
Performance Evaluation of MPI/OpenMP Algorithm

for 3D Time Dependent Problems

Ivan Lirkov

Institute of Information

and Communication Technologies

Bulgarian Academy of Sciences

Acad G. Bonchev, bl. 25A

1113 Sofia, Bulgaria

ivan@parallel.bas.bg

http://parallel.bas.bg/∼ivan/

Marcin Paprzycki Maria Ganzha

Systems Research Institute

Polish Academy of Sciences

ul. Newelska 6

01-447 Warsaw, Poland

paprzyck@ibspan.waw.pl

maria.ganzha@ibspan.waw.pl

http://www.ibspan.waw.pl/∼paprzyck/

http://inf.ug.edu.pl/∼mganzha/

Paweł Gepner

Intel Corporation

Pipers Way

Swindon Wiltshire SN3 1RJ

United Kingdom

pawel.gepner@intel.com

Abstract—We consider the 3D time dependent Stokes equation
on a finite time interval and on a uniform rectangular mesh,
approached in terms of velocity and pressure. In a parallel
algorithm, based on a novel direction splitting approach, the
pressure equation is derived from a perturbed form of the
continuity equation, in which the incompressibility constraint is
penalized in a negative norm induced by the direction splitting.
In order to achieve good parallel performance, the solution
of the Poison problem for the pressure correction is replaced
by solving a sequence of one-dimensional second order elliptic
boundary value problems in each spatial direction. The parallel
code was developed using MPI and OpenMP and tested on
modern computer systems. The performed tests illustrate the
parallel efficiency, and the scalability, of the direction-splitting
based algorithm.

I. INTRODUCTION

THE objective of this paper is to analyze the parallel per-

formance of a novel fractional time stepping technique,

based on a direction splitting strategy, developed to solve the

incompressible Navier-Stokes equations.

Projection schemes were introduced in [4], [12] and they

have been used in Computational Fluid Dynamics (CFD) for

the last forty years. During these years, such techniques went

through some evolution, but the main paradigm, consisting

of decomposing vector fields into a divergence-free part and

a gradient, has been preserved; see [7] for an overview. In

terms of computational efficiency, projection algorithms are

far superior than the methods that solve the coupled velocity-

pressure system, making them the most popular techniques for

solving unsteady Navier-Stokes equations.

The alternating directions algorithm proposed in [5], [6]

reduces the computational complexity of the enforcement of

the incompressibility constraint. The key idea consists of

abandoning the projection paradigm, in which vector fields

are decomposed into a divergence-free part and a gradient part.

Departure from the projection paradigm has been proved to be

very efficient for solving variable density flows [8], [9]. In the

new method, the pressure equation is derived from a perturbed

form of the continuity equation, in which the incompressibility

constraint is penalized in a negative norm induced by the

direction splitting. The standard Poisson problem for the pres-

sure correction is replaced by the series of one-dimensional

second-order boundary value problems. This technique has

been proved to be stable and convergent (see [5], [6]). The

parallel performance of the direction splitting algorithm was

evaluated (in [10]) on three different parallel architectures

when solving 2D problems . The aim of this paper is to study

the parallel performance of the algorithm for solving of three

dimensional problems.

II. STOKES EQUATION

Let us start from the mathematical formulation of the prob-

lem. We consider the time-dependent Navier-Stokes equations

on a finite time interval [0, T], and in a rectangular domain

Ω. Since the nonlinear term in the Navier-Stokes equations

does not interfere with the incompressibility constraint, we

henceforth mainly focus our attention on the time-dependent

Stokes equations written in terms of velocity u and pressure

p:














ut − ν∆u+∇p = f in Ω× (0, T)
∇ · u = 0 in Ω× (0, T)
u|∂Ω = 0, ∂np|∂Ω = 0 in (0, T)
u|t=0 = u0, p|t=0 = p0 in Ω

, (1)

where f is a smooth source term, ν is the kinematic viscosity,

and u0 is a solenoidal initial velocity field with a zero normal

trace. Let us also assume that the time interval [0, T] was

discretized on a uniform mesh and τ was the time step.

