
Highly parallel alternating directions algorithm for time
dependent problems

Maria Ganzha∗, Krassimir Georgiev†, Ivan Lirkov†, Svetozar Margenov† and
Marcin Paprzycki∗

∗Systems Research Institute, Polish Academy of Science, ul.Newelska 6, 01-447 Warsaw, Poland
†Institute of Information and Communication Technologies,Bulgarian Academy of Sciences

Acad. G. Bonchev, bl. 25A, 1113 Sofia, Bulgaria

Abstract. In our work, we consider the time dependent Stokes equation on a finite time interval and on a uniform rectangular
mesh, written in terms of velocity and pressure. For this problem, a parallel algorithm based on a novel direction splitting
approach is developed. Here, the pressure equation is derived from a perturbed form of the continuity equation, in which
the incompressibility constraint is penalized in a negative norm induced by the direction splitting. The scheme used inthe
algorithm is composed of two parts: (i) velocity prediction, and (ii) pressure correction. This is a Crank-Nicolson-type two-
stage time integration scheme for two and three dimensionalparabolic problems in which the second-order derivative, with
respect to each space variable, is treated implicitly whilethe other variable is made explicit at each time sub-step. Inorder
to achieve a good parallel performance the solution of the Poison problem for the pressure correction is replaced by solving
a sequence of one-dimensional second order elliptic boundary value problems in each spatial direction. The parallel code is
implemented using the standard MPI functions and tested on two modern parallel computer systems. The performed numerical
tests demonstrate good level of parallel efficiency and scalability of the studied direction-splitting-based algorithm.

Keywords: Navier-Stokes, time splitting, ADI, incompressible flows,pressure Poisson equation, parallel algorithm
PACS: 02.60.Cb, 02.60.Lj, 02.70.Bf, 07.05.Tp, 47.10.ad, 47.11.Bc

INTRODUCTION

The objective of this article is to analyze the parallel performance of a new fractional time stepping technique, based
on a direction splitting strategy, developed to solve the incompressible Navier-Stokes equations.

Projection schemes were first introduced in [1, 2] and they have been used in Computational Fluid Dynamics (CFD)
for the last forty years. During these years, these techniques have been evolving, but the main paradigm, consisting
of decomposing vector fields into a divergence-free part anda gradient, has been preserved (see [3] for a review
of projection methods). In terms of computational efficiency, projection algorithms are far superior to the methods
that solve the coupled velocity-pressure system. This feature makes them the most popular techniques in the CFD
community for solving the unsteady Navier-Stokes equations. The computational complexity of each time step of the
projection methods is that of solving one vector-valued advection-diffusion equation, plus one scalar-valued Poisson
equation with the Neumann boundary conditions. Note that, for large scale problems, and large Reynolds numbers,
the cost of solving the Poisson equation becomes dominant.

The alternating directions algorithm proposed in [4] reduces the computational complexity of the action of the
incompressibility constraint. The key idea is to modify thestandard projection approach, in which the vector fields are
decomposed into a divergence-free part plus a gradient part. This variation of the projection methods has been proved
to be very efficient for solving variable density flows [see, for instance 5, 6]. In the new method the pressure equation
is derived from a perturbed form of the continuity equation,in which the incompressibility constraint is penalized
in a negative norm induced by the direction splitting. The standard Poisson problem for the pressure correction is
replaced by series of one-dimensional second-order boundary value problems. This technique is proved to be stable
and convergent [for details see 4]. Furthermore, a very brief initial assessment, found in [4], indicates that the new
approach should be efficiently parallelizable. The aim of this paper is to experimentally investigate this claim on two
distinct parallel computers, for two and three dimensionalproblems.

