Highly parallel alternating directions algorithm for time
dependent problems

Maria Ganzhg Krassimir Georgiel lvan Lirkov', Svetozar Margendvand
Marcin Paprzycki

*Systems Research Institute, Polish Academy of Sciend&gwelska 6, 01-447 Warsaw, Poland
TInstitute of Information and Communication TechnologRsigarian Academy of Sciences
Acad. G. Bonchey, bl. 25A, 1113 Sofia, Bulgaria

Abstract. In our work, we consider the time dependent Stokes equatiafimite time interval and on a uniform rectangular
mesh, written in terms of velocity and pressure. For thiblem, a parallel algorithm based on a novel direction $pgjtt
approach is developed. Here, the pressure equation isedefriom a perturbed form of the continuity equation, in which
the incompressibility constraint is penalized in a negatiorm induced by the direction splitting. The scheme usdtien
algorithm is composed of two parts: (i) velocity predicti@md (i) pressure correction. This is a Crank-Nicolsopetywo-
stage time integration scheme for two and three dimensioaabolic problems in which the second-order derivativigh w
respect to each space variable, is treated implicitly wiigeother variable is made explicit at each time sub-steprdier

to achieve a good parallel performance the solution of thedPgoroblem for the pressure correction is replaced byisglv
a sequence of one-dimensional second order elliptic boynddue problems in each spatial direction. The parallelecis
implemented using the standard MPI functions and testedomtodern parallel computer systems. The performed nuaieric
tests demonstrate good level of parallel efficiency andabilétly of the studied direction-splitting-based algbnit.

Keywords. Navier-Stokes, time splitting, ADI, incompressible floysessure Poisson equation, parallel algorithm
PACS: 02.60.Ch, 02.60.Lj, 02.70.Bf, 07.05.Tp, 47.10.ad, 4 Bt1.

INTRODUCTION

The objective of this article is to analyze the parallel parfance of a new fractional time stepping technique, based
on a direction splitting strategy, developed to solve ttiwmpressible Navier-Stokes equations.

Projection schemes were first introduced in [1, 2] and thew leen used in Computational Fluid Dynamics (CFD)
for the last forty years. During these years, these teclsidnave been evolving, but the main paradigm, consisting
of decomposing vector fields into a divergence-free part anpladient, has been preserved (see [3] for a review
of projection methods). In terms of computational efficigmrojection algorithms are far superior to the methods
that solve the coupled velocity-pressure system. Thisifeahakes them the most popular techniques in the CFD
community for solving the unsteady Navier-Stokes equatidihe computational complexity of each time step of the
projection methods is that of solving one vector-valuedeation-diffusion equation, plus one scalar-valued Paisso
equation with the Neumann boundary conditions. Note tlaitlafrge scale problems, and large Reynolds numbers,
the cost of solving the Poisson equation becomes dominant.

The alternating directions algorithm proposed in [4] rezBithe computational complexity of the action of the
incompressibility constraint. The key idea is to modify gt@ndard projection approach, in which the vector fields are
decomposed into a divergence-free part plus a gradientfasg variation of the projection methods has been proved
to be very efficient for solving variable density flows [sem,ifistance 5, 6]. In the new method the pressure equation
is derived from a perturbed form of the continuity equatimnwhich the incompressibility constraint is penalized
in a negative norm induced by the direction splitting. Thendard Poisson problem for the pressure correction is
replaced by series of one-dimensional second-order boywdéue problems. This technique is proved to be stable
and convergent [for details see 4]. Furthermore, a venf brital assessment, found in [4], indicates that the new
approach should be efficiently parallelizable. The aim & gaper is to experimentally investigate this claim on two
distinct parallel computers, for two and three dimensigmablems.

STOKES EQUATION

Let us start by defining the problem to be solved. We consluetime-dependent Navier-Stokes equations on a finite
time interval[0, T], and in a rectangular domaf. Since the nonlinear term in the Navier-Stokes equatioes dot
interfere with the incompressibility constraint, we foaus attention on the time-dependent Stokes equationgewrit

in terms of velocityu and pressure:

Ut — vAu+0Op=f in Qx(0,T)
O-u=0 in Qx(0,T) (1)
Ulpo =0, dhplosg=0 in (O,T) ’

Ult—o=Uo, Plt—o=Ppo In Q

where thef is a smooth source term, theis the kinematic viscosity, and thg is a solenoidal initial velocity field
with a zero normal trace. In our work, we consider homogesé&richlet boundary conditions on the velocity.