III. PARALLEL ALTERNATING DIRECTIONS ALGORITHM

As what concerns the solution method, Guermond and

Minev (in [5], [6]) introduced a novel fractional time stepping

technique for solving the incompressible Navier-Stokes equa-

tions. This technique is based on a direction splitting strategy.

They used a singular perturbation of the Stokes equation with

a perturbation parameter τ . In this way, the standard Poisson

problem was replaced by series of one-dimensional second-

order boundary value problems.

Position Papers of the 2013 Federated Conference on

Computer Science and Information Systems pp. 27–32

c© 2013, PTI 27

A. Formulation of the Scheme

The scheme used in the algorithm is composed of the

following parts: pressure prediction, velocity update, penalty

step, and pressure correction. We now describe an algorithm

that uses the direction splitting operator

A :=

(

1−
∂2

∂x2

)(

1−
∂2

∂y2

)(

1−
∂2

∂z2

)

.

• Pressure predictor. Denoting by p0 the pressure field at

t = 0, the algorithm is initialized by setting p−
1

2 =
p−

3

2 = p0. Then, for all n ≥ 0, a pressure predictor

is computed:

p∗,n+
1

2 = 2pn−
1

2 − pn−
3

2 . (2)

• Velocity update.

The velocity field is initialized by setting u
0 = u0, and

for all n ≥ 0 the velocity update is computed by solving

the following series of one-dimensional problems

ξn+1 − u
n

τ
− ν∆u

n +∇p∗,n+
1

2 = f |
t=(n+ 1

2)τ
,

ηn+1 − ξn+1

τ
−
ν

2

∂2(ηn+1 − u
n)

∂x2
= 0, (3)

ζn+1 − ηn+1

τ
−
ν

2

∂2(ζn+1 − u
n)

∂y2
= 0, (4)

u
n+1 − ζn+1

τ
−
ν

2

∂2(un+1 − u
n)

∂z2
= 0, (5)

where ξn+1|∂Ω = ηn+1|∂Ω = ζn+1|∂Ω = u
n+1|∂Ω = 0.

• Penalty step The intermediate parameter φ is approxi-

mated by solving Aφ = − 1

τ
∇ · un+1. Owing to the

definition of the direction splitting operator A, this is

done by solving the following series of one-dimensional

problems:

θ − θxx = − 1

τ
∇ · un+1, θx|∂Ω = 0,

ψ − ψyy = θ, ψy|∂Ω = 0,
φ− φzz = ψ, φz|∂Ω = 0,

(6)

• Pressure update

The last sub-step of the algorithm consists of updating

the pressure:

pn+
1

2 = pn−
1

2 + φ− χν∇ ·
u
n+1 + u

n

2
(7)

The algorithm is in a standard incremental form when the

parameter χ = 0; while the algorithm is in a rotational

incremental form when χ ∈ (0, 1
2
]. The convergence tests

reported in [5], [6] confirm that the rotational form of the

incremental version of the method is second-order in time

for the L2-norm of the velocity field.

IV. EXPERIMENTAL RESULTS

Lest us recall, that our aim is to evaluate the performance

of just described method for 3D problems. Therefore, we

have solved the problem (1) in the domain Ω = (0, 1)3, for

t ∈ [0, 2], with Dirichlet boundary conditions. The discretiza-

tion in time was done with time step 10−2. The parameter in

the pressure update sub-step was χ = 1

2
, and the kinematic

viscosity was ν = 10−3. The second order central differences

were used for the discretization in space on a rectangular mesh

with mesh sizes hx = 1

nx−1
, hy = 1

ny−1
, and hz = 1

nz−1
.

Thus, the equation (3) resulted in linear systems of size nx,

the equation (4) resulted in linear systems of size ny , and the

equation (5) – in linear systems of size nz . The total number

of unknowns in the discrete problem was 800nx ny nz .

To solve the problem, a portable parallel code was designed

and implemented in C. The parallelization was based on the

MPI and OpenMP standards [2], [3], [11], [13]. In the code,

we used the LAPACK subroutines DPTTRF and DPTTS2

(see [1]) for solving tridiagonal systems of equations resulting

from equations (3), (4), (5), and (6), for the unknowns corre-

sponding to the internal nodes of each sub-domain. The same

subroutines were used to solve the tridiagonal systems with

the Schur complement.