STOKES EQUATION

Let us start by defining the problem to be solved. We consider the time-dependent Navier-Stokes equations on a finite
time interval[0,T], and in a rectangular domainΩ. Since the nonlinear term in the Navier-Stokes equations does not
interfere with the incompressibility constraint, we focusour attention on the time-dependent Stokes equations, written
in terms of velocityu and pressurep:

ut −ν∆u+ ∇p= f in Ω× (0,T)
∇ ·u = 0 in Ω× (0,T)
u|∂Ω = 0, ∂np|∂Ω = 0 in (0,T)
u|t=0 = u0, p|t=0 = p0 in Ω

, (1)

where thef is a smooth source term, theν is the kinematic viscosity, and theu0 is a solenoidal initial velocity field
with a zero normal trace. In our work, we consider homogeneous Dirichlet boundary conditions on the velocity.

To solve thus described problem, we discretize the time interval [0,T] using a uniform mesh. Finally, letτ be the
time step used in the algorithm.

Singular perturbation analysis

The Chorin-Temam algorithm is a singular perturbation of the equation (1):

∂tuε −ν∆uε + ∇pε = f in Ω× (0,T),
−τ∆pε + ∇ ·uε = 0 in Ω× (0,T),
uε |∂Ω = 0, ∂npε |∂Ω = 0 in (0,T),
uε |t=0 = u0, pε |t=0 = p0 in Ω,

(2)

where the perturbation parameterε := τ.
We depart from the equation (2) by considering the followingalternativeO(τ) perturbation of the equation (1):

∂tuε −ν∆uε + ∇pε = f in Ω× (0,T),
τApε + ∇ ·uε = 0 in Ω× (0,T),
uε |∂Ω = 0, pε ∈ D(A) in (0,T),
uε |t=0 = u0, pε |t=0 = p0 in Ω,

(3)

where the operatorA and its domainD(A) are such that the bilinear forma(p,q) :=
∫

Ω qApdx satisfies the following
properties:a is symmetric, and‖∇q‖2

L2 ≤ a(q,q),∀q∈ D(A).

Fractional step technique

We now construct a fractional step technique approximatingequation (3) by using the alternating direction strategies.

• Pressure predictor. The algorithm is initialized by settingp−
1
2 = 0, and forn≥ 0 we setp∗,n+ 1

2 = pn− 1
2 .

• Velocity update. We update the velocity by using a direction splitting technique proposed by Douglas. The
algorithm is initialized by settingu0 = u0, and forn≥ 0 the velocity is updated as follows:

ξξξ n+1−un

τ
−ν∆un + ∇p∗,n+ 1

2 = f|t=(n+ 1
2)τ , ξξξ n+1|∂Ω = 0, (4)

ηηηn+1−ξξξn+1

τ
−

ν
2

∂ 2(ηηηn+1−un)

∂x2 = 0, ηηηn+1|∂Ω = 0,

ζζζ n+1−ηηηn+1

τ
−

ν
2

∂ 2(ζζζ n+1−un)

∂y2 = 0, ζζζ n+1|∂Ω = 0,

un+1−ζζζn+1

τ
−

ν
2

∂ 2(un+1−un)

∂z2 = 0, un+1|∂Ω = 0,

The two-dimensional version of the algorithm is obtained byomitting the last sub-step and settingun+1 = ζζζ n+1.

• Pressure update. The pressure is updated by solvingApn+ 1
2 = − 1

τ ∇ ·un+1 with the direction splitting operator
A := (1−∂xx)(1−∂yy)(1−∂zz) supplemented with appropriate boundary conditions. This is achieved as follows:

ϕ − ∂xxϕ = −
1
τ

∇ ·un+1, ∂xϕ |∂Ω = 0,

ψ − ∂yyψ = ϕ , ∂yψ |∂Ω = 0, (5)

pn+ 1
2 − ∂zzp

n+ 1
2 = ψ , ∂zpn+ 1

2 |∂Ω = 0,

Higher-order variants

It is well known that the time accuracy of the Chorin-Temam scheme is limited. To improve the accuracy of the
method we use higher-order versions of the method by using a collection of incremental schemes. We introduce the
following alternativeO(τ2) perturbation of the equation (2), which allows for the direction splitting:

∂tuε −ν∆uε + ∇pε = f in Ω× (0,T),
τAφε + ∇ ·uε = 0 in Ω× (0,T),
τ∂t pε = φε − χν∇ ·uε φε ∈ D(A)
uε |∂Ω = 0, ∂nφε |∂Ω = 0 in (0,T),
uε |t=0 = u0, pε |t=0 = p0 in Ω,

(6)

whereχ ∈ [0,1] is an adjustable parameter.

