
BENCHMARKING PERFORMANCE OF PARALLEL
COMPUTERS USING A 2D ELLIPTIC SOLVER

IVAN LIRKOV AND SVETOZAR MARGENOV

Central Laboratory for Parallel Processing, Bulgarian Academy of Sciences
Acad. G. Bonchev Str., Bl.25A, 1113 Sofia, Bulgaria

MARCIN PAPRZYCKI

Department of Computer Science and Statistics, University of Southern
Mississippi, Hattiesburg, Mississippi, 39406-5106, USA

It was recently shown that block-circulant preconditioners applied to a conjugate
gradient method used to solve structured sparse linear systems arising from 2D
elliptic problems have very good numerical properties and a potential for good
parallel efficiency. The aim of the presentation is to summarize and compare their
parallel performance across a number of modern parallel computers: SGI Power
Challenge 10000, SGI/Cray Origin 2000, HP-Convex SPP-2000, IBM SP-2, Cray
T3E, a network of SUN workstations and a Beowulf cluster of PC’s.

1 Introduction

When a second order elliptic partial differential equation (PDE) on a square
is discretized using one of the standard discretization techniques the resulting
discrete problem can be represented as a linear system Ax = b. Here matrix
A is large block tridiagonal and symmetric positive definite. Typically, to
solve this linear system a preconditioned conjugate gradient method is used.
Recently, a modification to the well known block-circulant (BC) preconditioner
was proposed by Lirkov, Margenov and Vassilevski (see ? for more details).
The circulant block-factorization (CBF) preconditioner is based on a circulant
approximation to the blocks of matrix A and uses FFT’s for fast inversion of
circulant blocks.

Initial results indicated that the CBF preconditioner has somewhat bet-
ter numerical properties than the standard BC preconditioner and its parallel
performance is also slightly better. These results were collected on distributed
and shared memory parallel computers (see ?,? for more details). Due to the
hardware limitations and problems with the PVM-based implementation of
the new algorithm these results were collected for small and medium size prob-
lems only. After the code was re-implemented using MPI primitives and with
special attention paid to the data communication we were able to experiment
with the larger problems. The initial data from these experiments on four
computers from Silicon Graphics Inc. has been reported in ?.

marcin98: submitted to World Scientific on November 20, 2013 1



The aim of this note is to compare the performance of a wide range of
high performance computers while running the same code. The machines are:
SGI Power Challenge 10000, SGI/Cray Origin 2000, HP-Convex SPP-2000,
IBM SP-2, Cray T3E, a network of SUN workstations and a Beowulf cluster
of PC’s. The remaining part of the paper is organized as follows: in Section
2 the basic information about the circulant preconditioner and its parallel
complexity is presented. Section 3 contains the summary of the experimental
data. In the final section we summarize our findings and sketch the future
research direction.

2 Circulant preconditioners and parallel complexity

Consider a 2D second order elliptic PDE on the unit square Ω = (0, 1)× (0, 1)
with homogeneous Dirichlet boundary conditions. Let the domain Ω be tri-
angulated by a rectangular uniform grid with n grid points in each coordinate
direction and let the usual five-point stencil finite difference approximation
be applied to the problem. This discretization leads to a system of linear
algebraic equations Ax = b, where A is symmetric positive definite and, if
the grid points are ordered along the y-direction first, then the matrix A is
block-tridiagonal and can be represented as

A = tridiag(−Ai,i−1, Ai,i,−Ai,i+1), i = 1, 2, . . . , n.

The matrix C is circulant if (Ck,j) =
(
c(j−k) mod m

)
, where C is an m × m

matrix. The CBF preconditioner is defined by

CCBF = tridiag(−Ci,i−1, Ci,i,−Ci,i+1) i = 1, 2, . . . , n,

where Ci,j = Circulant(Ai,j) is a proper circulant approximation of the cor-
responding block Ai,j (for more details see ?). The relative condition number
of the preconditioned system for a model Poisson problem for CBF precondi-
tioners is estimated by O(

√
n), i.e., the same result as for certain incomplete

LU factorization type preconditioners holds. The advantage of the CBF pre-
conditioners is their parallel efficiency.