The parallel code has been tested on the following three

systems: (1) a cluster computer Galera, located in the Polish

Centrum Informatyczne TASK, (2) on a cluster computer

system HPCG, located in the Institute of Information and

Communication Technologies, and (3) on the IBM Blue

Gene/P machine, at the Bulgarian Supercomputing Center.

Table I summarizes the information about compilers and

libraries used on the three computers. In our experiments,

times have been collected using the MPI provided timer, and

we report the best results from multiple runs. However, in

all our experiments, recorded times did not differ by more

than 5%. In the following tables, we report the elapsed (wall-

clock) time Tp in seconds using m MPI processes and k
OpenMP processes, where p = m×k, and the parallel speed-

up Sp = T1/Tp.

Tables II and III show the results collected on the Galera.

It is a Linux cluster with 336 nodes, and two Intel Xeon quad

core processors per node. Each processor runs at 2.33 GHz.

Processors within each node share 8, 16, or 32 GB of memory,

while nodes are interconnected with a high-speed InfiniBand

network (see also http://www.task.gda.pl/kdm/sprzet/Galera).

Here, we used an Intel C compiler, and compiled the code

with the option “-O3 -openmp”. For solving the tridiagonal

systems of equations using LAPACK subroutines we linked

our code to multi-threaded layer Intel Math Kernel Library

(see http://software.intel.com/en-us/articles/intel-mkl/).

Note that, the discrete problem with nx = ny =
400, nz = 800 requires 22 GB of memory. That is why, for

larger problems, we could not run the code for small number

of nodes. As a matter of fact, the largest considered problem

required a minimum of 64 nodes.

Table IV contains the speed-up obtained on Galera. For the

reasons described above, it was impossible to calculate the

standard speed-up (time on a single core vs. time on P cores).

That is why we report the speed-up on Galera only for prob-

lems with nx, ny = 100, 200, 400, nz = 100, 200, 400, 800.

However it is easy to calculate the “normalized” speed-up

even for the largest problem. For instance, when comparing

execution time on 128 and 256 cores with that on 64 cores

28 POSITION PAPERS OF THE FEDCSIS. KRAKÓW, 2013

TABLE I
COMPILERS AND LIBRARIES ON THE THREE COMPUTER SYSTEMS

Galera HPCG IBM Blue Gene/P

Compiler Intel C Compiler 12.1.0 Intel C Compiler 12.1.0 IBM XL C Compiler 9.0
MPI OpenMPI 1.4.3 Intel MPI 4.0.3.008 MPICH2
LAPACK Intel Math Kernel Library

10.0
Intel Math Kernel Library
10.0

Engineering and Scientific
Subroutine Library 5.1

TABLE II
EXECUTION TIME FOR SOLVING OF 3D PROBLEM ON ONE NODE OF GALERA.

nx ny nz k

1 2 4 8

100 100 100 179.13 108.92 82.91 78.31
100 100 200 386.53 233.35 176.05 160.64
100 200 200 848.59 506.58 377.94 339.81
200 200 200 1802.57 1057.07 788.10 685.73
200 200 400 3695.46 2157.89 1593.42 1374.58
200 400 400 7618.41 4440.56 3272.34 2765.14
400 400 400 15839.00 9120.79 6545.47 5473.50
400 400 800 32763.20 18849.10 13582.80 11524.80

TABLE III
EXECUTION TIME FOR SOLVING OF 3D PROBLEM ON MANY NODES OF GALERA.

nx ny nz nodes
2 4 8 16 32 64 128 256

k=8

100 100 100 42.3 21.1 10.8 5.8 3.2 2.6 2.2 1.8
100 100 200 83.2 42.2 21.0 11.1 6.1 3.3 2.4 1.7
100 200 200 174.5 86.0 43.3 22.8 11.6 6.2 4.6 2.6
200 200 200 343.2 166.3 81.0 44.3 22.3 11.5 7.1 4.1
200 200 400 692.3 337.8 165.3 89.1 45.5 22.8 13.5 7.8
200 400 400 1410.2 706.4 347.7 187.0 90.7 46.3 29.2 14.2
400 400 400 2795.8 1429.7 703.8 357.8 174.2 85.5 51.6 25.9
400 400 800 5470.0 2758.6 1415.7 723.1 359.2 177.1 108.0 56.5
400 800 800 11613.7 5594.8 2797.6 1466.9 741.7 372.7 225.5 113.4
800 800 800 11926.1 5669.0 2802.2 1485.4 753.8 404.5 207.9
800 800 1600 12028.3 5660.6 2874.8 1515.1 817.3 428.5
800 1600 1600 12006.2 5719.0 2868.4 1653.2 853.2

