
An application of partition method for solving 3D

Stokes equation

Maria Ganzhaa, Krassimir Georgievb, Ivan Lirkovb,∗, Marcin Paprzyckia

aSystems Research Institute, Polish Academy of Sciences

ul. Newelska 6, 01-447 Warsaw, Poland
bInstitute of Information and Communication Technologies

Bulgarian Academy of Sciences

Acad. G. Bonchev, bl. 25A

1113 Sofia, Bulgaria

Abstract

In our previous work we have studied the performance of a parallel algorithm,
based on a direction splitting approach, for solving of time dependent Stokes
equation. We used a rectangular uniform mesh, combined with a central differ-
ence scheme for the second derivatives. Hence, the proposed algorithm required
only solution of tridiagonal linear systems.

In our work, we are targeting massively parallel computers, as well as clusters
of multi-core nodes. The somehow slower (experimentally-established) perfor-
mance of the proposed approach was observed when using all cores on a single
node of a cluster. To remedy this problem, we tried to use LAPACK subroutines
from the multi-threaded layer library, but the parallel performance of the code
(while improved) was still not satisfactory on a single (multi-core) node.

Our current work considers hybrid parallelization based on the MPI and
OpenMP standards. It is motivated by the need to maximize the parallel ef-
ficiency of our implementation of the proposed algorithm. Essential improve-
ments of the parallel algorithm are achieved by introducing two levels of par-
allelism: (i) between-node parallelism based on the MPI and (ii) inside-node
parallelism based on the OpenMP. The implementation was tested on Linux
clusters with Intel processors and on the IBM supercomputer.

Keywords: Navier-Stokes, time splitting, ADI, incompressible flows, parallel
algorithm
2010 MSC: 35Q30, 35Q35, 65F05, 65F50, 65N06, 68W10,

∗Corresponding author
Email addresses: maria.ganzha@ibspan.waw.pl (Maria Ganzha),

georgiev@parallel.bas.bg (Krassimir Georgiev), ivan@parallel.bas.bg (Ivan Lirkov),
paprzyck@ibspan.waw.pl (Marcin Paprzycki)

URL: http://inf.ug.edu.pl/~mganzha/ (Maria Ganzha),
http://parallel.bas.bg/~georgiev (Krassimir Georgiev), http://parallel.bas.bg/~ivan/
(Ivan Lirkov), http://www.ibspan.waw.pl/~paprzyck/ (Marcin Paprzycki)

Preprint submitted to Computers & Mathematics with Applications April 9, 2015

1. Introduction

The solution of a tridiagonal system of linear equations lies at the heart
of many programs developed for, so called, scientific computations. With the
development and availability of multitude of parallel and vector computers,
parallel algorithms (suitable for these machines) have appeared also for solving
tridiagonal systems of equations.

Large tridiagonal systems of linear equations appear in many numerical ap-
plications. For instance, in [1], they arise in line relaxations needed by robust
multigrid methods for structured grid problems. In [2] adaptive mesh refinement
algorithm was used for a coupled system of nonlinear evolution equations of a
hyperbolic type and a parallel algorithm was used to solve the tridiagonal sys-
tems of linear equations. The above papers used the classic parallel algorithm
called the “partition method” introduced in [3].

On a serial computer, Gaussian elimination without pivoting can be used to
solve a diagonally dominant tridiagonal system of linear equations. This algo-
rithm, first described in [4], is commonly referred to as the Thomas algorithm.
Unfortunately, this algorithm is not well suited for parallel computers. The first
parallel algorithm for the solution of tridiagonal systems was described in [5].
It is now usually referred to as cyclic reduction. Stone introduced his recursive
doubling algorithm in [6]. Both cyclic reduction and recursive doubling are de-
signed for fine grained parallelism, where each processor owns exactly one row of
the tridiagonal matrix. Wang proposed a partitioning algorithm that was aimed
at more coarse-grained parallel computation, where the number of processors
is many times smaller than the number of unknowns [3]. Diagonal dominance
of the resulting reduced system in Wang’s method was established in [7] and
numerical stability of Wang’s algorithm was analyzed in [8]. A unified approach
for the derivation and analysis of partitioning methods applicable to solution of
tridiagonal linear systems was given in [9, 10]. There has also been attention
directed towards a parallel partitioning of the standard LU algorithm. Sun et
al. [11] introduced the parallel partitioning LU algorithm that is very similar
to the Bondeli’s divide and conquer algorithm [12]. For both the partitioning
algorithms and the divide and conquer algorithms, a reduced tridiagonal system
of interface equations must be solved. Here, each processor owns only a small
number of rows in this reduced system. As an example, in Wang’s partitioning
algorithm, each processor owns one row of the reduced system. In [13], this re-
duced system is solved by recursive doubling. However, numerical experiments
were performed only on a very small numbers of processors (typical for the times
that this contribution was published).

Austin et al. [1] targeted parallel computers with thousands (to tens of thou-
sands) of processors, such that for a 2D structured grid, line solves spanning
hundreds of processors are realistic. They represent a memory efficient par-
titioning algorithm, for the solution of diagonally dominant tridiagonal linear
systems of equations. This partitioning algorithm is well suited for current
distributed memory parallel computers.

2

2. Alternating directions algorithm for Stokes equation

We consider the time-dependent Stokes equations written in terms of velocity
u and pressure p:

ut − ν∆u+∇p = f in Ω× (0, T)
∇ · u = 0 in Ω× (0, T)
u|∂Ω = 0, ∂np|∂Ω = 0 in (0, T)
u|t=0 = u0, p|t=0 = p0 in Ω

, (1)

where f is a smooth source term, ν is the kinematic viscosity, and u0 is a
solenoidal initial velocity field, with a zero normal trace. The time interval
[0, T] is discretized on a uniform mesh and τ is the time step. We solve the
problem (1) in the domain Ω = (0, 1)3, for t ∈ [0, 2] with Dirichlet boundary
conditions.

