PARALLEL PERFORMANCE OF A DIRECT ELLIPTIC SOLVER 1

Parallel Performance of a Direct Elliptic Solver

Harry Hope* Marcin Paprzyckif Svetozara Petrova ?

Abstract

In a recent paper [3] a parallel direct solver for the linear equations arising from
elliptic partial differential equations has been proposed. The aim of this paper is to
present the initial evaluation of the performance characteristics of the algorithm on
a cluster of RS 6000 workstations, the SGI Power Challenge 8000 and 10000 shared
memory computers and the SGI Origin 2000 dynamic shared memory computer.
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1 Introduction

Recently a new parallel algorithm for the solution of separable second order elliptic PDE’s
on rectangular domains has been presented by Petrova [3]. The method is based on earlier
works of Vassilevski [5, 6]. The algorithm consists of odd-even block elimination technique
combined with discrete separation of variables. The initial results indicated that the pro-
posed solver has good numerical properties for 2D and 3D problems, [3, 5, 6, 7]. The aim of
this paper is to present a more extensive study of its parallel performance characteristics.

The remainder of the paper is organized as follows. In Section 2 the method of discrete
separation of variables is presented. Section 3 contains a brief summary of the Fast Algo-
rithm for Separation of Variables (FASV) (for more details, see [3, 5]). Finally, Section 4
presents the results of experiments performed on a cluster of 8 IBM RS6000 workstations,
the SGI Power Challenge 8000 and 10000 shared memory computers and an SGI Origin
2000 dynamic shared memory computer. We conclude with the description of the future
research.
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2 Discrete Separation of Variables
Consider a separable second order elliptic equation of the form

d
_Zaias(xs)g_“ — f(x), 2€9, d=2 or3

s=1 :L.S xS
U|aQ =0.

Assume that Q is a rectangle (d = 2), but the method described below can be generalized
for 3D problems. Using, for example, the finite difference method to discretize the equation,
we get the following linear system of equations

= f, (2.1)

where

A=1,0T+ B® I,.

I, is the identity n X n matrix and ® is the Kronecker product. The matrices T’ = (t;;)"
1,j=1
and B = (by)}y=; are tridiagonal s. . d. a§1%1n fr?m the ﬁmte dlfferen(:(f approximation of

the ape-dimensional operators — o8 o rs= 1,2, respectively
Phe sonition z antl the right-hand side f of (2.1) are composed using lexicographic

ordering on horizontal lines. To describe the method of separation of variables we need
also the vectors 2’ and f' reordered using vertical lexicographic ordering.
Consider now the following eigenvalue problem

Bq, = Mg, (2.2)

where {)\k, gk}kmﬂ are the eigenpairs of B,,«,,. The matrix B is assumed s.p.d. and hence

the eigenvalues Ay > 0 and the eigenvectors satisfy Q;‘: q = Okr (Okr is the Kronecker symbol)
forall k,r=1,2,...,m
Using the basis {g, }, the vectors z} and f! can be expanded as follows:

m m
T, = Z nkigka i: = Z 51%‘%; = ]-a 2a ceey 1, (23)
k=1 k=1

where the Fourier coefficients of i; are computed by

Bri = a4, [ (2.4)

Consider the column vectors 1, = (mi);—, and 8, = (Bri)i,, ¥ = 1,2,...,m. Then

substituting expressions (2.3) in ( 1) one gets the follovvlng system of equatlons for the
discrete Fourier coefficients n, of z, i =1,2,...

MI+T)m, =B, k=1,2,. (2.5)
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Equations (2.5) represent m systems of linear equations with matrices n x n. They can be
solved independently of each other.
We can now formulate the algorithm for the separation of variables (SV)

Algorithm SV

(1) determine the eigenpairs {)\k, gk}:—l

(2) compute the Fourier coefficients By; of f! using (2.4);
(3) solve m n x n tridiagonal systems of equations of the form (2.5) to determine {n;} —
the Fourier coefficients of 2, i =1,2,...,n;

(4) recover the solution of our original system (2.1) on the basis of the Fourier coefficients
{nki} of zi. There are two possibilities:

of the tridiagonal matrix B from (2.2);

m
vertical recovering: x; = Z Mig,, *=1,2...,n
k=1
horizontal recovering: z;= > 4Gk, J=1,2...,m. (2.6)
k=1