1600 1600 1600 12151.7 5757.7 3022.9 1646.3
1600 1600 3200 12231.2 6076.1 3306.1

one can say that such speed-up is 2.015 and 3.699 respectively.

Here, the slight superlinear speed-up can be attributed to the

well-known effect caused by halving the problem size and

improving memory management. These results indicate also

that the communication in our parallel algorithm is mainly

local. Specifically, if halving the problem leads to superlinear

speed-up, it means that communication between nodes is not

as important as memory contention within a node.

In our previous work [10] we observed slower perfor-

mance of the MPI code for solving 2D problem on a single

node, while using all available cores. Therefore, we have

used OpenMP for solving of 3D problem on a single node.

However, the slower performance using 8 OpenMP processes

is clearly visible. It can be stipulated that this effect is a

result of limitations of the memory subsystems, and their

hierarchical organization. One of them might be the limited

bandwidth of the main memory bus. This causes processors

to “starve” for data, thus, decreasing the overall performance.

This stipulation is consistent with the above observation based

on superlinearity of speed-up for largest problems.

Tables V and VI show the results collected on the HPCG

cluster. HP Cluster Platform Express 7000 consists of 36

blades BL 280c, dual Intel Xeon X5560 processors (total of

576 cores). Each processor runs at 2.8 GHz. Processors within

each blade share 24 GB RAM, while nodes are interconnected

with non-blocking DDR Interconnection via a Voltaire Grid

director 2004 with latency 2.5 µs and bandwidth 20 Gbps

(see also http://www.grid.bas.bg/hpcg/). Again, we used an

Intel C compiler, and compiled the code with the option “-O3

-openmp”. For solving the tridiagonal systems of equations

using LAPACK subroutines, we linked our code to the multi-

threaded layer Intel Math Kernel Library. The execution time

presented in Table VI shows that for solving small systems

using the multi-threaded library the best results are obtained

when using 8 OpenMP processes per blade. However, hyper-

threading (using 2 OpenMP processes per physical core) helps

only when solving discrete problems with more than 16×106

grid points.

To provide an analytical view on performance, the speed-up

obtained on the HPCG is reported in Table VII. Here, let us

IVAN LIRKOV ET AL.: PERFORMANCE EVALUATION OF MPI/OPENMP ALGORITHM 29

TABLE IV
SPEED-UP ON GALERA.

nx ny nz m× k

2 4 8 16 32 64 128 256 512 1024 2048

100 100 100 1.64 2.16 2.29 4.23 8.50 16.64 30.66 55.35 69.74 83.10 99.59
100 100 200 1.66 2.20 2.41 4.64 9.17 18.43 34.65 63.66 116.14 158.43 233.33
100 200 200 1.68 2.25 2.50 4.86 9.87 19.61 37.22 72.81 136.44 185.16 327.56
200 200 200 1.71 2.29 2.63 5.25 10.84 22.24 40.72 80.80 156.55 254.74 439.52
200 200 400 1.71 2.32 2.69 5.34 10.94 22.35 41.45 81.29 162.28 274.49 473.96
200 400 400 1.72 2.33 2.76 5.40 10.78 21.91 40.73 84.03 164.69 260.76 537.08
400 400 400 1.74 2.42 2.89 5.67 11.08 22.51 44.27 90.91 185.23 306.84 611.41
400 400 800 1.74 2.41 2.84 5.99 11.88 23.14 45.31 91.21 184.96 303.23 579.91

TABLE V
EXECUTION TIME FOR SOLVING OF 3D PROBLEM ON ONE NODE OF HPCG.

