Proceedings of the 10th IASTED International Conference
PARALLEL AND DISTRIBUTED COMPUTING AND SYSTEMS
October 28-31, 1998, Las Vegas, Nevada, USA

PARALLEL SOLUTION OF 2D ELLIPTIC PDE’S ON SILICON GRAPHICS

SUPERCOMPUTERS
IVAN LIRKOV SVETOZAR MARGENOV MARCIN PAPRZYCKI
CLPP, BAS CLPP. BAS Dept. of Computer Science and Stat.

Acad. G. Bonchev St. Block 25A
1113 Sofia, Bulgaria

ABSTRACT

It was recently shown that block-circulant
preconditioners are very efficient when applied to a
conjugate gradient method used to solve a sparse linear
system arising from discretizations of 2D elliptic partial
differential equations. In addition, the initial experimental
data, collected for small and medium size systems solved
on parallel computers with limited number of processors,
indicated potential for a good parallel efficiency. The aim
of this note is to compare the performance of the 2D
elliptic solver based on a conjugate gradient iterative
solver with block-circulant preconditioner across four
parallel computers from the Silicon Graphics Inc.: SGI
Power Challenge 8000, SGI Power Challenge 10000, SGI
Origin2000 running at 195MHz and SGI Origin 2000
running at 250 MHz.

KEYWORDS

Partial differential equations, conjugate gradient
method, block-circulant preconditioning, parallel
performance

INTRODUCTION

Consider a numerical solution to an elliptic partial
differential equation (PDE). A finite difference (as well as
a finite element) discretization transforms this continuous
problem to a discrete one. The discrete problem can be
represented by a linear system Ax = b, where A is a
symmetric positive definite matrix (and, if an appropriate
ordering of variables is applied, this matrix is block
tridiagonal). Conjugate gradient type methods are
recognized as the most cost-effective way to solve large
problems of this type. To accelerate the convergence of
the iterative solver a preconditioner matrix C is combined
with the conjugate gradient algorithm. The theory of
iterative solvers shows that C is considered a good
preconditioner if it minimizes the condition number of the
matrix C'A and allows an efficient computation of C'v
for a given vector v.

Recently, a new class of precoditioners has been
introduced by Lirkov, Margenov and Vassilevski i [1].
The circulant block-factorization (CBF) preconditioner is

283-436

Acad. G. Bonchev St. Block 25A
1113 Sofia, Bulgaria

575

University of Southern Mississippi
Hattiesburg, MS 39406, USA

based on a circulant approximation of the blocks of the
matrix A (considered in its block-tridiagonal form). This
preconditioner belongs to the same class as the
well-known block-circulant (BC) preconditioner
introduced by R.H. Chan and T.F. Chan in {2]. Both
preconditioners are based on block-wise average of the
coefficients of A and are motivated by the ability to exploit
the fast inversion of circulant blocks by Fast Fourier
Transform (see [3] for more details). In addition, it has
been shown that preconditioners of this type result in a
favorable clustering of eigenvalues of the preconditioned
systems (see for instance [3, 4, 5]). It should be mentioned,
that for the model Poisson problem the condition number
of the preconditioned system is O(ﬁ ), where # is the
number of unknowns, and thus is the same as for the
standard ILU based preconditioners. The advantage of the
circulant preconditioners is their parallel efficiency.

Results of initial experiments indicated that the CBF
preconditioner leads to a slightly faster convergence of the
iterative process than the BC preconditioner (for more
details see [1, 6]). It has also been shown that when the
parallel performance characteristics of both
preconditioners are considered the CBF cutperforms the
BC preconditioner on a distributed memory (network of
transputers) and on shared memory parallel computers (see
[7, 8] for the respective experimental results). The results
reported in [7] and [8] have been for very small problems
and for a limited number of processors. It was caused by
first, the available hardware (small network of transputers
with a limited local memory) and, second, some problems
encountered with the PVM-based implementation of the
algorithms [8]. Since then the algorithm has been
re-implemented using the MPI primitives and the earlier
problems have been eliminated.