It has been shown that when an iterative method is considered the best
model of analyzing the parallel complexity is to consider the cost per iteration.
The cost of one preconditioned conjugate gradient iteration consists of the cost
of arithmetical operations (we will assume that the same number of operations
is performed on each processor) and the cost of data communication between
processors. Let us assume that ta is the average time to perform an arithmetic
operation on a single processor while Tcom = ts +Mtc is the communication

marcin98: submitted to World Scientific on November 20, 2013 2



time of transmitting M elements (it consists of the startup time ts and the
communication time of transmitting one element tc).

The general estimate for the total parallel complexity of one iteration of
the CBF preconditioned conjugate gradient method on distributed or shared
memory parallel system with P processors is derived in ?. We have

TCBF
PCG (P ) ≈ (31 + 10 log n)

n2

P
ta + 2Gthr(

n2

P
, P ) + 2Gthr(P, P ) + 2Brdc(P ),

whereGthr(M,P ) is time for gathering P data packets, each packet withM/P
words and Brdc(P ) is time for broadcasting a number from one processor to
all others. For distributed memory architecture models: ring, square grid and
hypercube the above communication times are given by:

Brdc(P ) Gthr(M,P )

ring (ts + tc)
P
2 P ts +M tc

square grid (ts + tc)
√
P 2

√
P ts +M(1 + 1√

P
) tc

hypercube (ts + tc) logP logP ts +M(1− 1
P ) tc

It can be shown that, after a number of simplifying assumptions, the
total parallel complexity of one iteration of the CBF preconditioned conjugate
gradient method on a shared memory parallel system is (for details see ?):

TCBF
PCG (P ) ≈ 2Pts + 2(1− 1

P
)
n2

P
tc + (31 + 10 log n)

n2

P
ta.

It can be also shown that, if SP denotes speedup and EP denotes efficiency
then limn→∞ SP = P and limn→∞ EP = 1, and the algorithm is asymp-
totically optimal.

3 Experimental results

3.1 Experimental setup

The experimental data was collected on nine different parallel computers: SGI
Power Challenge 8000, SGI Power Challenge 10000, SGI/Cray Origin 2000,
HP-Convex SPP-2000 (Exemplar), IBM SP-2, Cray T3E, a network of SUN
workstations and a Beowulf cluster of PC’s. Table ?? summarizes the hard-
ware specifications and the performance characteristics of these machines.
Since the results from earlier experiments on the four Silicon Graphics ma-
chines have been summarized in ? we will omit the timings from the older

marcin98: submitted to World Scientific on November 20, 2013 3



Table 1. Machine characteristics

Machine memory processor MHz MFlops
PC 8000 shared 16Gb MIPS R8000 90 360
PC 10000 shared 16Gb MIPS R10000 195 390
Origin 2000 dynamic 12Gb MIPS 10000 195 390

shared 32Gb 250 500
SPP-2000 dynamic 4Gb PA-RISC 8000 180 720
Exemplar shared
IBM SP-2 distributed 1Gb IBM Power2 160 360

Thin Node
SUN network distributed 128Mb UltraSPARC 167 330
Beowulf distributed 256Mb Pentium II 233 88
Cray T3E distributed 128Mb DEC Alpha 400 500

21164

Power Challenge 8000 and the slower Origin 2000. For the purpose of com-
pleteness of comparison we will, however, report the results from the remaining
two SGI machines.

All experiments have been run using exactly the same code implemented
in C. MPI library was used to facilitate parallelism. Even on a shared memory
machine (SGI PC 10000) the MPI based parallelism was used. The manufac-
turer provided optimized MPI primitives were used (in case of the Beowulf
cluster the most aggressive mpirun options have been turned on). In all cases
the most aggressive manufacturer provided compiler optimizations have been
turned on as the only form of optimizing the code for the architecture. Each
result reported here is either obtained in benchmarking mode on an empty
machine, or is the best result obtained from multiple experiments on a ma-
chine with varying loads. Timings were obtained using the MPI’s provided
timer.