PARALLEL ALTERNATING DIRECTIONS ALGORITHM

Let us now describe the proposed parallel solution method. Authors of [4] introduced an innovative fractional time
stepping technique for solving the incompressible Navier-Stokes equations, based on a direction splitting strategy.
They used a singular perturbation of the Stokes equation with the perturbation parameterτ. The standard Poisson
problem for the pressure correction was replaced by series of one-dimensional second-order boundary value problems.

Formulation of the scheme

The scheme used in the algorithm is composed of the followingparts: (i) pressure prediction, (ii) velocity update,
(iii) penalty step, and (iv) pressure correction. Let us nowdescribe an algorithm that uses the direction splitting operator

A :=

(

1−
∂ 2

∂x2

)(

1−
∂ 2

∂y2

)(

1−
∂ 2

∂z2

)

.

• Pressure predictor. The algorithm is initialized by settingp−
1
2 = p−

3
2 = p0. Next, for all n ≥ 0, a pressure

predictor is computed as follows

p∗,n+ 1
2 = 2pn− 1

2 − pn− 3
2 . (7)

• Velocity update. The velocity field is initialized by settingu0 = u0, and for all n ≥ 0 the velocity update is
computed by solving the following series of one-dimensional problems

ξξξ n+1−un

τ
−ν∆un+ ∇p∗,n+ 1

2 = fn+ 1
2 = f|t=(n+ 1

2)τ , ξξξ n+1|∂Ω = 0

ηηηn+1−ξξξ n+1

τ
−

ν
2

∂ 2(ηηηn+1−un)

∂x2 = 0, ηηηn+1|∂Ω = 0 (8)

ζζζ n+1−ηηηn+1

τ
−

ν
2

∂ 2(ζζζ n+1−un)

∂y2 = 0, ζζζ n+1|∂Ω = 0 (9)

un+1−ζζζ n+1

τ
−

ν
2

∂ 2(un+1−un)

∂z2 = 0, un+1|∂Ω = 0. (10)

• Penalty step. The intermediate parameterφ is approximated by solvingAφ =− 1
τ ∇ ·un+1. This is done by solving

the following series of one-dimensional problems:

θ −θxx = − 1
τ ∇ ·un+1, θx|∂Ω = 0,

ψ −ψyy = θ , ψy|∂Ω = 0,
φ −φzz= ψ , φz|∂Ω = 0,

(11)

• Pressure update. The pressure is updated using the parameterχ =∈ [0, 1
2].

pn+ 1
2 = pn− 1

2 + φ − χν∇ ·
un+1 + un

2
(12)

Parallel algorithm

In the proposed algorithm, we use a rectangular uniform meshcombined with a central difference scheme for the
second derivatives for solving equations (8)–(11). Thus the algorithm requires only the solution of tridiagonal linear
systems. The parallelization is based on a decomposition ofthe domain into rectangular sub-domains. Let us associate
with each such sub-domain a set of integer coordinates(ix, iy, iz), and identify it with a given processor. The linear
systems, generated by the one-dimensional problems that need to be solved in each direction, are divided into systems
for each set of unknowns, corresponding to the internal nodes for each block that can be solved independently by a
direct method. The corresponding Schur complement for the interface unknowns between the blocks that have an equal
coordinateix, iy, or iz is also tridiagonal and can be therefore easily inverted directly. The overall algorithm requires
only exchange of the interface data, which allows for a very efficient parallelization with an efficiency comparable to
that of an explicit schemes.