The aim of this note is to summarize the performance
characteristics of the CBF preconditioner for relatively
large problems on four high performance parallel
computers from the Silicon Graphics Inc (two bus-based
shared-memory computers: SGI Power Challenge 8000
and Power Challenge 10000 and two single-system image
Origin2000 computers which differed in their processor
speed). Since the results collected thus far indicated clearly




that the CBF preconditioner outperforms the BC
preconditioner we have decided to concentrate our
attention on the CBF preconditioner only.

The remaining parts of this note are organized as
follows. In the next section we briefly introduce the basic
idea behind the circulant preconditioner. The parallel
complexity of the proposed algorithm is summarized next
and followed by the presentation and discussion of
experimental results. We conclude the paper with a short
summary and a description of future research.

CIRCULANT PRECONDITIONERS
Consider a 2D second order elliptic PDE on the unit
square (0, 1) % (0, 1) with homogenous Dirichlet
boundary conditions. Let the domain be triangulated by a
standard rectangular grid with n grid points in each
direction and let the usual 5-point stencil finite-difference
approximation be applied to the problem. This
discretization leads to a linear system Ax = b, where A is
symmetric positive definite and, if the gridpoints are
ordered along the y-direction first, the matrix A is
block-tridiagonal and can be represented as:

A= tridiag(—A,; il Ai,i’ 'Ai,H-l): i=12,..., .

Matrix C is circulant if (Cyj) = (Camoum), Where Cis an m
X m matrix. The CBF preconditioner is defined by

Cepr = tridiag(-C; .1, Cipy -Ciins) i=12,.., 1

where C;; = circulant(A;;) is a proper circulant
approximation of the corresponding block A;; (for more
details see [1]).

PARALLEL COMPLEXITY

It has been shown that when an iterative method is
considered (or when multiple iterative methods of the
same asymptotic convergence are compared) the best
model of analyzing the parallel complexity is to consider
the cost per iteration. The cost of the iteration consists of
the cost of arithmetical operations (we will assume that
the same number of operations is performed on each
processor) and the cost of data communication between
processors. Let us assume that ¢, is the average time to
perform an arithmetic operation on a single processor
while T, = 1, + M t, is the communication time of
transmitting M elements (it consists of the startup time 7,
and the communication time of transmitting one element
t.). Then it can be shown (see [1, 8] for the detailed
derivation) that, after a number of simplifying conditions,
the total parallel complexity of one iteration of the CBF
preconditioned conjugate gradient method can be

represented as:
2

T =~ 2pr + 20—t +(31+10logn) ™1, .
rpp p

576

where p is the number of processors. It can be also shown
that, if S, denotes speedup and E, denotes efficiency then
asn — 00,5, = pand E, = | and the algorithm is
asymptotically optimal. It should be also observed, that for
small n the startup time 1, is usually much larger than 1,
and the efficiency is much smaller than 1.

EXPERIMENTAL RESULTS

We have performed our experiments on four parallel
computers produced by the Silicon Graphics Inc. These
machines are a part of the National Center for
Supercomputing Applications (NCSA) in Urbana. Two
bus-based shared memory systems were: the 16-processor
Power Challenge 8000 (PC8) based on the MIPS R8000
processors running at 90 MHz with a theoretical peak
performance of 360 Mflops, with 4 Gbytes of memory and
the 16-processor Power Challenge 10000 (PC10) based on
MIPS R10000 processors running at 195 MHz with a
theoretical peak performance of 390 Mflops, with 4
Gbytes of memory. The remaining two machines were
single-system image (dynamic shared memory)
Origin2000 computers. First (O1) had 64 processors and 8
Gbytes of memory and was based on the 195 MHz MIPS
R 10000 processors (the same technology as for the PC10).
Second (O2) had 64 processors, 16 Gbytes of memory and
was based on the newest 250 MHz MIPS R10000
processors capable of theoretical peak performance of 500
Mflops (more details about these machines can be found at
the NCSA WWW site http://www.ncsa.uiuc.edu, or at the
manufacturer WWW site http://www.sgi.com).