3.2 Results for n = 840

The first series of experiments was run for a moderately large problem of size
n = 840. In Table ?? we present the times for the execution of the program
for P = 1, 2, . . . , 8 processors.

The results are rather surprising. A single processor performance of the
slowest machine (as far as the MFlop rate is concerned), the Beowulf cluster,
is better than that of the Sun Workstation delivering the result in about 2/3 of

marcin98: submitted to World Scientific on November 20, 2013 4



Table 2. Execution times, speedup, efficiency and MFlops rate for n = 840

P PC 10000 Origin Exemplar SP-2 NOW Beowulf Cray
1 4.75 3.23 5.51 8.75 21.03 14.27 6.52
2 2.55 1.90 2.62 4.41 10.91 8.19 3.20
3 1.73 1.25 1.90 2.99 7.37 7.24 2.13
4 1.35 0.93 1.41 2.18 5.56 4.46 1.60
5 1.09 0.73 1.14 1.74 4.49 3.47 1.28
6 0.95 0.62 0.92 1.44 3.76 2.82 1.07
7 0.84 0.53 0.84 1.25 3.27 2.49 0.92
8 0.76 0.47 0.71 1.10 2.92 2.24 0.81

Speedup on 8 processors
8 6.25 6.79 7.76 7.95 7.20 6.37 8.10

Efficiency on 8 processors
8 0.7812 0.8590 0.9701 0.9943 0.9003 0.7963 1.0124

MFlop rate on 1 and 8 processors
1 44.71 65.75 38.55 24.27 10.10 14.88 31.07
8 279.45 451.88 299.13 191.34 72.73 94.82 251.61

the time. This can be explained by the fact that the Sun Workstations in the
NOW cluster at UC Berkeley are equipped only with 128 MBytes of memory
and the system has to swap the data in and out of the disk (the Beowulf
machines have 256 MBytes of memory). The 8-processor performance of the
two machines is approximately the same. This suggests that the network on
the Beowulf is not fast enough and this affects the performance.

Unexpectedly, the single processor performance of the Cray T3E is only
1/2 of that of the Origin; even though both machines have the same theoretical
peak performance. This is likely to be related to the lack of sufficient memory
on the Cray. This explanation is further supported by the superlinear speedup
obtained on the Cray. This is usually an invitation of a memory-related
bottleneck, that is removed as the data is distributed among a larger number
of processors. This is rather interesting when considering the fact that such
an effect has not been observed on the NOW.

The remaining three distributed memory machines cannot match the per-
formance of the other three computers. This is particularly surprising for
the IBM’s SP-2 which has the single node theoretical peak performance only
slightly slower than the PC 10000, but is almost twice slower on a single node.
It should be observed that the Exemplar, which has the highest theoretical
MFlop rate, is slower than both of the SGI machines. This can be attributed

marcin98: submitted to World Scientific on November 20, 2013 5



to the fact that it has only a one-way cache, while the SGI machines have
two-way cache memories ?.

The 8-processor performance is relatively good on all machines but the
Beowulf and the PC 10000. In cases of these two machines the network/bus
performance which is not able to match the processor speed is to blame for
the smaller speedup/efficiency. Out of the remaining machines, the efficiency
of the Origin is the lowest. This can be related to the fact that the new
Origin has a much faster processor, but its network was not upgraded to
match this additional computational power (see ? for additional data and the
comparison of the performance of the two Origin machines). The NOW, the
Exemplar and the SP-2 deliver rather good parallel performance measured in
terms of speedup and efficiency (efficiency of 90%, 97% and 99% respectively).
This latter fact, compared with the timing data presented above and the
theoretical peak performance summarized in Table 1 suggests once more that
both speedup and efficiency can be not only misleading when a performance
of a given algorithm on a given machine is concerned ?, but can be also
rather misleading when a comparison between machines is undertaken. Here,
the three machines that underutilize their potential computational power the
most are reported as the most efficient.