To solve thus described problem, we discretize the timeniaté0, T| using a uniform mesh. Finally, lat be the
time step used in the algorithm.

Singular perturbation analysis

The Chorin-Temam algorithm is a singular perturbation efélquation (1):

Oiug — VAU, + Ope =f in Qx(0,T),
—TAp:+0-us =0 in Qx(0,T), @
uE|dQ:07 anp8|{7§2:0 in (OaT)v
Uglt—o =Uo, Pelio=po in Q,
where the perturbation parameger= 1.
We depart from the equation (2) by considering the followaftgrnative/ (1) perturbation of the equation (1):

Oiug — VAU, + Ope =f in Qx(0,T),
TAp:+0:-us =0 in Qx(0,T), 3)
Ug|ﬁQ = 07 Pe € D(A) in (O’T)7
Ugl=o =Uo, Pelio=Ppo in Q,
where the operatok and its domairD(A) are such that the bilinear fora(p,q) := |, gApdx satisfies the following
propertiesa is symmetric, and DqHE2 <a(g,q),vqe D(A).

Fractional step technique

We now construct a fractional step technique approximatingation (3) by using the alternating direction strategies

- Pressure predictarThe algorithm is initialized by setting*% =0, and fom >0 we setp*v'”% = p”*%.

- Velocity update We update the velocity by using a direction splitting taglie proposed by Douglas. The
algorithm is initialized by setting® = ug, and forn > 0 the velocity is updated as follows:

grt—un n N4 n+1
S VAT O = Ay §7 e =0, (4)
nn+1_En+1 v 02(nn+l_ un) el
T 2 (3X2) n |ﬁQ)
zn+1_nn+1 v 02(zn+l_ un) il
= 2 oy ;" oa =0,
n+l_ zn+l 2((+1_n
u Z _Ea (U u) -0 ut‘l+l|‘?Q :0,

T 2 072 ’

The two-dimensional version of the algorithm is obtaineahnyitting the last sub-step and setting* = "1,

« Pressure updateThe pressure is updated by solviAgi‘*% = —%D -u"*! with the direction splitting operator
A= (1-0x)(1—-0dyy)(1— 0,7 supplemented with appropriate boundary conditions. Eéshieved as follows:

1
¢—axx¢ = _?D'Un+1v 0X¢|5Q :07
w—ayyw: ¢7 ayl'tU|ﬁQ :Oa (5)
pn+% - azzanr% =y, azanr% log =0,

Higher-order variants

It is well known that the time accuracy of the Chorin-Temarhesuoe is limited. To improve the accuracy of the
method we use higher-order versions of the method by usirailection of incremental schemes. We introduce the
following alternatives’(12) perturbation of the equation (2), which allows for the dii@e splitting:

Oiug — VAU, + Ope =f in Qx(0,T),

TA@g+U0-us=0 in Qx(0,T),

TOPe = @ — xvO-ug @ € D(A) (6)
UE|{9Q :07 an(p£|d§2 =0 in (OaT)v

Uglt=o =Uo, Pelt=o=Ppo in Q,

wherex € [0,1] is an adjustable parameter.

PARALLEL ALTERNATING DIRECTIONSALGORITHM

Let us now describe the proposed parallel solution methadhdts of [4] introduced an innovative fractional time
stepping technique for solving the incompressible Na@igkes equations, based on a direction splitting strategy.
They used a singular perturbation of the Stokes equatiom i perturbation parameter The standard Poisson
problem for the pressure correction was replaced by sefi@sesdimensional second-order boundary value problems.

