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Abstract. In this paper, the recently proposed approach for multicri-
teria decision making – InterCriteria Analysis (ICA) – is presented. The
approach is based on the apparatus of the index matrices and the intu-
itionistic fuzzy sets. The idea of InterCriteria Analysis is applied to es-
tablish the relations and dependencies of considered parameters based on
different criteria referred to various metaheuristic algorithms. A hybrid
scheme using Genetic Algorithm (GA) and Ant Colony Optimization
(ACO) is used for parameter identification of E. coli MC4110 fed-batch
cultivation process model. In the hybrid GA-ACO, the GA is used to
find feasible solutions to the considered optimization problem. Further
ACO exploits the information gathered by GA. This process obtains a
solution, which is at least as good as – but usually better than – the
best solution devised by GA. Moreover, a comparison with both the con-
ventional GA and ACO identification results is presented. Based on ICA
the obtained results are examined and conclusions about existing rela-
tions and dependencies between model parameters of the E. coli process
and algorithms parameters and outcomes, such as number of individuals,
number of generations, value of the objective function and computational
time, are discussed.

Keywords: InterCriteria Analysis, meta-heuristics, hybrid algorithm,
ant colony optimization, genetic algorithm, E. coli cultivation process.

1 Introduction

To solve different optimization problems we can apply various techniques and
approaches, namely exact algorithms (Branch-and-Bound, Dynamic Program-
ming, local search techniques) [14, 20, 39], heuristics [27, 35], and metaheuristics
(Genetic Algorithms, Ant Colony Optimization, Particle Swarm Optimization,
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Simulated Annealing, Tabu Search, etc.) [15, 17, 23]. Today, the use of meta-
heuristics has received more and more attention. These methods offer good solu-
tions, even global optima, within reasonable computing time [38]. An even more
efficient behavior and higher flexibility when dealing with real-world and large-
scale problems, can be achieved through a combination of a meta-heuristic with
other optimization techniques, the so-called hybrid metaheuristic [15, 22, 29, 30,
37, 36, 40].

The main goal of the hybrid algorithms is to exploit the advantages of differ-
ent optimization strategies, avoiding their disadvantages. Choosing an adequate
combination of metaheuristic techniques we can achieve a better algorithm per-
formance in solving hard optimization problems. Developing such effective hy-
brid algorithm requires expertise from different areas of optimization. There are
many hybridization techniques that have shown to be successful for different
applications.

In this paper, we investigate a hybrid metaheuristic method that combines
Genetic Algorithms (GA) and Ant Colony Optimization (ACO), named GA-
ACO. There are some applications of ACO-GA hybrid for several optimization
problems. In [25, 26] a hybrid metaheuristic ACO-GA for the problem of sports
competition scheduling is presented. In the proposed algorithm first, GA gen-
erates activity lists thus provides the initial population for ACO. Next, ACO
is executed. In the next step GA, based on the crossover and mutation opera-
tions, generates new population. continuous engineering optimization. Authors
in [18] presented hybrid algorithm in that ACO and GA search alternately and
cooperatively in the solution space. Test examples show that hybrid algorithm
can be more efficient and robust than the traditional population based heuristic
methods. In [2] the problem of medical data classification is discussed. Authors
propose a hybrid GA-ACO and show the usefulness of the proposed approach
on a number of benchmark real-world medical datasets. For solving NP-hard
combinatorial optimization problems in [1] a novel hybrid algorithm combining
the search capabilities of the ACO and GA is introduced. As a result a faster
and better search algorithm capabilities is achieved.

Provoked by the promising results obtained from the use of hybrid GA-ACO
algorithms, we propose a hybrid algorithm, i.e. collaborative combination be-
tween ACO and GA for model parameters optimization of E. coli cultivation
process. The effectiveness of GA and ACO have already been demonstrated for
model parameter optimization considering fed-batch cultivation processes [32].
Moreover, parameter identification of cellular dynamics models has especially
become a research field of great interest. Robust and efficient methods for pa-
rameter identification are of key importance.