Let us assume that the systems of the form (2.1) have a sparse right-hand side (see for
instance Banegas [1], Proskurowski [4] and Kuznetsov [2]). More precisely, assume that
the right-hand side f has only d < m nonzero block components

ST=0 e f 0 f,0,,0], where f € R, s=1,2....d
0o f, 0 f, 00,0 f, €R", 2....d

Then for the reordered right-hand side each vector f; (i = 1,2,...,7) has only d nonzero
scalar components f;;,, s=1,2...,d, i.e.

ST=100,..0, fin: 0, £, 0,017, i=1,2,...n.

Assume that only r < m block components of the solution are needed. Denote by
Ly Ljryeo oy Ly the sought vectors.

To find the solution of a problem with a sparse right-hand side (SRHS) we apply the
Algorithm SV for separation of variables

Algorithm SRHS
(1) compute the Fourier coefficients 8y; of f! from (2.4),

d
ﬂkz:g:iZZZijsfmsa k:112aam> Z:1a2’an7
s=1

(2) solve systems of the form (2.5);
(3) recover the solution per lines using (2.6). We need only z; = >°7*, ajkn,, for j =
j{’ ]é’ R ’j;"
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3 Fast Algorithm for Separation of Variables

Consider now the algorithm FASV proposed by Vassilevski [5, 6] for solving problems of
type (2.1). For simplicity we assume that m = 2! — 1. The algorithm consists of two steps —
forward and backward recurrence. For the forward step we need matrix A in the following
block form:

[ Ak1) Aqs 0
Aot T+ boror I,  Aogs
A= Az Alk:2) Aszs , (3.1)
| 0 AQl—k+1_1’2l—k+1_2 A(k’Ql_k) ]

where
A®S) = [,  @T+BY eI, s=1,2,... 2%

i.e. each matrix A®®) 1<k <, 1<s<2"%has 2¥ —1 blocks of order n.

Above B,gs) of order 2¥ — 1 is the principal submatrix of B and hence, it is also a
tridiagonal s.p.d. matrix of the form B,ES) = (bij), 4,7 = 1,...5, + 2k — 1, where s, =
(s —1)2%.

(1) Forward step of FASV
For k =1,2,...,1 — 1 solve the problem:

Al k) = plks) g7 9 olk, (3:2)
where

0
—5k+1
RON

g(k,s) _ S+
k)

£5k+2k_1

and i(k’s) will be defined below.

After solving these problems and setting ggl;l =0fors=1,2,...,27% — 1 we denote
by 2*) and i(k) the following vectors
T g®D 7 }2F — 1 blocks [ pkD ]
0 }1 block .
(k,2) k 2
z }2% — 1 blocks (k,2)
(k) — ®) — | [
- 0 | }1block and f o (3-3)
_ .l—k
[ 2®27) | 19k — 1 blocks | fEE



PARALLEL PERFORMANCE OF A DIRECT ELLIPTIC SOLVER 5

Let the residual vector be the right-hand side for the next k + 1st step

pleLD
f
(k+1) _ ¢(k) (k) fT’“2i i
=AY =1 L , (3.4)
f(k+1"21_k_1)
where
0 }2F — 1 blocks
L) igc;kl}rl }1 block § =19 gkl
- 0 }2F — 1 blocks
From (3.4) and s = (2¢' — 1) we have
iﬁf“;ﬂl = iﬁ'z)k — Aosos—1 zks) Aog 2541 gks )
IR PR A MR el (3.5)

The new right-hand side f (k15 has only one nonzero block component and hence, by
induction, the right-hand sides f (:3) have the following sparsity pattern

}2%=1 — 1 blocks

FEo = | * }1 block s=1,2,...
0| }2¥'—1 blocks

I

Therefore, the problems (3.2) have a sparse right-hand side. The matrices A®*) allow a
separation of variables as submatrices of A and hence, Algorithm SV from Section 2 can
be applied with d = 1 (the number of nonzero block components of the right-hand side),

and r = 3 (the number of the sought block components of the solution: ng’s), ngc_si and
k,s
£ék—)l)'
(2) Backward step of FASV
For k = 1,1 —1,...,1, our purpose is to determine zy; 1)e—1 for s = 1,2,..., 2%,
First, when k£ = [, we solve
Az® = i(l)’ (3.6)

where A9 = A, (O = (Y and i(l) = i(l’l). The right-hand side i(l) is found at the last
step of the forward recurrence and from (3.5) it has a sparse right-hand side. The problem
(3.6) is solved incompletely finding only one block component gg,)_l