Formulation of the scheme

The scheme used in the algorithm is composed of the followarts: (i) pressure prediction, (ii) velocity update,
(iii) penalty step, and (iv) pressure correction. Let us m@scribe an algorithm that uses the direction splitting atoe

92 92 92
wie (1 50) (137 (- 52)
« Pressure predictarThe algorithm is initialized by settingr% =p
predictor is computed as follows

= po. Next, for alln > 0, a pressure

p*,n+% — 2pn732l _ pni%. (7)

- Velocity update The velocity field is initialized by setting® = up, and for alln > 0 the velocity update is
computed by solving the following series of one-dimensig@nablems

En+l —u"

VAU OpE = = fIt:(M%)r, §"Y9e =0
nhtt—gntt vor(p™t—un) i1
T 2 axz - 07 n |0Q - O (8)
zn+1 _ nn+1 v 02(zn+1 _ un) - il B
T — E ayz = 07 Z |ﬁQ =0 (9)

un+1 _ zn+1 v 02(un+1 _ un)
T 2 072

= 0, u™yp=0 (10)

- Penalty stepThe intermediate parametgiis approximated by solvinggp = — % O-u"™1, This is done by solving
the following series of one-dimensional problems:

0 Bu= 10U Bpn=0.
Y—y= 6, Wyloa =0, (11)
O— Qrz= va (pZ|dQ207

- Pressure updatéelhe pressure is updated using the parametee [0, %].

un+1+ un

pME = 2 4 g xvD —

(12)

Parallel algorithm

In the proposed algorithm, we use a rectangular uniform ngestibined with a central difference scheme for the
second derivatives for solving equations (8)—(11). Thesalgorithm requires only the solution of tridiagonal linea
systems. The parallelization is based on a decomposititreafomain into rectangular sub-domains. Let us associate
with each such sub-domain a set of integer coordinges, i,), and identify it with a given processor. The linear
systems, generated by the one-dimensional problems thdttadoe solved in each direction, are divided into systems
for each set of unknowns, corresponding to the internal sdoieeach block that can be solved independently by a
direct method. The corresponding Schur complement fomtfeeface unknowns between the blocks that have an equal
coordinateiy, iy, Or iz is also tridiagonal and can be therefore easily inverteeltly. The overall algorithm requires
only exchange of the interface data, which allows for a véfigient parallelization with an efficiency comparable to
that of an explicit schemes.

EXPERIMENTAL RESULTS

Recall, that the aim of this paper is to experimentally wetiife claim found in [4] that the proposed approach has
good potential for parallelization. To this effect we hawvtved the problem (1) in the doma@= (0,1)¢, d = 2,3, for

t € [0,2] with Dirichlet boundary conditions. The discretizatiortime was done with time step 18. The parameter

in the pressure update sub-step was % and the kinematic viscosity was= 10-3. The discretization in space
used mesh sizes = 17, hy = ﬁ andh, = -15. Thus, the equation (8) resulted in linear systems of siz¢he
equation (9) resulted in linear systems of sigeand the equation (10) in linear systems of sizeThe total number

of unknowns in the discrete 2D problem was 8Qf, while in the 3D problem it was 80& nyn,.

To solve the problem, a portable parallel code was designddraplemented in C, while the parallelization has
been facilitated using the MPI library [7, 8]. In the code, use the LAPACK subroutines DPTTRF and DPTTS2
[see 9] for solving tridiagonal systems of equations résglfrom equations (8), (9), (10), and (11) for the unknowns
corresponding to the internal nodes of each sub-domainsdime subroutines are used to solve the tridiagonal systems
with the Schur complement.

The parallel code has been tested on a cluster computensySteoner), located in the Oklahoma Supercomputing
Center (OSCER), and on the IBM Blue Gene/P machine at thedBialyg Supercomputing Center. In our experiments,
times have been collected using the MPI provided timer andepert the best results from multiple runs. In the
following tables, we report the elapsed timMigin seconds using cores, the parallel speed-& = T1/Tc, and the
parallel efficiencye; = &/c.

Tables 1 and 2 show the results collected on the Sooner fo2hand 3D problems. It is a Dell Xeon E5405
(“Harpertown”) quad core Linux cluster. It has 486 Dell Polgge 1950 IIl nodes, and two quad core processors
per node. Each processor runs at 2 GHz. Processors withimremie share 16 GB of memory, while nodes are
interconnected with a high-speed InfiniBand network (fodiidnal details concerning the machine, deet p:

/I wwww. oscer . ou. edu/ r esour ces. php). We have used an Intel C compiler, and compiled the code tvéh
following options: “-O3 -march=core2 -mtune=core2.”