On the other hand, the recently proposed approach for multicriteria decision
making – InterCriteria Analysis (ICA) – is applied for additional exploring of
the used metaheuristic techniques. In here discussed case the E. coli model
parameter estimates, number of individuals (chromosomes and ants), number
of algorithm generations, corresponding algorithm accuracy and computational
time are considered as user criteria. The ICA is applied with the aim to more
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profoundly understand the nature of the criteria involved and discover on this
basis existing correlations between the criteria themselves. The theory of ICA
has been presented in details in [4], and in [9–12] it was further discussed and
developed.

The paper is organized as follows. The problem formulation is given in Sec-
tion 2. The proposed hybrid GA-ACO technique is described in Section 3. The
background of the ICA is presented in Section 4. The numerical results and a
discussion are presented in Section 5. Conclusion remarks are done in Section 6.

2 Problem Formulation

2.1 E. coli Fed-batch Fermentation Model

The mathematical model of the fed-batch cultivation process of E. coli is pre-
sented by the following non-linear differential equation system [33]:

dX

dt
= µX − Fin

V
X (1)

dS

dt
= −qSX +

Fin
V

(Sin − S) (2)

dV

dt
= Fin (3)

where

µ = µmax
S

kS + S
(4)

qS =
1

YS/X
µ (5)

X is the biomass concentration, [g/l];
S is the substrate concentration, [g/l];
Fin is the feeding rate, [l/h];
V is the bioreactor volume, [l];
Sin is the substrate concentration in the feeding solution, [g/l];
µ and qS are the specific rate functions, [1/h];
µmax is the maximum value of the specific growth rate, [1/h];
kS is the saturation constant, [g/l];
YS/X is the yield coefficient, [-].

For the model parameters identification, experimental data of an E. coli
MC4110 fed-batch cultivation process are used. The experiments are performed
in the Institute of Technical Chemistry, University of Hannover, Germany. The
detailed description of the cultivation condition and experimental data could be
found in [3, 31].

The fed-batch process starts at time t = 6.68 h, after batch phase. The
initial liquid volume is 1350 ml. Before inoculation a glucose concentration of
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2.5 g/l was established in the medium. Glucose in feeding solution is 100 g/l.
The temperature was controlled at 35 ◦C, the pH at 6.9. The stirrer speed was
set to 900 rpm and was increased to 1800 rpm, so that the dissolved oxygen
concentration was never below 30%. The aeration rate was kept at 275 l/h and
the carbon dioxide was measured in the exhaust gas. The process is stopped at
time t = 11.54 h.

The bioreactor, as well as FIA measurement system is shown on Figure 1.
The feed rate profile and the dynamics of the measured substrate concentration
are presented, respectively on Figure 2 and Figure 3.

 

Fig. 1. Bioreactor and FIA measurement system
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Fig. 2. Feed rate profile
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Fig. 3. Measured substrate concentration

For the considered non-linear mathematical model of E. coli fed-batch cul-
tivation process (Eq. (1) - Eq. (5)) the parameters that should be identified
are:

• maximum specific growth rate (µmax),

• saturation constant (kS),

• yield coefficient (YS/X).

The following upper and lower bounds of the model parameters are considered
[32]:

0 < µmax < 0.7,

0 < kS < 1,

0 < 1/YS/X < 30.

In the model identification procedures measurements of main process vari-
ables (biomass and glucose concentration) are used. For on-line glucose deter-
mination a FIA system has been employed. For biomass, off-line analysis are
performed [3].

2.2 Optimization Criterion

The objective consists of adjusting the parameters (µmax, kS and YS/X) of the
non-linear mathematical model function (Eq. (1) - Eq. (5)) to best fit a data
set. The objective function is presented as a minimization of a distance measure
J between experimental and model predicted values of the main state variables
(biomass X and substrate S):
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J =

m∑
i=1

(Xexp(i)−X mod (i))
2

+

+

m∑
i=1

(Sexp(i)− S mod (i))
2 → min

(6)

where m is the number of experimental data; Xexp and Sexp are the known
experimental data for biomass and substrate; X mod and S mod are the model
predictions for biomass and substrate with a given set of parameters (µmax, kS
and YS/X).