EXPERIMENTAL RESULTS

Recall, that the aim of this paper is to experimentally verify the claim found in [4] that the proposed approach has
good potential for parallelization. To this effect we have solved the problem (1) in the domainΩ = (0,1)d, d = 2,3, for
t ∈ [0,2] with Dirichlet boundary conditions. The discretization intime was done with time step 10−2. The parameter
in the pressure update sub-step wasχ = 1

2, and the kinematic viscosity wasν = 10−3. The discretization in space
used mesh sizeshx = 1

nx−1, hy = 1
ny−1, andhz = 1

nz−1. Thus, the equation (8) resulted in linear systems of sizenx, the
equation (9) resulted in linear systems of sizeny, and the equation (10) in linear systems of sizenz. The total number
of unknowns in the discrete 2D problem was 600nxny, while in the 3D problem it was 800nxnynz.

To solve the problem, a portable parallel code was designed and implemented in C, while the parallelization has
been facilitated using the MPI library [7, 8]. In the code, weuse the LAPACK subroutines DPTTRF and DPTTS2
[see 9] for solving tridiagonal systems of equations resulting from equations (8), (9), (10), and (11) for the unknowns
corresponding to the internal nodes of each sub-domain. Thesame subroutines are used to solve the tridiagonal systems
with the Schur complement.

The parallel code has been tested on a cluster computer system (Sooner), located in the Oklahoma Supercomputing
Center (OSCER), and on the IBM Blue Gene/P machine at the Bulgarian Supercomputing Center. In our experiments,
times have been collected using the MPI provided timer and wereport the best results from multiple runs. In the
following tables, we report the elapsed timeTc in seconds usingc cores, the parallel speed-upSc = T1/Tc, and the
parallel efficiencyEc = Sc/c.

Tables 1 and 2 show the results collected on the Sooner for the2D and 3D problems. It is a Dell Xeon E5405
(“Harpertown”) quad core Linux cluster. It has 486 Dell PowerEdge 1950 III nodes, and two quad core processors
per node. Each processor runs at 2 GHz. Processors within each node share 16 GB of memory, while nodes are
interconnected with a high-speed InfiniBand network (for additional details concerning the machine, seehttp:
//www.oscer.ou.edu/resources.php). We have used an Intel C compiler, and compiled the code withthe
following options: “-O3 -march=core2 -mtune=core2.”

The physical memory on a single node of Sooner (16GB) is not large enough for solving the 2D problem with
nx = 8000, andny = 16000. For solving problems of these sizes, virtual memory was used, and this is the reason for
larger execution times on 1–8 cores.

TABLE 1. Execution time for solving of 2D problem on Sooner.

nx ny Cores
1 2 4 8 16 32 64 128 256 512 1024

1000 1000 93.0 46.9 24.4 17.0 6.3 2.6 1.1 0.8 0.5 0.5 0.5
1000 2000 186.4 95.6 55.2 40.2 16.9 6.5 2.6 1.3 0.8 0.7 0.8
2000 2000 384.3 197.3 112.9 85.0 40.1 17.3 6.7 3.1 1.4 1.2 0.8
2000 4000 793.2 394.9 227.1 171.0 84.5 40.6 17.4 7.0 3.6 2.0 1.5
4000 4000 1739.0 848.0 464.5 346.3 170.7 85.7 41.0 18.4 7.8 3.9 2.3
4000 8000 4006.5 1817.0 955.3 696.9 343.2 171.7 85.7 42.5 19.5 8.3 10.1
8000 8000 10007.0 4240.1 2185.1 1605.1 694.8 347.8 173.2 90.7 44.8 21.8 47.2
8000 16000 29138.7 10952.4 6117.1 4693.7 1567.6 697.6 345.0182.4 93.3 48.1 127.2

16000 16000 4679.1 1608.2 703.9 374.7 187.9 99.0 302.9

TABLE 2. Execution time for solving of 3D problem on Sooner.