The physical memory on a single node of Sooner (16GB) is rigelanough for solving the 2D problem with
ny = 8000, andy = 16000. For solving problems of these sizes, virtual memay used, and this is the reason for
larger execution times on 1-8 cores.

TABLE 1. Execution time for solving of 2D problem on Sooner.
Nx Ny Cores
1 2 4 8 16 32 64 128 256 512 1024
1000 1000 93.0 46.9 24.4 17.0 6.3 2.6 11 0.8 05 05 0.5
1000 2000 186.4 95.6 55.2 40.2 16.9 6.5 2.6 1.3 0.8 07 0.8
2000 2000 384.3 197.3 112.9 85.0 40.1 17.3 6.7 31 14 1.2 0.8
2000 4000 793.2 394.9 227.1 171.0 84.5 40.6 17.4 7.0 36 205 1.
4000 4000 1739.0 848.0 4645 346.3 170.7 85.7 41.0 18.4 789 3.23
4000 8000 4006.5 1817.0 955.3 696.9 343.2 171.7 85.7 425 5 198.3 10.1
8000 8000 10007.0 4240.1 2185.1 1605.1 694.8 347.8 173.2 7 90448 21.8 472
8000 16000 29138.7 10952.4 6117.1 4693.7 1567.6 697.6 34884 93.3 48.1 127.2
16000 16000 4679.1 1608.2 703.9 3747 187.9 99.0 302.9
TABLE 2. Execution time for solving of 3D problem on Sooner.
Ny Ny n; Cores
1 2 4 8 16 32 64 128 256 512 1024
120 120 120 397.3 197.2 99.2 70.6 36.4 13.3 6.3 2.9 1.8 1.3 1.3
120 120 240 825.7 4232 2719 2133 106.8 37.1 13.7 7.2 3.9 2.2.6
120 240 240 1809.1 904.5 5985 493.2 2525 108.4 37.9 16.5 8.34.2 3.3
240 240 240 3811.3 1965.5 1255.4 11059 498.0 217.9 75.0 39.16.7 9.6 4.9
240 240 480 7811.1 4030.9 2657.4 2356.9 1075.2 4944 220.63.411 43.8 20.1 105
240 480 480 16898.5 8442.2 5869.7 4938.2 2376.7 1079.6 50465.0 118.8 46.0 20.7
480 480 480 4963.8 23815 11229 5157 233.6 86.8 444
480 480 960 4842.0 2387.6 11144 553.6 237.5 1245
480 960 960 5007.6 2436.1 1156.5 532.8 288.0
960 960 960 5068.8 2510.2 1209.3 543.1

The obtained execution times confirm that the communicdiioa between processors is larger than the commu-
nication time between cores within one processor. Also,etkecution time for solving one and the same discrete
problem decreases with increasing the number of coreshvshiows that the communication in our parallel algorithm

is mainly local.

Tables 3 and 4 present execution time collected on the IBM Blane/P machine at the Bulgarian Supercomputing
Center, for 2D and 3D problems. It consists of 2048 computdeaowith quad core PowerPC 450 processors
(running at 850 MHz). Each node has 2 GB of RAM. For the pampoint communications a 3.4 Gb 3D mesh
network is used. Reduction operations are performed on aGb.8ree network (for more details, séw t p:

TABLE 3. Execution time for solving of 2D problem on IBM Blue Gene/P.

ny 1000 1000 2000 2000 4000 4000 8000 8000 16000
Cores ny 1000 2000 2000 4000 4000 8000 8000 16000 16000
1 681.7 14156 2768.5 5565.9 11424.7
2 329.0 690.6 1408.8 2809.5 5656.4 11619.1
4 164.6 335.6 709.7 1472.8 2886.4 5803.2 11907.5
8 81.3 167.6 344.2 720.3 1468.6 2926.7 5892.0 12067.4
16 41.8 855 173.7 353.2 743.4 1539.9 3019.1 6066.0 12423.4
32 20.4 42.1 84.6 174.1 356.5 745.9 1514.6 3030.7 6090.4
64 10.5 218 42.4 85.9 174.2 353.8 747.9 1547.7 3040.7
128 5.6 10.7 21.0 43.1 85.8 175.7 360.4 751.1 1529.3
256 2.9 5.7 10.8 22.3 43.7 88.2 177.8 360.5 759.2
512 1.8 3.1 6.0 11.3 22.2 44.7 88.8 180.1 369.0
1024 1.0 19 3.3 6.3 11.8 23.8 45.5 90.8 181.9
2048 0.9 1.3 2.4 3.8 7.4 13.0 24.9 47.8 94.9
4096 0.7 1.0 1.6 2.7 4.5 7.8 14.3 27.0 51.0