The algorithm was implemented in C using the MP1
communication library to facilitate the data exchange
between processors. In all experiments exactly the same
code was used. This means that on the shared memory
machines the MPI-based communication was used. For all
machines the most aggressive of available compiler
optimizations were turned on and the manufacturer
provided libraries of optimized MPI kernels have been
linked with the code. The MPI provided timer was used to
measure the execution times. Each result presented here is
either the best time obtained from multiple runs on a
system with varying workload or was obtained in a
dedicated mode (when the code was the only one that was
running on the system).

The Results from the Power Challenge 8000 and
100060

The first series of experiments was performed on the
Power Challenge 8000 (PC8) shared memory computer.,
Table I contains the execution times and the speedup for n
=210, 840 and for p = 1, 2, ..., 8 processors. Since the
current implementation requires that the problem size be
divisible by the number of processors, for n = 210 results
for 4 and 8 processors are not available.




TABLE 1. PERFORMANCE ON THE PC8

n=210 n = 840
P time speedup time speedup
1 0.43 1 8.64 1
2 0.22 1.92 4.49 1.92
3 0.16 2.77 2.88 3.00
4 243 3.55
5 0.091 4.75 1.99 4.34
6 0.097 4.46 1.53 5.64
7 0.092 4.70 1.47 5.87
8 1.26 6.85

While the performance for the smaller problem was
relatively unimpressive problem for more than 5
processors, this just indicates that the problem was much
too small for the speed of the machine. For the larger
system an efficiency of approximately 85% was achieved
for 8 processors, which is a rather good result.

The second series of experiments involved the Power
Challenge 10000 machine (PC10). The R10000 processor
runs at a much higher MHz rate than the R8000, but the
performance improvements were primarily focused on the
integer arithmetic and thus its practical Mflop peak was
only slightly higher [9]. In Table 2 we present the
execution time and the speedup of the code for n = 420,
840 forp=1, 2, ..., 8 processors (since the parallel
performance for n = 210 was even worse than in the case
of PC8 we decided to skip it and report the results for n =
420 instead).

TABLE 2. PERFORMANCE ON THE PC10

n =420 n = 840
p time speedup time speedup
1 1.26 1 4.75 1
2 0.72 1.75 2.55 1.86
3 0.51 244 1.73 2.74
4 0.36 3.46 1.35 3.51
5 0.32 3.84 1.09 4.35
6 0.26 4.74 0.95 5.00
7 0.27 451 0.84 5.65
8 0.76 6.26

The performance for the smaller problem (even though
it is now twice the size of the problem reported for the
PC8 above) is very unsatisfactory for more than 4-5
processors. The efficiency for the larger problem reaches
78% for 8 processors. This is less than the efficiency
obtained on the PC8 and likely can be explained by the
fact that the processors of the PC10 are faster and thus for
the same problem size there is not enough work to keep
them busy.

When the ratio of execution times of the larger
problem on the two PC machines is considered it can be
observed that PC10 is approximately 1.81 times faster for
a single processor while only 1.65 times faster on eight

577

processors. This shows that first, the improved integer
performance plays an important role in the case of our
code. Second, since the performance ratio decreases as the
number of processors increases, it seems to indicate again
that the processor to memory communication on the PC10
is not fast enough to keep up with the increased processor
speed.

The Results from the Origin2000

The next series of experiments was performed on the
SGI Origin2000 single-system image machine (O1). It is
based on the same MIPS R 10000 processors as the PC10,
but it is designed as a dynamic shared memory machine. In
Table 3 we depict the execution times and the speedup of
the code for n = 420, 840, for p=1, ..., 8 processors.

TABLE 3. PERFORMANCE ON THE O1

n =420 i = 840
P time Speedup time speedup
1 0.92 1 4.02 1
2 0.48 1.90 2.25 1.78
3 0.32 2.83 1.48 270
4 0.24 3.81 1.11 3.61
5 0.19 4.75 0.87 4.60
6 0.16 5.46 0.72 5.52
7 0.14 6.37 0.62 6.48
8 0.54 7.40

The results, especially for the smaller problem, are
rather surprising. While based on the same processor as
the PC10, the Origin2000 obtains substantially faster
execution times on single and multiple processors and a
much better speedup. It can be speculated that since O1 is
a newer machine some improvements in the architecture
(e.g. cache memory and interconnection network) are
responsible for these improvements (unfortunately on the
WWW pages at NCSA we could not find any data to
support this hypothesis). For the larger problem a very
good efficiency of 92% is obtained on 8 processors.