nx ny nz Cores
1 2 4 8 16 32 64 128 256 512 1024

120 120 120 397.3 197.2 99.2 70.6 36.4 13.3 6.3 2.9 1.8 1.3 1.3
120 120 240 825.7 423.2 271.9 213.3 106.8 37.1 13.7 7.2 3.9 2.21.6
120 240 240 1809.1 904.5 598.5 493.2 252.5 108.4 37.9 16.5 8.34.2 3.3
240 240 240 3811.3 1965.5 1255.4 1105.9 498.0 217.9 75.0 39.116.7 9.6 4.9
240 240 480 7811.1 4030.9 2657.4 2356.9 1075.2 494.4 220.6 113.4 43.8 20.1 10.5
240 480 480 16898.5 8442.2 5869.7 4938.2 2376.7 1079.6 504.0265.0 118.8 46.0 20.7
480 480 480 4963.8 2381.5 1122.9 515.7 233.6 86.8 44.4
480 480 960 4842.0 2387.6 1114.4 553.6 237.5 124.5
480 960 960 5007.6 2436.1 1156.5 532.8 288.0
960 960 960 5068.8 2510.2 1209.3 543.1

The obtained execution times confirm that the communicationtime between processors is larger than the commu-
nication time between cores within one processor. Also, theexecution time for solving one and the same discrete
problem decreases with increasing the number of cores, which shows that the communication in our parallel algorithm
is mainly local.

Tables 3 and 4 present execution time collected on the IBM Blue Gene/P machine at the Bulgarian Supercomputing
Center, for 2D and 3D problems. It consists of 2048 compute nodes with quad core PowerPC 450 processors
(running at 850 MHz). Each node has 2 GB of RAM. For the point-to-point communications a 3.4 Gb 3D mesh
network is used. Reduction operations are performed on a 6.8Gb tree network (for more details, seehttp:

TABLE 3. Execution time for solving of 2D problem on IBM Blue Gene/P.

nx 1000 1000 2000 2000 4000 4000 8000 8000 16000

Cores ny 1000 2000 2000 4000 4000 8000 8000 16000 16000

1 681.7 1415.6 2768.5 5565.9 11424.7
2 329.0 690.6 1408.8 2809.5 5656.4 11619.1
4 164.6 335.6 709.7 1472.8 2886.4 5803.2 11907.5
8 81.3 167.6 344.2 720.3 1468.6 2926.7 5892.0 12067.4

16 41.8 85.5 173.7 353.2 743.4 1539.9 3019.1 6066.0 12423.4
32 20.4 42.1 84.6 174.1 356.5 745.9 1514.6 3030.7 6090.4
64 10.5 21.8 42.4 85.9 174.2 353.8 747.9 1547.7 3040.7

128 5.6 10.7 21.0 43.1 85.8 175.7 360.4 751.1 1529.3
256 2.9 5.7 10.8 22.3 43.7 88.2 177.8 360.5 759.2
512 1.8 3.1 6.0 11.3 22.2 44.7 88.8 180.1 369.0

1024 1.0 1.9 3.3 6.3 11.8 23.8 45.5 90.8 181.9
2048 0.9 1.3 2.4 3.8 7.4 13.0 24.9 47.8 94.9
4096 0.7 1.0 1.6 2.7 4.5 7.8 14.3 27.0 51.0

TABLE 4. Execution time for solving of 3D problem on IBM Blue Gene/P.

nx 120 120 120 240 240 240 480 480 480 960

ny 120 120 240 240 240 480 480 480 960 960

Cores nz 120 240 240 240 480 480 480 960 960 960

1 1623.6 3248.3 6582.4
2 769.5 1601.5 3264.9 6638.6
4 370.3 763.1 1621.7 3318.0 6634.4
8 177.5 371.1 782.0 1662.5 3320.4 6717.8