3 Methodology

3.1 Genetic Algorithm

GA is a metaheuristic technique based on an analogy with the genetic struc-
ture and behaviour of chromosomes within a population of individuals using the
following foundations [21]:

• chromosomes in a population compete for resources and mates;
• those chromosomes most successful in each competition will produce more

off-spring than those chromosomes that perform poorly;
• genes from good chromosomes propagate throughout the population so that

two good parents will sometimes produce offspring that are better than either
parent;

• thus each successive generation will become more suited to their environ-
ment.

The structure of the GA, shown by the pseudocode is presented in Figure 4.
GA mainly operating on binary strings and using a recombination operator

with mutation. GA support a population of chromosomes, Pop(t) = xt1, ..., x
t
n

for generation t. Each chromosome introduces a potential solution to the prob-
lem and is implemented as some data structure S. Each solution is evaluated
according its ”fitness”. Fitness of a chromosome is assigned proportionally to
the value of the objective function of the chromosomes. Then, a new population
(generation t+ 1) is formed by selecting better chromosomes (selection step).

Roulette wheel, developed by Holland [28] is most used selection method.
The probability, Pi, for each chromosome to be selected is defined by:

P [Individual i is chosen] =
Fi

PopSize∑
j=1

Fj

, (7)

where Fi equals the fitness of chromosome i and PopSize is the population size.
Selected members of the new population have been subjected to transforma-

tions by means of ”genetic” operators to form new solution. There are unary
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Genetic Algorithm
i = 0
Initial population Pop(0)
Evaluate Pop(0)
while (not done) do (test for termination criterion)

i = i+ 1
Select Pop(i) from Pop(i− 1)
Recombine Pop(i)
Mutate Pop(i)
Evaluate Pop(i)

end while
Final solution

Fig. 4. Pseudocode for GA

transformations mi (mutation type), which create new chromosomes by a small
change in a single chromosome (mi : S → S), and higher order transformations
cj (crossover type), which create new chromosomes by combining parts from
several chromosomes (cj : S × . . . × S → S). The combined effect of selection,
crossover and mutation gives so-called reproductive scheme growth equation (the
schema theorem) [24]:

ξ (S, t+ 1) ≥

ξ (S, t) · eval (S, t) /F̄ (t)

[
1− pc ·

δ (S)

m− 1
− o (S) · pm

]
.

Good schemata receive an exponentially increasing number of reproductive
trials in successive generations.

3.2 Ant Colony Optimization

The ACO is a stochastic optimization method that mimics the social behavior
of real ants colonies, which try to find shortest rout to feeding sources and back.
Real ants lay down quantities of pheromone (chemical substance) marking the
path that they follow. An isolated ant moves essentially at random but an ant
encountering a previously laid pheromone will detect it and decide to follow it
with high probability and reinforce it with a further quantity of pheromone. The
repetition of the above mechanism represents the auto-catalytic behavior of a
real ant colony, where the more the ants follow a trail, the more attractive that
trail becomes. The idea comes from observing the exploitation of resources of
food among ants, in which ants have collectively been able to find the shortest
path between to the food.

The ACO is implemented as a team of intelligent agents, which simulate the
ants behavior, walking around the graph representing the problem to solve. The
requirements of the ACO algorithm are as follows [16, 19]:
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• The problem needs to be represented appropriately, which would allow the
ants to incrementally update the solutions through the use of a probabilistic
transition rules, based on the amount of pheromone in the trail and other
problem specific knowledge.

• A problem-dependent heuristic function, that measures the quality of com-
ponents that can be added to the current partial solution.

• A rule set for pheromone updating, which specifies how to modify the pheromone
value.

• A probabilistic transition rule based on the value of the heuristic function
and the pheromone value, that is used to iteratively construct a solution.