We have also £gi-1 = @él,)_l which corresponds to the midblock component of the solution
z of (2.1). The remaining block components of  are recovered by induction as follows:
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Starting with k£ = [ we have zo-1 = @él,)_l Assume that for some given k£, 1 < k <[—-1,
we have found the vectors z, o for s =1,2,...,2"F — 1 in the previous steps k+1,...,1.

Then at the kth step we can find z, ox—1 for s = 1,2,..., 2" ¥+ — 1. More precisely, by
construction we have f* 9 = &) _ Az(*) and after summation of both sides of these
equalities for &' =k, k +1,...,1, we get

=4 (i @““’)) . (3.7)
b

Let

l
y=> 2" (3.8)

[ AL Ao o 11 v*Y 1T i(k,l)
A21 T + b2k2k In A23 ng 1219
A32 A(k:Q) A34 g(kaZ) _ i(kv2)
L 0 Agl—k+1_1,21_k+1_2 A(k,Ql—k) Il g(k’2l_k) | _ i(k’ﬂQI_k) |

where each block y**), s =1,2,...,2'7% has 2¥ — 1 blocks of order n. From this system
we obtain the following equation for y(*-) :

AQS_LQS_QQ(S .2k + A (k,s) (k )+ Ags_q 25Y = i(k,s)_ (39)

Zg.2k
Hence, when s, = (s — 1)2*:

A(k s i A25—1,2s—2g5k — Aos—1,25Y, or- (3.10)

Using (3.8) we have Y, =Ly, and y_,, = Z,¢. Recall that from the induction described
above, the vectors z,, = Z(;_1)ox and z, . are already found. Thus, from (3.10) we get
the following system

_bsk—f-l,skisk }1 St blOCk
0
Alks)yy(ks) — 1% 1251 th block . (3.11)
0

_bs.Qk—l,s.sz_gk }Qk — 1 st block

The nonzero block components of the right-hand side of (3.11) can be found using the
solution computed at the £ + 1st step. It is a problem with a sparse right-hand side and
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only one (r = 1) block component of the solution, namely ggfc_sz is needed. By (3.8) one

finds

(kys) _ _ l (k")
Yok_1 y(25 1).2k-1 = = kﬁ(gs 1).2k-1 = L(25-1).2k1-
Therefore, at the kth step from the backward recurrence (k = 1,1 —1,...,1) we can
determine zp;_1ype-1, s =1,2,...,2°%.
In a more complete form the Fast Algorithm for Separation of Variables (FASV) can
be described as follows

Algorithm FASV

(1) Forward step
Set [ = f;
For k=1tol—-1
for s = 1 to 2/=* solve incompletely,

0
Alk S)Q(k’s) — ig’z’_sz : (3.12)
0
finding only
ng’s), :L'g,i #) and ac;fc 5)1,
end { loop on s };
for s’ =1to2"%!—1and s= (25 — 1) compute
fsic_;klﬂ)—l fs ok s 2k 5.2k — 1$g]12 )1 bs.2k,s.2k+1£gk,s+l); (313)
end { loop on ¢ };
end { loop on £ };
(2) Backward step
Solve incompletely
Ag® = | 9 | (3.14)

only for ggll),l = Zgi-1.