nx ny nz k

1 2 4 8 16

100 100 100 86.14 48.47 30.23 26.26 27.42
100 100 200 190.45 98.81 63.44 52.07 54.51
100 200 200 397.90 224.73 137.70 110.45 109.30
200 200 200 899.24 456.19 279.53 207.31 219.29
200 200 400 1891.51 945.52 598.95 447.60 449.36
200 400 400 3806.96 1987.19 1225.93 889.76 843.52
400 400 400 6519.28 4162.41 2507.75 1900.73 1722.60
400 400 800 14343.40 8174.26 5048.87 3840.93 3648.71

recall that (similarly to the case of Galera) we were not able to

solve largest problems for small number of nodes. Specifically,

the largest discrete problem that we could solve on a single

blade had 128×106 grid points. Furthermore, problems larger

than these reported above did not fit into the available memory

at all. However, we can see that the normalized speed-up for

the largest solvable problem was 1.94.

Tables VIII and IX present times collected on the IBM Blue

Gene/P, at the Bulgarian Supercomputing Center. It consists of

2048 compute nodes with quad core PowerPC 450 processors

(running at 850 MHz). Each node has 2 GB of RAM. For

the point-to-point communications a 3.4 Gb 3D mesh network

is used. Reduction operations are performed on a 6.8 Gb

tree network (for more details, see http://www.scc.acad.bg/).

We have used the IBM XL C compiler and compiled the

code with the following options: “-O5 -qstrict -qarch=450d

-qtune=450 -qsmp=omp”. For solving the tridiagonal sys-

tems using LAPACK subroutines, we linked our code to

the multi-threaded Engineering and Scientific Subroutine Li-

brary (ESSL) (see http://www-03.ibm.com/systems/software/

essl/index.html). Note that, the memory of a node of the IBM

supercomputer is substantially smaller than that on the clusters

and was not sufficient for solving 3D problem larger than

nx = ny = nz = 200. We solved these problems on two and

more nodes. Table X shows the speed-up obtained on the Blue

Gene. Because of smaller memory per node we calculated the

actual speed-up only for nx, ny, nz = 100, 200. Interestingly, a

super-linear speed-up was observed using up to 128 processes.

Here, note that individual processors on supercomputer are

slower than these on clusters while the communication is

faster (due to special networking used in the Blue Gene).

Furthermore, due to the memory scarcity the above mentioned

problem halving effect is particularly pronounced. Separately,

note that the normalized speed-up for the largest problem we

were able to solve was 1.98.

Finally, we represent (in Figure 1) performance of the three

computer systems. Here, we represent results for discrete

problem sizes that were obtainable across all machines. Here,

it can be seen that, for up to 128 processes, the HPCG

cluster is the most efficient for our problem. For 256 processes

(using 16 OpenMP processes), for the smallest problems, we

observe a performance drop of the HPCG. Here, the Galera

becomes the performance leader. We observed a performance

drop on both clusters when we use 8 OpenMP processes on

one node. This happens regardless of the fact that we have

used a hybrid OpenMP+MPI approach, which should have

resulted in optimal performance of computers with mixed

shared-distributed memory.

V. CONCLUDING REMARKS

In this paper we have investigated performance of a novel

approach to the solution of 3D Navier-Stokes equations on

three parallel computers. We have found out that the mixed

OpenMP+MPI approach, used to implement the proposed al-

gorithm, works well on shared-distributed memory computers.

Furthermore, the Blue Gene/P machine is not well balanced,

with memory that is relatively too small, networking that is

relatively too fast, while processors being relatively too slow.

The HPCG and Galera machines exhibits unusual behavior

when all of its processors and cores on one node are used.

The Galera seems to be best balanced (even though not the

fastest of the three). It was also the Galera that allowed us to

solve the largest problems.