The structure of the ACO algorithm, shown by the pseudocode is presented
in Figure 5.

The transition probability pi,j , to choose the node j when the current node
is i, is based on the heuristic information ηi,j and the pheromone trail level τi,j
of the move, where i, j = 1, . . . . , n.

pi,j =
τai,jη

b
i,j∑

k∈Unused

τai,kη
b
i,k

, (8)

where Unused is the set of unused nodes of the graph.
The higher the value of the pheromone and the heuristic information, the

more profitable it is to select this move and resume the search. In the beginning,
the initial pheromone level is set to a small positive constant value τ0; later,
the ants update this value after completing the construction stage. The ACO
algorithms adopt different criteria to update the pheromone level.

Ant Colony Optimization
Initialize number of ants;
Initialize the ACO parameters;
while not end-condition do

for k = 0 to number of ants
ant k choses start node;
while solution is not constructed do

ant k selects higher probability node;
end while

end for
Update-pheromone-trails;

end while

Fig. 5. Pseudocode for ACO

The pheromone trail update rule is given by:

τi,j ← ρτi,j +∆τi,j , (9)
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where ρ models evaporation in the nature and ∆τi,j is a new added pheromone
which is proportional to the quality of the solution. Better solutions will receive
more pheromone than others and will be more desirable in a next iteration.

3.3 Hybrid GA-ACO Algorithm

We proposed to combine two metaheuristics, namely GA [24, 28] and ACO [19].
GA is a population-based method where initial population is randomly gen-
erated. Thus generated initial solutions, further is genetically evaluated. ACO
algorithm is a population-based too. The difference with GA is that ACO do
not need initial population. ACO is a constructive method and we manage the
ants to look for good solutions by parameter called pheromone. At the beginning
the initial pheromone is the same for the elements of the all potential solutions.
After every iteration the pheromone is updated. The elements of better solu-
tions receive more pheromone then others and become more desirable in a next
iterations. In our hybrid algorithm the solutions achieved by GA are like solu-
tions achieved by ACO from some previous iteration and we update the initial
pheromone according them. After that we continue with ACO algorithm.

The pseudocode of the proposed GA-ACO algorithm is shown in Figure 6.

GA-ACO hybrid algorithm
i = 0
Initial population Pop(0)
Evaluate Pop(0)
while not end-condition do

i = i+ 1
Select Pop(i) from Pop(i− 1)
Recombine Pop(i)
Mutate Pop(i)
Evaluate Pop(i)

end while
Final GA solution for ACO
Initialize number of ants;
Initialize the ACO parameters;
while not end-condition do

for k = 0 to number of ants
ant k choses start node;
while solution is not constructed do

ant k selects higher probability node;
end while

end for
Update-pheromone-trails;

end while
Final solution

Fig. 6. Pseudocode for Hybrid GA-ACO
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4 InterCriteria Analysis

4.1 Short Remarks on Intuitionistic Fuzzy Pairs and Index Matrices

The Intuitionistic Fuzzy Pairs (IFPs) is an object in the form of an ordered pair

〈a, b〉,

where a, b ∈ [0, 1] and a+ b ≤ 1.

IFPs are used as an evaluation of some object or process, and the com-
ponents (a and b) are interpreted, respectively, as degrees of membership and
non-membership to a given set, or degrees of validity and non-validity, or degree
of correctness and non-correctness, etc. [5].

Let us have two IFPs x = 〈a, b〉 and y = 〈c, d〉.
In [5] the following relations are defined:

x < y iff a < c and b > d
x ≤ y iff a ≤ c and b ≥ d
x = y iff a = c and b = d
x ≥ y iff a ≥ c and b ≤ d
x > y iff a > c and b < d

The concept of Index Matrix (IM) was introduced in [6] and discusssed in
more details in [7, 8].