16 115.2 176.0 351.4 793.7 1647.1 3355.8 6783.0
32 45.4 117.9 178.8 382.5 787.4 1663.9 3384.2 6769.8
64 23.2 45.8 117.7 184.7 383.8 804.8 1700.4 3390.2 6847.1

128 12.5 24.4 48.5 123.1 190.0 377.8 829.6 1721.6 3497.0 6986.4
256 7.0 13.8 26.5 52.1 147.7 195.6 406.7 834.2 1746.2 3512.0
512 3.7 7.0 13.6 26.8 51.7 127.1 199.7 409.6 847.4 1768.8

1024 2.7 5.0 9.6 15.5 30.0 58.4 135.3 212.2 430.9 892.9
2048 1.9 3.6 5.8 9.3 17.9 32.6 62.2 166.2 226.1 493.2
4096 1.5 2.3 3.7 6.2 11.2 19.4 37.2 70.9 186.8 311.1

TABLE 5. Speed-up for solving of 2D problem.

nx ny Cores
2 4 8 16 32 64 128 256 512 1024

Sooner

1000 1000 1.98 3.81 5.46 14.67 36.04 84.73 121.69 184.46 170.30 192.20
1000 2000 1.95 3.38 4.64 11.04 28.54 71.20 147.11 227.46 272.04 244.87
2000 2000 1.95 3.40 4.52 9.58 22.19 57.33 125.09 270.75 328.98 471.20
2000 4000 2.01 3.49 4.64 9.38 19.52 45.61 112.48 258.14 405.30 532.66
4000 4000 2.05 3.74 5.02 10.19 20.28 42.37 94.44 223.78 440.61 739.74
4000 8000 2.20 4.19 5.75 11.67 23.33 46.75 94.34 205.44 481.72 397.86
8000 8000 2.36 4.58 6.23 14.40 28.77 57.79 110.38 223.31 458.67 211.87
8000 16000 2.66 4.76 6.21 18.59 41.77 84.46 159.72 312.20 606.34 229.16

IBM Blue Gene/P

1000 1000 2.07 4.14 8.38 16.29 33.45 64.90 121.70 234.70 375.71 647.92
1000 2000 2.05 4.22 8.45 16.56 33.63 64.89 132.01 249.18 452.59 724.39
2000 2000 1.97 3.90 8.04 15.94 32.74 65.21 131.56 255.28 457.45 835.70
2000 4000 1.98 3.78 7.73 15.76 31.97 64.82 129.11 249.57 490.29 887.07
4000 4000 2.02 3.96 7.78 15.37 32.04 65.58 133.14 261.13 513.36 964.43

//www.scc.acad.bg/). We have used the IBM XL C compiler and compiled the code withthe following options:
“-O5 -qstrict -qarch=450d -qtune=450”.

The memory of one node of IBM supercomputer is substantiallysmaller than on Sooner (2 GB vs. 16 GB) and is not
enough for solving 2D problem with evennx = 4000, andny = 8000; as well as 3D problem withnx = ny = nz = 240.
We solved these problems on two and more cores in the SMP mode using a single core per processor.

While the obtained parallel performance is quite satisfactory, we believe that it can be further improved. To achieve
this goal, we plan to develop a mixed MPI/OpenMP code and to use the nodes of the Sooner with 8 OpenMP processes
per node (and 4 OpenMP processes per node of the Blue Gene). This modified code should also allow us to run
efficiently on the upcoming machines with 10-core Intel processors (and future computers with ever increasing number
of cores per processor). Furthermore, we plan to synchronize the decomposition of the computational domain into sub-
domains with the topology of the compute nodes in the Blue Gene connectivity network. In such way we will minimize
the communication time in the parallel algorithm.

To complete analysis of the experimental performance data,Tables 5 and 6 show the obtained speed-up while the
parallel efficiency is depicted in Tables 7 and 8. Obviously,the reported performance data is limited to the cases for
which we were able to solve the problem on a single node (see the explanations about the memory limitations, above).