3.3 Results for n = 1260

The second series of experiments has been executed for a large problem of
size n = 1260. Table ?? depicts the execution times for the six computers for
P = 1, 2, . . . , 15 processors. We were not able to fit the problem into 1 and
2 processors on the Cray (which further supports our earlier discussion of its
performance) and thus the results are not reported. Since the code represents
only a model problem it requires that the number of processors divides the
problem size exactly. Thus the experiments for P = 8, 11, 13 processors have
been omitted. The ‘xxxx’ symbol denotes that given data is not applicable.

The results resemble these obtained for n = 840. We observe that, also
on the Sun Workstation, the 128 MBytes of memory are not enough to fit
our problem. Not only it has to swap data to the disk, but it has to do so
often that its performance becomes reduced approximately sixfold (when the
MFlop rate of about 10 reported in Table 2 is compared to the 1.69 above).

The differences in single processor performance between the remaining
machines become more pronounced as far as the wall-clock time is concerned.
This suggests that the increase in problem size does not help the Exemplar
to overcome the one-way cache problem. Interestingly, when the MFlop rates
are compared with these reported in Table 2 above the Beowulf and SP-2

marcin98: submitted to World Scientific on November 20, 2013 6



Table 3. Execution times, speedup, efficiency and MFlops rate for n = 1260

P PC 10000 Origin Exemplar SP-2 NOW Beowulf
1 11.23 7.71 12.30 22.53 319.29 37.97
2 5.99 4.57 6.45 11.96 36.12 22.07
3 4.11 3.09 4.34 8.14 18.84 14.74
4 3.18 2.33 3.18 5.54 14.95 11.12
5 2.61 1.87 2.61 4.97 11.74 8.82
6 2.31 1.55 2.31 4.10 9.67 7.45
7 2.09 1.33 1.88 3.24 8.36 6.51
9 1.82 1.05 1.54 3.76 6.64 5.14
10 1.75 0.92 1.34 2.74 5.90 5.71
12 1.57 0.82 1.17 1.91 4.96 3.91
14 1.48 0.71 0.99 2.17 4.46 4.72
15 1.43 0.66 0.98 1.58 4.02 3.57

Speedup on 15 processors
15 7.85 11.66 12.55 14.26 xxxx 10.63

Efficiency on 15 processors
15 0.5235 0.7788 0.8367 0.9506 xxxx 0.7091

MFlop rate on 1 and 15 processors
1 47.92 69.81 43.76 23.89 1.69 14.17
15 376.36 815.45 549.18 340.63 133.88 150.76

report a slight performance reduction, while the remaining machines report a
performance increase of 3-5 MFlops.

The parallel performance is similar to that reported for the smaller sys-
tem. It should be observed that for 15 processors the performance of the
shared memory PC 10000 is visibly affected by the communication overhead
(its efficiency is only about 52%).

3.4 Results for n = 2520

The final set of results reported here is for a rather large system of size n =
2520. In Table ?? we depict the results for above systems but the NOW, the
Beowulf and the SP-2. In case of NOW already for the system of size 1260 we
observed that there is not enough memory. Similar effects have been observed
on the Beowulf cluster for up to 15 processors. Finally, on the SP-2 we were
not able to fit the problem into less than 9 processors, so we decided to omit
the remaining results as well. Execution times are reported for all processor

marcin98: submitted to World Scientific on November 20, 2013 7



Table 4. Execution times, speedup, efficiency and MFlops rate for n = 2520

P PC 10000 Origin Exemplar
1 47.54 33.10 51.01
2 24.76 19.15 25.59
3 17.10 12.94 17.61
4 13.23 9.85 13.29
5 11.07 8.01 10.23
6 9.67 6.66 8.69
7 8.74 5.79 7.54
8 7.97 5.12 6.81
9 7.50 4.65 6.24
10 7.24 4.07 5.72
12 6.73 3.40 4.86
14 6.37 2.91 4.24
15 6.29 2.77 4.03