The basic definitions and properties related to IMs are follows [7]:

Let I be a fixed set of indices and R be the set of all real numbers. By IM
with index sets K and L (K,L ⊂ I), we mean the object,

[K,L, {aki,lj}] ≡

l1 l2 . . . ln
k1 ak1,l1 ak1,l2 . . . ak1,ln
k2 ak2,l1 ak2,l2 . . . ak2,ln
...

...
...

. . .
...

km akm,l1 akm,l2 . . . akm,ln

,

where

K = {k1, k2, ..., km}, L = {l1, l2, ..., ln},

and for 1 ≤ i ≤ m, and 1 ≤ j ≤ n : aki,lj ∈ R.

On the basis of the above definition, in [8] the new object – the Intuitionistic
Fuzzy IM (IFIM) – was introduced in the form

[K,L, {〈µki,lj , νki,lj 〉}]
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≡

l1 l2 . . . ln
k1 〈µk1,l1 , νk1,l1〉 〈µk1,l2 , νk1,l2〉 . . . 〈µk1,ln , νk1,ln〉
k2 〈µk2,l1 , νk2,l1〉 〈µk2,l2 , νk2,l2〉 . . . 〈µk2,ln , νk2,ln〉
...

...
...

. . .
...

km 〈µkm,l1 , νkm,l1〉 〈µkm,l2 , νkm,l2〉 . . . 〈µkm,ln , νkm,ln〉

,

where for every 1 ≤ i ≤ m, 1 ≤ j ≤ n: 0 ≤ µki,lj , νki,lj , µki,lj + νki,lj ≤ 1, i.e.,
〈µki,lj , νki,lj 〉 is an IFP.

Let us have an IM

A =

O1 . . . Ok . . . Ol . . . On
C1 aC1,O1 . . . aC1,Ok

. . . aC1,Ol
. . . aC1,On

...
...

. . .
...

. . .
...

. . .
...

Ci aCi,O1 . . . aCi,Ok
. . . aCi,Ol

. . . aCi,On

...
...

. . .
...

. . .
...

. . .
...

Cj aCj ,O1 . . . aCj ,Ok
. . . aCj ,Ol

. . . aCj ,On

...
...

. . .
...

. . .
...

. . .
...

Cm aCm,O1 . . . aCm,Ok
. . . aCm,Ol

. . . aCm,On

, (10)

where for every p, q, (1 ≤ p ≤ m, 1 ≤ q ≤ n):

– Cp is a criterion, taking part in the evaluation,
– Oq is an object, being evaluated.
– aCp,Oq is a real number or another object, that is comparable about relation
R with the other a-objects, so that for each i, j, k: R(aCk,Oi

, aCk,Oj
) is de-

fined. Let R be the dual relation of R in the sense that if R is satisfied, then
R is not satisfied and vice versa. For example, if “R” is the relation “<”,
then R is the relation “>”, and vice versa.

Let Sµk,l be the number of cases is which R(aCk,Oi , aCk,Oj ) and
R(aCl,Oi , aCl,Oj ) are simultaneously satisfied. Let Sνk,l be the number of cases is

which R(aCk,Oi , aCk,Oj ) and R(aCl,Oi , aCl,Oj ) are simultaneously satisfied.
Obviously,

Sµk,l + Sνk,l ≤
n(n− 1)

2
.

Now, for every k, l, such that 1 ≤ k < l ≤ m and for n ≥ 2, we define

µCk,Cl
= 2

Sµk,l
n(n− 1)

, νCk,Cl
= 2

Sνk,l
n(n− 1)

. (11)

Therefore, 〈µCk,Cl
, νCk,Cl

〉 is an IFP. Now, we can construct the IM

C1 . . . Cm
C1 〈µC1,C1

, νC1,C1
〉 . . . 〈µC1,Cm

, νC1,Cm
〉

...
...

. . .
...

