson’s psychosocial stages summary chart. http://psychology.about.com/
library/bl_psychosocial_summary.htm.

Fact++. http://aosgrp.com/products/jack/.

. Hermit. http://hermit-reasoner.com/.

Jack. http://aosgrp.com/products/jack/.

Jadex. http://sourceforge.net/projects/jadex/.

Jason. http://jade.tilab.com/.

Java agent development framework. http://jade.tilab.com/.

Open source rule engines in java. http://java-source.net/open-source/
rule-engines.

Openl tables. http://openl-tablets.sourceforge.net/.

Owl api. http://owlapi.sourceforge.net/.

Pellet. http://clarkparsia.com/pellet/.

Protege. http://protege.stanford.edu/.

Roolie. http://roolie.sourceforge.net/.

Simple logging facade for java. http://www.slf4j.org/.

Xerces. http://xerces.apache.org/.

Xerces for android. https://code.google.com/p/xerces-for-android/.

M.L. Brodie Dieter Fensel. Ontologies: A Silver Bullet for Knowledge Management
and Electronic Commerce. Springer, 2003.

Jan J. Domanski, Radoslaw Dziadkiewicz, Maria Ganzha, Andrzej Gab, Mar-
iusz M. Mesjasz, and Marcin Paprzycki. Implementing glideragent—an agent-based
decision support system for glider pilots. In Software Agents, Agent Systems and
Their Applications, pages 222-244. 2012.

Charles Forgy. On the efficient implementation of production systems. PhD thesis,
Thesis, Carnegie-Mellon University, 1979.

G. Frackowiak, M. Ganzha, M. Paprzycki, M. Szymczak, Y.-S. Han, and M.-W.
Park. Adaptability in an agent-based virtual organization towards implemen-
tation. In Jos Cordeiro, Slimane Hammoudi, and Joaquim Filipe, editors, Web
Information Systems and Technologies, volume 18 of Lecture Notes in Business
Information Processing, pages 27-39. Springer Berlin Heidelberg, 2009.

Maria Ganzha and Jain C. Lakhmi. Multiagent Systems and Applicatins. A John
Wiley and Sons, Ltd, 2009.

Mariusz Mesjasz, Domenico Cimadoro, Stefano Galzarano, Maria Ganzha, Gian-
carlo Fortino, and Marcin Paprzycki. Integrating jade and maps for the devel-
opment of agent-based wsn applications. In Giancarlo Fortino, Costin Badica,
Michele Malgeri, and Rainer Unland, editors, Intelligent Distributed Computing
VI, volume 446 of Studies in Computational Intelligence, pages 211-220. Springer
Berlin Heidelberg, 2013.

Hyacinth S. Nwana and Divine T. Ndumu. A perspective on software agents
research. Knowl. Eng. Rev., 14(2):125-142, 1999.

Stuart J. Russell and Peter Norvig. Artificial Intelligence: A Modern Approach.
Pearson Education, 2 edition, 2003.

John F. Sowa. Knowledge Representation: Logical, Philosophical, and Computa-
tional Foundations. Brooks / Cole, 1999.

Michael Wooldridge and Nicholas R Jennings. Intelligent agents: Theory and prac-
tice. Knowledge engineering review, 10(2):115-152, 1995.