Speedup on 15 processors
15 7.55 11.95 12.65

Efficiency on 15 processors
15 0.5033 0.7966 0.8438
MFlops rate on 1 and 15 processors
1 46.62 66.96 43.45
15 352.35 800.10 549.95

numbers between 1 and 15 that are equal divisors of the problem size.
The results are again following the general pattern established earlier.

The single processor performance of all three machines becomes slightly worse
suggesting that with the problem size increasing the cache memory conflicts
are encountered. Similar effects are visible for the 15 processor performance,
where the total MFlop rate reduces slightly on the Origin, while remains
almost unchanged on the Exemplar. The efficiency of the shared memory
PC 10000 is further reduced to only about 50%. This can be explained by
the fact that as the problem size increases, in addition to the bus saturation,
the cache memory management becomes inefficient thus further reducing the
performance (see for instance ?).

marcin98: submitted to World Scientific on November 20, 2013 8



4 Concluding remarks

In this note we have reported a parallel performance comparison of a 2D ellip-
tic solver on seven different parallel machines. Our results indicate that the
shared memory (bus-based) architectures cannot deal with large problems of
this type. We have also seen the effects of per-node memory size and the net-
work performance on the overall performance of the parallel system. Finally,
we have observed that the standard performance measures (speedup and ef-
ficiency) are extremely misleading when performance of multiple computer
systems is compared against each other.

In the near future we plan to perform a similar set of comparisons for a
3D elliptic solver which is currently under development.

Acknowledgments

The research of the first two authors has been supported by Bulgarian NSF
Grant I-701/97. Computer time grants from NCSA and NPACI are kindly
acknowledged. We would like to express our gratitude to Charles A. Wright
for helping us with running experiments on the NOW and the Beowulf and
to C. Hempel for making the runs on the T3E possible.

References

1. G. Astfalk, HP/Convex, personal communication.
2. I. Bar-On, M. Paprzycki Computer Assisted Mechanics and Engineering

Sciences 5, 85 (1998).
3. R.H. Chan, T.F. Chan, J. Numerical Lin.Alg.Appl. 1, 77 (1992).
4. R. Chan, G. Strang, SIAM J.Sci.Stat.Comp. 10, 104 (1989).
5. J.J. Dongarra, W. Gentzsch, Computer Benchmarks (North-Holland,

Amsterdam, 1993).
6. I. Lirkov, S. Margenov, in Proceedings of the PARCELLA’96, R. Vollmar,

W. Erhard, V. Jossifov, eds., 279 (Akademie Verlag, Berlin, 1996).
7. I. Lirkov, S. Margenov, M. Paprzycki, R. Owens, Large-Scale Scientific

Computations of Engineering and Environmental problems, M. Griebel,
O. Iliev, S. Margenov, P. Vassilevski eds., Notes on Numerical Fluid Me-
chanics, 62 319 (Vieweg Verlag, Braunschweig, Germany, 1998).

8. I. Lirkov, S. Margenov, M. Paprzycki, Parallel solution of 2D elliptic
PDE’s on Silicon Graphics supercomputers, Proceedings of the Interna-
tional Conference on Parallel and Distributed Computing and Systems,
October, 1998, Las Vegas, Nevada, to appear.

marcin98: submitted to World Scientific on November 20, 2013 9



9. I. Lirkov, S. Margenov, P.S. Vassilevski, Computing 53(1), 59 (1994).
10. I. Lirkov, S. Margenov, L. Zikatanov, Computing 58(3), 245 (1997).
11. Charles Van Loan, Computational frameworks for Fast Fourier Trans-

form (SIAM, Philadelphia, 1992).

marcin98: submitted to World Scientific on November 20, 2013 10