TABLE 4. Execution time for solving of 3D problem on IBM Blue Gene/P.
Ny 120 120 120 240 240 240 480 480 480 960
ny 120 120 240 240 240 480 480 480 960 960
Cores ng 120 240 240 240 480 480 480 960 960 960

1 1623.6 3248.3 6582.4

2 769.5 1601.5 32649 6638.6

4 370.3 763.1 1621.7 3318.0 6634.4

8 177.5 3711 782.0 1662.5 33204 6717.8

16 115.2 176.0 351.4 793.7 1647.1 3355.8 6783.0

32 45.4 1179 178.8 382.5 787.4 1663.9 3384.2 6769.8

64 23.2 45.8 117.7 184.7 383.8 804.8 1700.4 3390.2 6847.1

128 125 24.4 48.5 123.1 190.0 377.8 829.6 1721.6 3497.0 6986.4
256 7.0 13.8 26.5 52.1 147.7 195.6 406.7 834.2 1746.2 3512.0
512 3.7 7.0 13.6 26.8 51.7 127.1 199.7 409.6 847.4 1768.8
1024 2.7 5.0 9.6 155 30.0 58.4 135.3 212.2 430.9 892.9
2048 1.9 3.6 5.8 9.3 17.9 32.6 62.2 166.2 226.1 493.2
4096 15 2.3 3.7 6.2 11.2 19.4 37.2 70.9 186.8 3111

TABLE 5. Speed-up for solving of 2D problem.

Ny Ny Cores
2 4 8 16 32 64 128 256 512 1024

Sooner

1000 1000 1.98 3.81 546 14.67 36.04 8473 121.69 184.46 3070.192.20
1000 2000 1.95 3.38 4.64 11.04 2854 7120 147.11 227.46 0272244.87
2000 2000 195 340 452 9.58 2219 57.33 125.09 270.75 828471.20
2000 4000 2.01 3.49 4.64 9.38 19.52 45.61 112.48 258.14 @055332.66
4000 4000 2.05 3.74 5.02 10.19 20.28 42.37 94.44 223.78 140.1B39.74
4000 8000 2.20 4.19 575 11.67 23.33 46.75 94.34 205.44 281397.86
8000 8000 236 458 6.23 1440 28.77 57.79 110.38 223.31 6458211.87
8000 16000 2.66 4.76 6.21 1859 41.77 84.46 159.72 312.20 .34606229.16

IBM Blue Gene/P

1000 1000 2.07 4.14 8.38 16.29 3345 6490 121.70 234.70 7B75647.92
1000 2000 2.05 422 845 1656 33.63 64.89 132.01 249.18 5952.724.39
2000 2000 1.97 3.90 8.04 1594 3274 6521 13156 255.28 4857835.70
2000 4000 198 3.78 7.73 1576 31.97 64.82 129.11 249.57 2990887.07
4000 4000 2.02 396 7.78 1537 32.04 6558 133.14 261.13 3613964.43

/I ww. scc. acad. bg/). We have used the IBM XL C compiler and compiled the code wighfollowing options:
“-05 -gstrict -garch=450d -qtune=450".

The memory of one node of IBM supercomputer is substantatigller than on Sooner (2 GB vs. 16 GB) and is not
enough for solving 2D problem with ever = 4000, anchy = 8000; as well as 3D problem witly = ny = n, = 240.

We solved these problems on two and more cores in the SMP nsiig a single core per processor.