The final series of experiments was completed on the
newest Origin2000 machine (O2) which became available
to the NCSA users in July 1998. In comparison with O1 it
is based on a faster version of the MIPS R10000
processor. Table 4 summarizes the execution times and
speedup of the code for n = 420, 840, for p=1, ..., 8
processors.




TABLE 4. PERFORMANCE ON THE O2

n =420 n = 840
P time Speedup time speedup
1 0.74 1 3.23 1
2 0.40 1.85 1.90 1.70
3 0.27 2.72 1.26 2.56
4 0.21 3.57 0.93 3.47
5 0.16 4.53 0.73 4.40
6 0.14 5.28 0.62 5.23
7 0.11 6.37 0.53 6.00
8 0.47 6.78

The results are quite interesting. First, for the smaller
problem, the overall performance is quite similar to the
older machine. While the overall execution time is
reduced the speedup is only minimally smaller and for 7
processors is almost exactly the same, resulting in
efficiency of about 91%. The situation changes for the
larger problem. Here, while the time is reduced (on a
single processor the new machine is 1.24 times faster and
on 8 processors it is 1.14 times faster) the 8-processor
efficiency decreases from 92% on O1 to 84% on the new
machine. This seems to indicate that while the processor
speed has been improved, the interconnection network
was not upgraded to provide the data fast enough to match
the speed of the faster processors.

Comparisons between machines

The latter observation prompted us to look into the
relationships between the performance of the three
machines based on the MIPS R10000 processor. To
obtain a more detailed picture we have decided to increase
the problem size and the number of processors used.
Table 5 reports the execution times, the speedup and the
time ratio between the PC10 and Ol for a problem of size
n=1260and 1,2,....7,9, 10, 12, 14, 15 processors. As
previously, results for 8, 11, 13 processors were not
available as these are not divisors of the problem size.

TABLE 5. PERFORMANCE OF PC10 vs. Ol

PC1000 Ol
)4 time speedu | time speedup ratio
p

1 11.23 1 9.71 1 1.16
2 5.99 1.86 5.50 1.76 1.09
3 4.11 2.74 3.69 2.63 1.11
4 3.17 3.51 2.77 3.49 1.14
5 2.61 4.35 2.21 4.39 1.18
6 2.31 5.00 1.83 5.28 1.26
7 2.09 5.65 1.57 6.18 1.33
9 1.82 6.25 1.21 7.97 1.50
10 1.75 7.19 1.11 8.71 1.57
12 1.57 8.06 0.92 10.53 1.70
14 1.48 8.57 0.80 12.09 1.84
15 1.43 8.37 0.75 12.92 1.90

578

The results are in agreement with our earlier
observations. The technology of the Origin2000 is
definitely superior to that of the PC 10000 both in terms of
single processor and multiprocessor performance. Even
though both machines are based on the same processor, the
Origin is approximately [.16 times faster on a single
processor. The time ratio decreases slightly for 2 and 3
processors. However, as the number of processors
increases, the performance of the Origin improves to 1.9
times faster than the PC 10000. This affects also other
performance measures. For the PC10 the speedup on 15
processors reaches only 8.37 (the efficiency of 56%) and
the speedup curve flattens from about 10 processors. On
the O1, on the other hand, the speedup reaches 12.92 (the
efficiency of 86%) and the speedup curve flatiens only
from about 14-15 processors.

In Table 6 we present similar results comparing the
performance between the two Origin2000 machines.