ACKNOWLEDGMENTS

Computer time grants from the Bulgarian Supercomputing

Center and the TASK computing center in Gdansk, Poland are

30 POSITION PAPERS OF THE FEDCSIS. KRAKÓW, 2013

TABLE VI
EXECUTION TIME FOR SOLVING OF 3D PROBLEM ON MANY NODES OF HPCG.

nodes
2 4 8 16

nx ny nz k=8

100 100 100 15.10 7.40 4.38 2.56
100 100 200 28.61 17.06 8.14 5.05
100 200 200 61.72 35.38 17.58 9.45
200 200 200 118.89 68.54 35.96 18.63
200 200 400 246.84 120.25 70.53 37.90
200 400 400 500.00 259.89 152.23 83.25
400 400 400 914.44 505.90 248.07 146.35
400 400 800 2109.01 985.69 529.95 321.91
400 800 800 4271.35 2074.35 1042.33 626.71
800 800 800 4463.87 2204.67 1167.19
800 800 1600 4495.82 2378.40

nx ny nz k=16

100 100 100 15.45 9.08 5.73 3.92
100 100 200 28.30 18.56 10.47 7.09
100 200 200 57.77 34.18 19.10 12.49
200 200 200 115.16 61.55 35.88 21.00
200 200 400 229.05 122.69 72.39 39.07
200 400 400 439.35 237.16 132.74 71.45
400 400 400 894.70 462.40 242.39 137.17
400 400 800 1744.18 886.36 485.19 261.39
400 800 800 3733.36 1928.69 1014.47 524.18
800 800 800 4138.85 2209.53 1000.43
800 800 1600 4169.04 2138.83

TABLE VII
SPEED-UP ON HPCG.

nx ny nz m× k

2 4 8 16 32 64 128 256

100 100 100 1.78 2.85 3.28 5.71 11.64 19.69 33.63 21.96
100 100 200 1.93 3.00 3.66 6.66 11.16 23.40 37.71 26.85
100 200 200 1.77 2.89 3.60 6.45 11.25 22.64 42.10 31.86
200 200 200 1.97 3.22 4.34 7.56 13.12 25.01 48.27 42.83
200 200 400 2.00 3.16 4.23 7.66 15.73 26.82 49.90 48.41
200 400 400 1.92 3.11 4.28 7.61 14.65 25.01 45.73 53.28
400 400 400 1.57 2.60 3.43 7.13 12.89 26.28 44.54 47.53
400 400 800 1.75 2.84 3.73 6.80 14.55 27.07 44.56 54.87

TABLE VIII
EXECUTION TIME FOR SOLVING OF 3D PROBLEM ON ONE NODE OF IBM BLUE GENE/P.

nx ny nz k

1 2 4

100 100 100 882.72 516.00 306.88
100 100 200 1815.72 1040.66 632.95
100 200 200 3782.91 2153.78 1291.85
200 200 200 7685.65 4343.88 2710.08

TABLE IX
EXECUTION TIME FOR SOLVING OF 3D PROBLEM ON MANY NODES OF IBM BLUE GENE/P.

nx ny nz nodes
2 4 8 16 32 64 128 256 512

k=4

100 100 100 146.8 74.9 38.3 20.9 10.9 6.2 4.5 3.0 1.9
100 100 200 309.0 157.3 77.0 41.0 21.1 11.2 7.1 4.9 3.1
100 200 200 626.8 317.8 159.9 79.3 39.8 21.3 13.2 7.9 5.1
200 200 200 1315.4 645.1 323.4 164.2 79.1 39.5 24.9 14.7 8.5
200 200 400 2645.4 1325.9 647.5 337.9 165.2 80.2 42.8 26.0 15.0
200 400 400 2656.2 1341.7 657.7 330.0 159.4 87.5 46.2 27.4
400 400 400 2719.6 1383.3 677.9 334.4 176.2 96.3 48.7
400 400 800 2807.4 1387.8 681.4 348.8 184.2 95.7
400 800 800 2753.6 1379.3 692.2 362.7 184.6
800 800 800 2853.6 1457.6 748.5 374.5
800 800 1600 2914.0 1524.5 749.6
800 1600 1600 2980.3 1498.6

IVAN LIRKOV ET AL.: PERFORMANCE EVALUATION OF MPI/OPENMP ALGORITHM 31

TABLE X
SPEED-UP ON IBM BLUE GENE/P.