TABLE 6. Speed-up for solving of 3D problem.

nx ny nz Cores
2 4 8 16 32 64 128 256 512 1024

Sooner

120 120 120 2.01 4.00 5.63 10.92 29.95 63.09 138.47 217.22 304.06 313.48
120 120 240 1.95 3.04 3.87 7.73 22.28 60.13 114.60 211.74 368.55 509.28
120 240 240 2.00 3.02 3.67 7.16 16.68 47.71 109.54 219.01 424.45 545.52
240 240 240 1.94 3.04 3.45 7.65 17.50 50.80 97.45 227.97 397.11 775.29
240 240 480 1.94 2.94 3.31 7.26 15.80 35.41 68.88 178.18 387.76 738.90
240 480 480 2.00 2.88 3.42 7.11 15.65 33.53 63.76 142.45 364.03 808.79

IBM Blue Gene/P

120 120 120 2.11 4.38 9.15 14.09 35.75 69.87 129.82 230.43 435.96 594.70
120 120 240 2.03 4.26 8.75 18.46 27.54 70.88 132.86 235.95 465.97 646.38
120 240 240 2.02 4.06 8.42 18.73 36.82 55.95 135.78 250.18 482.82 687.72

TABLE 7. Parallel efficiency for solving of 2D problem.

nx ny Cores
2 4 8 16 32 64 128 256 512 1024 2048 4096

Sooner

1000 1000 0.992 0.952 0.683 0.917 1.126 1.324 0.951 0.721 0.333 0.188
1000 2000 0.975 0.845 0.580 0.690 0.892 1.113 1.149 0.889 0.531 0.239
2000 2000 0.974 0.851 0.565 0.599 0.693 0.896 0.977 1.058 0.643 0.460
2000 4000 1.004 0.873 0.580 0.586 0.610 0.713 0.879 1.008 0.792 0.520
4000 4000 1.025 0.936 0.628 0.637 0.634 0.662 0.738 0.874 0.861 0.722
4000 8000 1.102 1.048 0.719 0.730 0.729 0.731 0.737 0.802 0.941 0.389
8000 8000 1.180 1.145 0.779 0.900 0.899 0.903 0.862 0.872 0.896 0.207
8000 16000 1.330 1.191 0.776 1.162 1.305 1.320 1.248 1.220 1.184 0.224

IBM Blue Gene/P

1000 1000 1.036 1.036 1.048 1.018 1.045 1.014 0.951 0.917 0.734 0.633 0.361 0.247
1000 2000 1.025 1.054 1.056 1.035 1.051 1.014 1.031 0.973 0.884 0.707 0.537 0.349
2000 2000 0.983 0.975 1.005 0.996 1.023 1.019 1.028 0.997 0.893 0.816 0.562 0.434
2000 4000 0.991 0.945 0.966 0.985 0.999 1.013 1.009 0.975 0.958 0.866 0.708 0.507
4000 4000 1.010 0.990 0.972 0.960 1.001 1.025 1.040 1.020 1.003 0.942 0.749 0.621

A super-linear speed-up is observed on up to 128 cores of the Blue Gene. There are at least two reasons for the higher
speed-up: the processors on supercomputer are slower than on Sooner and the communication is faster (due to special,
extra, networking used in the Blue Gene). It is also worthy observing that as the problem size increases, the parallel
efficiency on the supercomputer increases as well (e.g. on 4096 cores, it raises from 25% to 62% for the 2D problem).
This shows the overall parallel robustness of the approach under investigation.

Finally, we have decided to compare both computer systems. To this effect, computing times obtained on both
parallel systems are shown in the left side of Figure 1 and theobtained speed-up is presented in the right side of the
same Figure. As indicated above, due to the slower processors, the execution times obtained on the Blue Gene/P are
substantially larger than that on the Sooner. At the same time, the parallel efficiency obtained on the supercomputer is
better. The main reason of this can be related to the superiorperformance of the networking infrastructure of the Blue
Gene.