For £k =[—1 down to 1
for s =1 to 2% solve incompletely

_bé’k+1:3k£3k
A(k,S)g — 0 , where s, = (s—1)2" (3.15)
—bs.2k71,5.2k£5.2k
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P RS6K PC8K PC10K 02K

T S T S T S T S
119132 1 419 | 1 3.67| 1 3.15 | 1
2 | 50.18 | 1.81 || 4.36 | 0.96 || 2.49 | 1.47 || 2.31 | 1.36
4 || 24.61 | 3.71 || 2.74 | 1.52 || 1.53 | 2.39 || 2.23 | 1.41
8 || 13.65 | 6.69 || 2.26 | 1.85 || 2.14 | 1.71 || 3.06 | 1.02
12 1791234 || 1.72 | 2.13 || 4.25 | 0.74

Table 1: Performance comparison, 1=10

to determine only y,, ,.
Then set

T(as—1)2k-1 = Yo 1 T &;IIZ’_SZ; (3.16)

end { loop on s };
end { looponk }; O

4 Experimental results

The proposed algorithm has been implemented in FORTRAN 77 using the PVM mes-
sage passing environment to establish its parallel performance characteristics. We have
experimented on an 8-computer network of IBM RS6000 workstations (RS6K), on two
16-processor Silicon Graphics Power Challenge shared memory computers (based on MIPS
8000 (PC8K) and MIPS 10000 (PC10K) processors) and, finally, on the Silicon Graphics
Origin 2000 (O2K) dynamic shared memory computer (also based on the MIPS 10000
processors). Execution time has been measured using the mclock utility. In addition, on
each machine, at least one more timer-utility has been used to confirm the results (for
instance on the SGI machines the getrusage utility has been used). All experiments have
been performed either in a benchmarking environment, or on lightly loaded systems. In
the latter case the best result of multiple runs is reported.

In Table 1 we present the execution times in seconds (T) and speed-up (S) for all four
machines for P = 1,2,4,8 and 12 processors for [ = 10 (2D grid of size n = 2! = 1024).

The results illustrate the effect of the computation to communication ratio. Here,
the best speed-up is achieved on the workstation cluster. However, the solution time
on 8 workstations is about three times slower than a one processor solution on the SGI
computers. It is clear that in the case of the workstations the relative slowness of the
processors hides the relative slowness of the interconnection network. The situation is
exactly the opposite in the case of the shared memory machines. Even if the network is
relatively fast, the speed of the processors reduces the gains from parallelization. It should
be also observed that on the Origin 2000 the performance decreases when the number
of processors increases above P = 8. This can be attributed to the fact that the Origin
consists of tightly coupled clusters of 8 processors. Thus, for P > 8 more than one cluster
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is utilized and the communication time increases considerably. For the SGI computers the
problem of size [ = 10 is too small for efficient parallelization. We were able to fit problems
of size [ = 11 and 12 into the memory of the shared memory machines. The speed-up
achieved for all three problem sizes for P = 1,2, ..., 13 processors is presented in Figure 1.

SHARED MEMORY PERFORMANCE

——12 (PC8) —%—11 (PC8) —»—10 (PC8) \ :
7 + —a—12 (PC10) ——11 (PC10) —&— 10 (PC10) R .
6 =+
i >
o 51 ”
? A
D 4 .
m Q
o R 6
n 3+ - © O o
'/‘ _pi—7 ‘
24 / / \_A:v’ .
.7/"
1
0 | | | | | | | | |
1 2 3 4 5 6 7 8 9 10 11 12 13

# of Processors

Figure 1: Performance comparison between the two PC machines.

It can be observed that only the largest problem is large enough for efficient paralleliza-
tion. Efficiency of about 50% was achieved on the PC8K and about 60% on the PC10K.
Interestingly, not only PC10K is faster than PC8K (on one processor, a problem of size
[ = 12 is solved about 1.5 times faster) but due to the better hardware efficiency this
ratio increases with the number of processors (reaching about 1.8 on 13 processors). We
have tried to further increase the number of processors used, but (as can be observed in
Figure 1, where the speed-up curves become flat) this did not lead to further performance
increases.

5 Concluding remarks

In this paper the experimental results illustrating the parallel performance characteristics
of the fast elliptic solver have been presented. The code turned out to be rather efficient
(even though message passing environment was used to implement it on shared memory
machines). We have also found that memory capacity is the primary factor restricting the
size of problems solved. In the near future we plan to extend our research in the following
directions:
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implementation of the code using the shared memory approach and a performance
comparison between the two approaches on shared memory machines,

comparison of the performance of the PVM implementation and the shared memory
implementation on dynamic shared memory machines,

extension of the proposed approach to the parallel three dimensional solvers.
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