nx ny nz m× k

2 4 8 16 32 64 128 256 512 1024 2048

100 100 100 2.11 4.43 8.78 17.02 33.73 64.93 111.54 191.55 351.96 421.32 461.68
100 100 200 2.04 4.45 8.96 17.61 34.78 68.73 125.50 218.75 407.52 517.90 593.41
100 200 200 2.08 4.54 9.16 18.38 36.92 72.02 134.22 246.66 452.54 616.02 746.84
200 200 200 2.00 4.18 8.41 17.23 35.15 75.19 138.63 259.63 479.53 770.25 1006.01

10
1

10
2

10
3

10
4

 1 4 16 64 256 1024

T
im

e

number of processes

Execution time

BG/P nx=ny=nz=100
BG/P nx=ny=nz=200
BG/P nx=ny=nz=400

Galera nx=ny=nz=100
Galera nx=ny=nz=200
Galera nx=ny=nz=400
HPCG nx=ny=nz=100
HPCG nx=ny=nz=200
HPCG nx=ny=nz=400

Fig. 1. Execution time for nx = ny = nz = 100, 200, 400.

kindly acknowledged. This research was partially supported by

grants DCVP 02/1 and I01/5 from the Bulgarian NSF. Work

presented here is a part of the Poland-Bulgaria collaborative

grant “Parallel and distributed computing practices”.

REFERENCES

[1] Anderson, E., Bai, Z., Bischof, C., Blackford, S., Demmel, J., Don-
garra, J., Croz, J.D., Greenbaum, A., Hammarling, S., McKenney, A.,
Sorensen, D.: LAPACK Users’ Guide. SIAM, Philadelphia, third edn.
(1999)

[2] Chandra, R., Menon, R., Dagum, L., Kohr, D., Maydan, D., McDonald,
J.: Parallel programming in OpenMP. Morgan Kaufmann (2000)

[3] Chapman, B., Jost, G., Van Der Pas, R.: Using OpenMP: portable shared
memory parallel programming, vol. 10. MIT press (2008)

[4] Chorin, A.J.: Numerical solution of the Navier-Stokes equations. Math.
Comp. 22, 745–762 (1968)

[5] Guermond, J.L., Minev, P.: A new class of fractional step techniques
for the incompressible Navier-Stokes equations using direction splitting.
Comptes Rendus Mathematique 348(9–10), 581–585 (2010)

[6] Guermond, J.L., Minev, P.: A new class of massively parallel direc-
tion splitting for the incompressible navier–stokes equations. Computer
Methods in Applied Mechanics and Engineering 200(23), 2083–2093
(2011)

[7] Guermond, J.L., Minev, P., Shen, J.: An overview of projection methods
for incompressible flows. Comput. Methods Appl. Mech. Engrg. 195,
6011–6054 (2006)

[8] Guermond, J.L., Salgado, A.: A fractional step method based on a
pressure poisson equation for incompressible flows with variable density.
Comptes Rendus Mathematique 346(15–16), 913–918 (2008)

[9] Guermond, J.L., Salgado, A.: A splitting method for incompressible
flows with variable density based on a pressure Poisson equation. Journal
of Computational Physics 228(8), 2834–2846 (2009)

[10] Lirkov, I., Paprzycki, M., Ganzha, M.: Performance analysis of par-
allel alternating directions algorithm for time dependent problems.
In: Wyrzykowski, R., Dongarra, J., Karczewski, K., Waśniewski, J.
(eds.) 9th international conference on Parallel Processing and Applied
Mathematics, PPAM 2011, Part I. Lecture notes in computer science,
vol. 7203, pp. 173–182. Springer (2012)

[11] Snir, M., Otto, S., Huss-Lederman, S., Walker, D., Dongarra, J.: MPI:
The Complete Reference. Scientific and engineering computation series,
The MIT Press, Cambridge, Massachusetts (1997), second printing

[12] Temam, R.: Sur l’approximation de la solution des équations de Navier-
Stokes par la méthode des pas fractionnaires. Arch. Rat. Mech. Anal.
33, 377–385 (1969)

[13] Walker, D., Dongarra, J.: MPI: a standard Message Passing Interface.
Supercomputer 63, 56–68 (1996)

32 POSITION PAPERS OF THE FEDCSIS. KRAKÓW, 2013