Cm 〈µCm,C1
, νCm,C1

〉 . . . 〈µCm,Cm
, νCm,Cm

〉

, (12)

that determine the degrees of correspondence between criteria C1, ..., Cm.
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5 Numerical Results and Discussion

5.1 Model Parameters Identification of E. coli Fed-batch
Fermentation Process

The theoretical background of the GA and ACO is presented in details [32]. For
the considered here model parameter identification, we used real-value coded GA
instead binary encoding. The type of the basic operators in GA are as follows:

• encoding – real-value,
• fitness function – linear ranking,
• selection function – roulette wheel selection,
• crossover function – extended intermediate recombination,
• mutation function – real-value mutation,
• reinsertion – fitness-based.

In the applied here ACO algorithm the problem is represented by graph and
the artificial ants try to construct shortest path under some conditions. In our
case the graph of the problem is represented by tripartite graph. There are not
arcs inside a level and there are arcs between levels. Every level corresponds to
one of the model parameters we identify (µmax, kS and YS/X).

To set to the optimal settings the parameters of the GA and ACO, several
pre-tests, according considered here optimization problem, are performed.

The optimal settings of the GA and ACO parameters are summarized in
Table 1 and Table 2.

Table 1. Parameters of GA

Parameter Value

ggap 0.97

xovr 0.7

mutr 0.05

maximum generations (maxgen) 40

number of individuals (nind) 20

number of variables 3

inserted rate 100 %

Table 2. Parameters of ACO algorithm

Parameter Value

number of ants (nind) 20

initial pheromone 0.5

evaporation 0.1

maximum generations (maxgen) 100
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Computer specification to run all identification procedures are Intel Core i5-
2329 3.0 GHz, 8 GB Memory, Windows 7 (64bit) operating system and Matlab
7.5 environment.

We perform 30 independent runs of the hybrid GA-ACO. The hybrid al-
gorithm starts with population of 20 chromosomes. We use 40 generation to
find solution. We take the achieved best GA solution to update ACO initial
pheromone. Further ACO is used to obtain the best model parameters vector
using 30 ants for 100 generations.

For comparison of hybrid performance pure GA and pure ACO are run (30
times) with parameters shown in Table 1 and Table 2.

The main numerical results, from parameter identification, are summarized
in Table 3. The obtained average values of the model parameters (µmax, kS and
YS/X) are summarized in Table 4.

Table 3. Results from model parameters identification procedures

Value Algorithm
Algorithm performance

T , [s] J

best
GA 67.5172 4.4396
ACO 67.3456 4.9190
GA-ACO 38.7812 4.3803
ACO-GA 35.5212 4.4903

worst
GA 66.5968 4.6920
ACO 66.6280 6.6774
GA-ACO 41.4495 4.6949
ACO-GA 35.3498 4.6865

average
GA 67.1370 4.5341
ACO 69.5379 5.5903
GA-ACO 39.4620 4.5706
ACO-GA 36.1313 4.5765

Table 4. Parameters’ estimations of the E. coli fed-batch cultivation process model

Value Algorithm
Model parameters

µmax kS 1/YS/X

average

GA 0.4857 0.0115 2.0215
ACO 0.5154 0.0151 2.0220
GA-ACO 0.4946 0.0123 2.0204
ACO-GA 0.4976 0.0135 2.0221

As it can be seen from Table 3 the hybrid GA-ACO achieves similar to
pure GA and pure ACO algorithm values of the objective function. In the same
time, the running time of the proposed hybrid algorithm is about two times less.
The pure ACO algorithm starts with equal initial pheromone for all problem
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elements. In the case of hybrid GA-ACO we use the best found solution by
the GA to update the ACO pheromone. Thus our ACO algorithm uses the GA
“experience” and starts from “better” pheromone. This strategy helps to the
ants to find good solutions using less computational resources like time and
memory. In result our hybrid algorithm uses more than three times less memory
than pure ACO and pure GA algorithms.

Moreover, in Table 3 we compare achieved in this work results with results in
our previous work [34]. There we run the ACO algorithm for several iterations
and thus we generate initial populations for GA algorithm. Thus the GA starts
from population closer to the good (optimal) solution than the randomly gener-
ated population. We observe that ACO-GA and GA-ACO algorithms achieves
very similar results for a similar running time. We run the ANOVA test to mea-
sure the relative difference between two algorithms. The two hybrid algorithms
achieves statistically equivalent results, but the GA-ACO algorithm uses 30%
less memory. Thus we can conclude that hybrid GA-ACO algorithm performs
better than ACO-GA hybrid algorithm.