TABLE 6. PERFORMANCE OF O] vs. 02

01 (195MHz) 02 (250MHz)

p | time | speedup | time speedup | ratio

1 9.71 1 7.71 1 1.26
2 5.5 1.76 | 4.57 1.68 1.20
3 3.69 2631 3.09 2.49 1.19
4 2.77 349 | 233 3.31 1.19
5 2.21 4391 1.87 4.12 1.18
6 1.83 5.28 1.55 4.98 1.18
7 1.57 6.18 1.33 5.80 1.18
9 1.21 7.97 1.05 7.35 1.16
10 1.11 8711 0091 8.39 1.21
12 1 092 10.53 | 0.82 9.35 1.12
14 | 0.80 1209 | 0.71 10.81 1.12
15 0.75 1292 1 0.66 11.66 1.13

The results are rather informatory. The new machine
has a MHz rate 1.28 times faster and its theoretical peak
performance (measured in Mflops) is also 1.28 times
higher. These facts do not seem to manifest themselves in
our data. On a single processor O2 is about 1.26 times
faster than O1. However, as the number of processors
increases the ratio drops considerably and for more than
12 processors O2 is only 1.12 times faster than O1, This
confirms our earlier hypothesis that while the processor
speed has been increased the network was not improved to
provide appropriate throughput. This fact has also an
immediate effect on the overall performance metrics. The
speedup of the code on 15 processors drops from 12.92 on
02 to 11.66 on the new machine (efficiency drops from
86% to 77%).

Performance for large problems

Finally, to examine how the SGI machines will behave
when the memory hierarchy and the interconnection
network are being tested by a movement of large volumes
of data we have run a series of experiments for a rather




large problem (n = 2520). Table 7 summarizes the
execution times on all four machines for p=1,2,..., 10,
12, 14, 15 processors. As previously, results for 11 and 13
processors were not available as these are not divisors of
the problem size. It should be stressed that for this
problem, all data sets on PC10, O1 and O2 were collected
in a dedicated mode.

TABLE 7. PERFORMANCE FOR A LARGE
PROBLEM
PC8 PC 10 o1 02
84.53 47.54 42.65 33.10
44.68 24.76 23.29 19.15
30.15 17.10 15.71 12.94
22.79 13.23 11.75 9.85
18.94 11.07 9.58 8.01
16.01 9.67 7.98 6.66
14.65 8.74 6.97 5.79
12.92 7.97 6.04 5.12
12.20 7.50 5.36 4.65
10 11.41 7.24 4.83 4.07
12 11.26 6.73 4.02 3.40
14 11.16 6.37 343 291
15 1046 6.29 3.24 2.77

Wi n|hlwliol—s

The performance ratio between the PC8 and PC10
remains very similar to that reported earlier for a small

problem. The single-processor ratio decreases slightly
from 1.81 to 1.77 while the 15-processor ratio is
approximately 1.66. This indicates that the two machines
behave similarly independently of the problem size.

As previously, the difference between PC10 and O1
manifests itself mainly for the large number of processors.
While for a single processor the performance ratio
decreases from 1.16 to 1.11, for 15 processors the ratio
reaches 1.94,

The performance ratio between the two Origin2000
computers is also rather similar to the earlier results. On a
single processor the new machine takes a full advantage of
the improved processor speed and becomes 1.288 times
faster. However, as the number of processor increases the
gains disappear again. For 15 processors the performance
ratio decreases to only 1.16.

Finally, in Figure 1 we represent the speedup of the
code on all four SGI machines for the largest problem
studied (n = 2520). These results match times depicted in
Table 7. To illustrate the performance we also represent
the linear speedup. Since 11 and 13 processors had to be
omitted from our experiments, the line representing the
linear speedup is no longer straight.

15 PERFORMANCE COMPARISON; n = 2520
13
—#—PC 8
414 B-PC10 |
-3~ 01
2, 02
§ —&— Linear A
o, -1
w7+
5 e
3 i
1 B : T r y ; T T ; 1 3
1 2 3 4 5 6 8 9 10 12 14 15

# of processors
FIGURE 1. PERFORMANCE COMPARISON BETWEEN THE FOUR SGI COMPUTERS.

P R



The results match our earlier observations. For more
than 8 processors the speedup curve on the two shared
memory machines flattens indicating that the bus has been
saturated and further performance gains cannot be
expected. This effect seems to be relatively independent
of the problem size (see also Table 5 above) and its
further increase cannot be expected to lead to substantial
performance gains either. The two Origin2000 machines
perform relatively well. The older machine showing a
slightly better balance between the processor speed and
the network throughput. This results in a better speedup
(reaching 13.16) and efficiency (approximately 87%)
while the maximum speedup obtained on O2 is 11.94
(efficiency only 79%).