While the obtained parallel performance is quite satisfigctve believe that it can be further improved. To achieve
this goal, we plan to develop a mixed MP1/OpenMP code andeéghisnodes of the Sooner with 8 OpenMP processes
per node (and 4 OpenMP processes per node of the Blue Gerig)mbldified code should also allow us to run
efficiently on the upcoming machines with 10-core Intel mssors (and future computers with ever increasing number
of cores per processor). Furthermore, we plan to synchedh&decomposition of the computational domain into sub-
domains with the topology of the compute nodes in the Blues@amnectivity network. In such way we will minimize
the communication time in the parallel algorithm.

To complete analysis of the experimental performance datales 5 and 6 show the obtained speed-up while the
parallel efficiency is depicted in Tables 7 and 8. Obvioutlg, reported performance data is limited to the cases for
which we were able to solve the problem on a single node (seexlanations about the memory limitations, above).

TABLE 6. Speed-up for solving of 3D problem.

Ny Ny n; Cores
2 4 8 16 32 64 128 256 512 1024
Sooner
120 120 120 2.01 4.00 5.63 1092 2995 63.09 138.47 217.22 .0804313.48
120 120 240 195 3.04 3.87 7.73 2228 60.13 114.60 211.74 58368509.28
120 240 240 2.00 3.02 3.67 7.16 16.68 47.71 109.54 219.01 4824545.52
240 240 240 194 3.04 345 7.65 17.50 50.80 97.45 227.97 B97.175.29
240 240 480 194 294 331 7.26 15.80 35.41 68.88 178.18 887.738.90
240 480 480 2.00 2.88 342 7.11 15.65 33.53 63.76 142.45 364808.79
IBM Blue Gene/P
120 120 120 2.11 4.38 9.15 1409 3575 69.87 129.82 230.43 .9835594.70
120 120 240 2.03 4.26 875 1846 2754 70.88 132.86 235.95.9465646.38
120 240 240 2.02 4.06 842 1873 36.82 5595 135.78 250.18 .8282687.72
TABLE 7. Parallel efficiency for solving of 2D problem.
Nx Ny Cores
2 4 8 16 32 64 128 256 512 1024 2048 4096
Sooner
1000 1000 0.992 0.952 0.683 0.917 1.126 1.324 0.951 0.721330.30.188
1000 2000 0.975 0.845 0.580 0.690 0.892 1.113 1.149 0.889310.50.239
2000 2000 0.974 0.851 0.565 0599 0.693 0.896 0.977 1.058430.60.460
2000 4000 1.004 0.873 0580 0.586 0.610 0.713 0.879 1.008920.70.520
4000 4000 1.025 0.936 0.628 0.637 0.634 0.662 0.738 0.874610.80.722
4000 8000 1.102 1.048 0.719 0.730 0.729 0.731 0.737 0.802410.90.389
8000 8000 1.180 1.145 0.779 0.900 0.899 0.903 0.862 0.872960.80.207
8000 16000 1.330 1.191 0.776 1.162 1.305 1.320 1.248 1.220841.0.224
IBM Blue Gene/P
1000 1000 1.036 1.036 1.048 1.018 1.045 1.014 0.951 0.917340.70.633 0.361 0.247
1000 2000 1.025 1.054 1.056 1.035 1.051 1.014 1.031 0.973840.80.707 0.537 0.349
2000 2000 0.983 0.975 1.005 0.996 1.023 1.019 1.028 0.997930.80.816 0.562 0.434
2000 4000 0.991 0945 0.966 0.985 0.999 1.013 1.009 0.975580.90.866 0.708 0.507
4000 4000 1.010 0.990 0.972 0.960 1.001 1.025 1.040 1.020031.00.942 0.749 0.621

A super-linear speed-up is observed on up to 128 cores ofltree@ene. There are at least two reasons for the higher
speed-up: the processors on supercomputer are slowerritdomomer and the communication is faster (due to special,
extra, networking used in the Blue Gene). It is also worthgashing that as the problem size increases, the parallel
efficiency on the supercomputer increases as well (e.g. 86 dores, it raises from 25% to 62% for the 2D problem).

This shows the overall parallel robustness of the approadeninvestigation.

Finally, we have decided to compare both computer systemshi$ effect, computing times obtained on both
parallel systems are shown in the left side of Figure 1 andbiained speed-up is presented in the right side of the
same Figure. As indicated above, due to the slower procgshar execution times obtained on the Blue Gene/P are
substantially larger than that on the Sooner. At the same, tine parallel efficiency obtained on the supercomputer is
better. The main reason of this can be related to the supgeiformance of the networking infrastructure of the Blue

Gene.