On Figure 7 the comparison of the dynamics of measured and modeled
biomass concentration is shown. With a line we show the modeled biomass during
the cultivation process and with stars we show the measured biomass concen-
tration. We put only several stars because the two line are almost overlapped.
On Figure 8 the comparison between time profiles of measured and modeled
substrate concentration during the cultivation process is shown. On the both
figures we observe how close are the modeled and measured data. Thus we show
the quality of our hybrid GA-ACO algorithm.
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Fig. 7. Comparison between measured and modeled biomass concentration
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5.2 InterCriteria Analysis

Based on the obtained results from the identification procedures the following
IM is defined:

A =

GA ACO GA-ACO ACO-GA

Tave 67.1370 69.5379 39.4620 36.1313
Jave 4.5341 5.5903 4.5706 4.5765
Jbest 4.4396 4.9190 4.3803 4.4903
Jworst 4.6920 6.6774 4.6949 4.6865
µmaxave 0.4857 0.5154 0.4946 0.4976
kSave 0.0115 0.0151 0.0123 0.0135

1/YS/Xave
2.0215 2.0220 2.0204 2.0221

nind 100 20 30 10
maxgen 100 20 30 10

(13)

In the IM A (13) the average values for computation time (Tave) and for the
three model parameters estimations (µmaxave

, kSave and 1/YS/Xave), in case of
GA, ACO, GA-ACO and ACO-GA, are presented. Moreover, population num-
ber (individuals and/or ants) (nind), algorithm generations (maxgen) and the
average, best and worst value of the objective function (Jave, Jbest, Jworst) (Eq.
(6)) are considered.

Resulting IMs that determine the degrees of “agreement” (µ) and “disagree-
ment” (ν) between criteria are follows:
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µ Tave Jave Jbest Jworst µmaxave kSave 1/YS/Xave nind maxgen

Tave 1 0.5 0.67 0.83 0.5 0.5 0.5 0.67 0.67
Jave 0.5 1 0.83 0.67 1 1 0.67 0.17 0.33
Jbest 0.67 0.83 1 0.5 0.83 0.83 0.83 0.33 0.5
Jworst 0.83 0.67 0.5 1 0.67 0.67 0.33 0.5 0.5
µmaxave

0.5 1 0.83 0.67 1 1 0.67 0.17 0.33
kSave 0.5 1 0.83 0.67 1 1 0.67 0.17 0.33

1/YS/Xave 0.5 0.67 0.83 0.33 0.67 0.67 1 0.17 0.33
nind 0.67 0.17 0.33 0.5 0.17 0.17 0.17 1 0.5

maxgen 0.67 0.33 0.5 0.5 0.33 0.33 0.33 0.5 1

(14)

ν Tave Jave Jbest Jworst µmaxave kSave 1/YS/Xave nind maxgen

Tave 0 0.5 0.33 0.17 0.5 0.5 0.5 0.33 0
Jave 0.5 0 0.17 0.33 0 0 0.33 0.33 0.33
Jbest 0.33 0.17 0 0.5 0.17 0.17 0.17 0.67 0.17
Jworst 0.17 0.33 0.5 0 0.33 0.33 0.67 0.5 0.17
µmaxave

0.5 0 0.17 0.33 0 0 0.33 0.33 0.33
kSave 0.5 0 0.17 0.33 0 0 0.33 0.33 0.33

1/YS/Xave 0.5 0.33 0.17 0.67 0.33 0.33 0 0.33 0.33
nind 0.33 0.83 0.67 0.5 0.83 0.83 0.83 0 0.17

maxgen 0 0.33 0.17 0.17 0.33 0.33 0.33 0.17 0

(15)

As expected, every criteria perfectly correlates with itself, so the value µ is
always 1, and ν = 0. Also, the two matrices are obviously symmetrical according
to the main diagonal. Observing obtained values of “agreement” (µ, Eq. (14))
and “disagreement” (ν, Eq. (15)), we can group the pairs of defined criteria in
the following 6 groups.