CONCLUDING REMARKS

In this paper we have studied the performance
characteristics of a parallel solver for the elliptic partial
differential equations. The proposed solver is based on
finite differences and the linear algebra consists of a
circulant block-factorization based preconditioner applied
to a conjugate gradient solver for a block tridiagonal
linear system. The performance was studied on two
bus-based shared memory computers and two
single-system image parallel machines. Our results
indicate that, for large enough problems, the proposed
solver parallelizes well on all machines and achieves high
speedup and a relatively good efficiency.

The experimental data collected in our experiments can
be also used to compare and evaluate the performance
characteristics of the four parallel architectures. It is clear
that the two bus-based shared memory machines suffer
from communication congestion when a large number of
processors is used. This effect seems to be relatively
independent of the problem size. We have also found the
Origin2000 architecture seems to match quite well the
requirements of our algorithm. At the same time, the new
faster Origin2000 is incapable of taking full advantage of
the improved processor power. Its communication
network has not been improved to the point where it will
match the new processor speed. Obviously, the new
machine still remains faster overall indicating that for a
problem with a more localized data access patterns it
should be able to outperform the older architecture to a
larger extent.

Our work thus far was mostly with a 2D model
problem. The next step will be to develop and experiment
with an elliptic solver for a 3D model problems and, later,
to apply the newly developed solver to some realistic
applications. We plan to pursue this research avenue in
the near future.

ACKNOWLEDGEMNETS

Computer time grant (Project qtp) from NCSA in
Urbana is kindly acknowledged. We would also like to

580

express our gratitude to Ray Seyfarth and Julian Sanchez
who helped in porting the code to different machines.

REFERENCES

[1] 1 Lirkov, S. Margenov and P. S. Vassilevski,
Circulant block-factorization preconditioners for elliptic
problems. Computing, 53(1), 1994, 59-74.

[2] R.H. Chan and T.F. Chan, Circulant preconditioners
for elliptic problems, J. Numerical Lin. Alg. Appl., 1,
1992, 77-101.

[31 R. Chan and G. Strang, Toeplitz equations by
conjugate gradients with circulant preconditioner, SIAM J.
Sci. Stat. Comp., 10, 1989, 104-119.

[4] T. Huckle, Circulant and skewcirculant matrices for
solving Toeplitz matrix problems, SIAM J. Matr. Anal.
Appl., 13, 1992, 767-777.

[5] T. Huckle, Some aspects of circulant preconditioners,
SIAM J. Sci. Comp., 14, 1993, 531-541.

[6] I. Lirkov, S. Margenov and L. Ziakatanov, Circulant
block-factorization preconditioning for anisotropic elliptic
problems, UCLA CAM Report 95-39, 1995.

[7]11. Lirkov and S. Margenov, Parallel complexity of
conjugate gradient method with circulant preconditioners,
in: R. Vollmar, W. Erhard and V. Jossifov, eds.,

'Proceedings of the PARCELLA’96 (Akademie Verlag,

Berlin, 1996), 279-286.

[8] L. Lirkov, S. Margenov, R. Owens and M. Paprzycki,
A shared-memory parallel implementation of
block-circulant preconditioners, in: M. Griebel,

O. P. llliev, S. Margenov and P. S. Vassilevski eds.
Proceedings of the First Workshop on “Large-Scale
Scientific Computations,” (VIEWEG, Braunschweig,
1997), 319-327.

[9] J. Foster, Evolution of MIPS RISC Microprocessor
Architecture, Journal of Computing in Small Colleges.,
2(4), 1997, 215-229

B R S TN

S