TABLE 8. Parallel efficiency for solving of 3D problem.

Ny Ny n; Cores
2 4 8 16 32 64 128 256 512 1024 2048 4096

Sooner

120 120 120 1.007 1.001 0.703 0.691 0.936 1.025 1.082 0.84%8940. 0.306
120 120 240 0975 0.759 0.484 0.483 0.709 0.939 0.902 0.827200. 0.497
120 240 240 0.997 0.753 0.457 0.446 0520 0.757 0.886 0.8583290. 0.533
240 240 240 0.967 0.757 0.430 0.477 0545 0.795 0.766 0.88760. 0.757
240 240 480 0.970 0.734 0.413 0.453 0.493 0.552 0.543 0.695570.0.722
240 480 480 1.002 0.715 0.424 0.441 0.485 0.520 0.500 0.557110.0.790

IBM Blue Gene/P

120 120 120 1.055 1.096 1.143 0.881 1.117 1.092 1.014 0.908510.0.581 0.420 0.267
120 120 240 1.014 1064 1.094 1154 0.861 1.108 1.038 0.922100.0.631 0.439 0.340
120 240 240 1.008 1.015 1.052 1.171 1.151 0.874 1.061 0.978430.0.672 0.557 0.435

Execution time Speed-up
T 5

! Soonernxzn‘yzzooo N Sooner r‘\X:nYZZOOO i
B Blue Gene n,=ny=2000 -- -0~ - Blue Gene n,=n;=2000 - -o- - B
- Sooner n,=n;=8000 —&— 1024 | Sooner n,=n,=8000 —&— - e
B Blue Gene n,=n,=8000 - -o- - Sooner n,= %17120 — 2

A Sooner nX:ny:\ﬁZ:QO — Blue Gene n,=n;=n,=120 - -e-- -
Blue Gene n,=n;=n,=120 -- -e-- - Sooner n,=ny=n,=240 —a—

Sooner n,=ny=n,=240 —a—
Blue Gene n,=n,=n,=240 - -&- - 256 -

o
.

speed-up

L L I L L L L L !
1 4 16 64 256 1024 4096 1 4 16 64 256 1024 4096

number of processors number of processors

FIGURE 1. Execution time and speed-up for 2D probleg= ny = 2000 8000, 3D problemmy = ny = n, = 120,240

ACKNOWLEDGMENTS

Computer time grants from the Oklahoma Supercomputing €gi@SCER) and the Bulgarian Supercomputing
Center (BGSC) are kindly acknowledged. K. Georgiev, |. birkand S. Margenov were patrtially supported by
grants DO02-147 and DPRP7RP-02/13 of the Bulgarian NSFk\pasented here is a part of the Poland-Bulgaria
collaborative grant “Parallel and distributed computimggtices”.

@

NogopwbRE

REFERENCES

J. ChorinMath. Comp22, 745-762 (1968).

TemamArch. Rat. Mech. AnaB3, 377-385 (1969).

-L. Guermond, P. Minev, and J. Sh&omput. Methods Appl. Mech. Engg5, 6011-6054 (2006).

-L. Guermond, and P. Mine8omptes Rendus Mathematicg#8, 581-585 (2010).

-L. Guermond, and A. Salgadimurnal of Computational Physi@28, 2834—2846 (2009).

J.-L. Guermond, and A. Salgadopmptes Rendus Mathematidg#s, 913-918 (2008).

M. Snir, S. Otto, S. Huss-Lederman, D. Walker, and J. Doag®Pl: The Complete ReferencBcientific and engineering
computation series, The MIT Press, Cambridge, Massadsu46807, second printing.

D. Walker, and J. Dongarr§upercompute63, 56—68 (1996).

A
R
J.
J.
J.

9. E. Anderson, Z. Bai, C. Bischof, S. Blackford, J. DemmelDdngarra, J. D. Croz, A. Greenbaum, S. Hammarling,

A. McKenney, and D. SorensebhAPACK Users’ GuideSIAM, Philadelphia, 1999, third edn.