• µ = 1 and ν = 0
µmaxave

− Jave, kSave − Jave, kSave − µmaxave

• µ = 0.83 and ν = 0.17
Jworst − Tave, Jbest − Jave, µmaxave

− Jbest, kSave − Jbest, 1/YS/Xave − Jbest

• µ = 0.67 and 0 <= ν <= 0.33
Jworst − Jave, nind− Tave, maxgen− Tave, 1/YS/Xave − Jave, Jbest − Tave

• µ = 0.5 and 0.17 <= ν <= 0.5
Jave − Tave, µmaxave

− Tave, kSave − Tave, 1/YS/Xave − Tave, Jworst − Jbest,
nind− Jworst, maxgen− Jbest, maxgen− Jworst, maxgen− nind

• µ = 0.33 and 0.33 <= ν <= 0.67
maxgen−Jave, nind−Jbest, 1/YS/Xave−Jworst, µmaxave

−maxgen, kSave−
maxgen, 1/YS/Xave −maxgen
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• µ = 0.17 and ν <= 0.83
nind− Jave, µmaxave − nind, kSave − nind, 1/YS/Xave − nind

The high value of “agreement” of the parameters values from the first two
groups confirms the robustness of the proposed algorithms. At the same time
the strong connection in pair kSave−µmaxave derives from the physical meaning
of these model parameters [13]. In most of the cases the sum of the values
of µ and ν is 1. However, sometimes this sum is less than 1, therefore there
is some uncertainty. This uncertainty could be explained with the stochastic
nature of the applied algorithms. The values of µ in the 4th group show the
correctness of the algorithms. The value of “agreement” between the average
value of the objective function and computation time, or worst and best value of
the objective function is not very high, but it exists. The last group shows that
the dependence between number of population and achieved objective function
value is less important than with running time. The running time depends on
both – the number of population and the number of algorithm generations. Thus
we can conclude that for achieving good results the balance between number of
population and number of generations is very important. We observe that the
worst value of the objective function depends much more of the running time
than the best objective function value. If we run the algorithm for a short running
time with high probability we will achieve bad solutions only, at the same time
long running time can not guarantee achieving of good solutions.

On Figure 9 with stars are shown the pairs 〈µ, ν〉. When there is not uncer-
tainty, the stars are on the diagonal. In the case of uncertainty the stars are under
the diagonal. The uncertainties are in 30% of the cases and thus the robustness
of our algorithms is confirmed.
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6 Conclusion

In this paper we apply a new approach – InterCriteria analysis – for establishing
relations and dependencies between different algorithm parameters and model
parameters. We considered two hybrid algorithms – GA-ACO and ACO-GA –
as well as pure GA and pure ACO algorithms.

First, algorithms are applied for parameter identification of nonlinear math-
ematical model of E. coli fed-batch cultivation process. We observe that our hy-
brid algorithms (GA-ACO and ACO-GA) achieve similar to pure GA and ACO
algorithms solutions using less computational resources like time and memory.
Both hybrid algorithms achieve statistically similar results for a similar running
time, but GA-ACO algorithm uses 30% less memory, which is important when
we solve large problems.

Second, InterCriteria analysis is performed to determine the levels of de-
pendence between E. coli process model parameters themselves. Then between
algorithms outcomes as computational time and accuracy, as well as the number
of used populations and maximum number of algorithms generations. Next we
determine the levels of dependence between E. coli process model parameters
and the considered algorithms’ parameters. This analysis shows some relations
and dependencies that result from the physical meaning of the model parameters
- on the one hand, and from stochastic nature of the considered metaheuristics
- on the other hand. Moreover, the results show the robustness of the proposed
algorithms (both hybrid and pure techniques) and confirm their correctness.
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