TABLE 8. Parallel efficiency for solving of 3D problem.

nx ny nz Cores
2 4 8 16 32 64 128 256 512 1024 2048 4096

Sooner

120 120 120 1.007 1.001 0.703 0.691 0.936 1.025 1.082 0.849 0.594 0.306
120 120 240 0.975 0.759 0.484 0.483 0.709 0.939 0.902 0.827 0.720 0.497
120 240 240 0.997 0.753 0.457 0.446 0.520 0.757 0.886 0.853 0.829 0.533
240 240 240 0.967 0.757 0.430 0.477 0.545 0.795 0.766 0.888 0.776 0.757
240 240 480 0.970 0.734 0.413 0.453 0.493 0.552 0.543 0.695 0.757 0.722
240 480 480 1.002 0.715 0.424 0.441 0.485 0.520 0.500 0.552 0.711 0.790

IBM Blue Gene/P

120 120 120 1.055 1.096 1.143 0.881 1.117 1.092 1.014 0.900 0.851 0.581 0.420 0.267
120 120 240 1.014 1.064 1.094 1.154 0.861 1.108 1.038 0.922 0.910 0.631 0.439 0.340
120 240 240 1.008 1.015 1.052 1.171 1.151 0.874 1.061 0.977 0.943 0.672 0.557 0.435

100

101

102

103

104

 1 4 16 64 256 1024 4096

T
im

e

number of processors

Execution time

Sooner nx=ny=2000
Blue Gene nx=ny=2000

Sooner nx=ny=8000
Blue Gene nx=ny=8000
Sooner nx=ny=nz=120

Blue Gene nx=ny=nz=120
Sooner nx=ny=nz=240

Blue Gene nx=ny=nz=240

1

4

16

64

256

1024

 1 4 16 64 256 1024 4096

sp
ee

d-
up

number of processors

Speed-up

Sooner nx=ny=2000
Blue Gene nx=ny=2000

Sooner nx=ny=8000
Sooner nx=ny=nz=120

Blue Gene nx=ny=nz=120
Sooner nx=ny=nz=240

FIGURE 1. Execution time and speed-up for 2D problemnx = ny = 2000,8000, 3D problemnx = ny = nz = 120,240

ACKNOWLEDGMENTS

Computer time grants from the Oklahoma Supercomputing Center (OSCER) and the Bulgarian Supercomputing
Center (BGSC) are kindly acknowledged. K. Georgiev, I. Lirkov, and S. Margenov were partially supported by
grants DO02-147 and DPRP7RP-02/13 of the Bulgarian NSF. Work presented here is a part of the Poland-Bulgaria
collaborative grant “Parallel and distributed computing practices”.

REFERENCES

1. A. J. Chorin,Math. Comp.22, 745–762 (1968).
2. R. Temam,Arch. Rat. Mech. Anal.33, 377–385 (1969).
3. J.-L. Guermond, P. Minev, and J. Shen,Comput. Methods Appl. Mech. Engrg.195, 6011–6054 (2006).
4. J.-L. Guermond, and P. Minev,Comptes Rendus Mathematique348, 581–585 (2010).
5. J.-L. Guermond, and A. Salgado,Journal of Computational Physics228, 2834–2846 (2009).
6. J.-L. Guermond, and A. Salgado,Comptes Rendus Mathematique346, 913–918 (2008).
7. M. Snir, S. Otto, S. Huss-Lederman, D. Walker, and J. Dongarra, MPI: The Complete Reference, Scientific and engineering

computation series, The MIT Press, Cambridge, Massachusetts, 1997, second printing.
8. D. Walker, and J. Dongarra,Supercomputer63, 56–68 (1996).
9. E. Anderson, Z. Bai, C. Bischof, S. Blackford, J. Demmel, J. Dongarra, J. D. Croz, A. Greenbaum, S. Hammarling,

A. McKenney, and D. Sorensen,LAPACK Users’ Guide, SIAM, Philadelphia, 1999, third edn.