Guermond and Minev [14, 15] introduced a novel fractional time stepping
technique for solving the incompressible Navier-Stokes equations. This tech-
nique is based on a direction splitting strategy. They used a singular pertur-
bation of the Stokes equation. In this way, the standard Poisson problem in
the projection schemes was replaced by series of one-dimensional second-order
boundary value problems.

Usage of central differences for the discretization in space, for the one-di-
mensional boundary value problems, leads to the solution of tridiagonal linear
systems. In our original research we developed MPI code based on an applica-
tion of the partition method for solving the tridiagonal system of linear equa-
tions, which arise in the alternating directions algorithm [16, 17]. The analysis
of experimental results showed that the algorithm is very well suited for dis-
tributed memory parallel computers but it has unsatisfactory performance on a
single (multi-core) node of a cluster. To try to alleviate this deficiency, we used
LAPACK subroutines from a multi-threaded layer library, for the solution of
tridiagonal linear systems [18]. The experimental results showed that the code
needs additional improvements. Here, one has to recall that to maximize perfor-
mance of a cluster of multi-core nodes, one has to, first, optimize the per-node
performance.

In the current work, we have developed a hybrid-parallel code based on
combination of the MPI and the OpenMP standards. In our application of
the partition method, each MPI process owns a small number of rows of the
tridiagonal matrix, but the linear system has multiple right hand sides. In our
hybrid implementation, each OpenMP thread solves the tridiagonal system with
a small number of rows and a small number of right hand side (RHS) vectors.
Specifically, let us consider a discretization, in space, with nx, ny, and nz points
in direction x, y, and z respectively. Then the one-dimensional problem in the
x direction leads to a linear system with nx rows and 3nynz RHS vectors for
the “velocity update” step and nynz vectors for the “penalty” step (in the
alternating directions algorithm [15]). We use m = mxmymz MPI processes
and k OpenMP threads. In the “penalty” step, each MPI process computes
the coefficients in nx

mx

rows and
ny

my

nz

mz

RHS vectors. Let us denote by M the

3

HPCG Galera MareNostrum IBM Blue Gene/P
Compiler

Intel C Compiler 12.1.0 IBM XL C Compiler 9.0
MPI

Intel MPI OpenMPI Intel MPI MPICH2
4.0.3.008 1.4.3 4.1.3.049

LAPACK
Intel Math Kernel Library 11.1 Engineering and Scientific

Subroutine Library 5.1

Table 1: Compilers and libraries used on the four computer systems

number of rows and by K the number of RHS vectors owned by a single MPI
process. In our current implementation each OpenMP thread solves a linear
system with M rows and K

k
RHS vectors.

3. Experimental results

Let us now report on the experiments we have performed with the current im-
plementation of the solver. In the experiments, we consider the time-dependent
Stokes equations (1). The discretization in time was done with time step 10−2.
The kinematic viscosity was ν = 10−3. The discretization in space used mesh
sizes hx = 1

nx−1
, hy = 1

ny−1
, and hz = 1

nz−1
. The total number of unknowns in

the discrete problem was 800nx ny nz.
To solve the problem, a portable parallel code was designed and implemented

in C. As stated above, the hybrid parallelization is based on joint application
of the MPI and the OpenMP standards [19, 20, 21, 22]. In the code, we use
the LAPACK subroutines DPTTRF and DPTTS2 (see [23]) for solving tridi-
agonal systems of equations for the unknowns corresponding to the internal
nodes in each sub-domain. The same subroutines are used to solve the reduced
tridiagonal systems.

The parallel code has been tested on a cluster computer system HPCG
located in the Institute of Information and Communication Technologies, on a
cluster computer system Galera, located in the Polish computing center TASK,
on a supercomputer MareNostrum at the Barcelona Supercomputing Center,
and on the IBM Blue Gene/P machine at the Bulgarian Supercomputing Center.
Table 1 summarizes the information about compilers and libraries used on the
four computer systems. In our experiments, times have been collected using the
MPI provided timer and we report the best results from multiple runs. In what
follows, we report the elapsed time Tp (in seconds), when using m MPI processes
and k OpenMP threads, where p = m × k, the parallel speed-up Sp = T1/Tp,
and the parallel efficiency Ep = Sp/p.

Tables 2 and 3 show the results collected on the HPCG cluster. The HP Clus-
ter Platform Express 7000 consists of 36 blades BL 280c, with dual Intel Xeon
X5560 processors (for the total of 288 cores and 576 computational threads).

4

nx ny nz k
1 2 4 8 16

100 100 100 87.86 40.19 23.89 18.11 18.28
100 100 200 199.73 90.04 49.63 37.37 35.82
100 200 200 412.11 182.33 109.77 77.86 74.61
200 200 200 908.53 403.13 229.51 169.14 145.67
200 200 400 1898.00 832.34 460.76 320.36 305.80
200 400 400 3171.97 1716.60 953.55 659.17 631.28
400 400 400 6570.93 3599.35 2000.45 1368.45 1329.70
400 400 800 14529.50 7910.66 4383.55 2889.60 2907.80

Table 2: Execution times of solving the 3D problem on a single node of the HPCG.

Each processor runs at 2.8 GHz. Processors within each blade share 24 GB
RAM, while nodes are interconnected with non-blocking DDR Interconnection
via the Voltaire Grid director 2004 with latency 2.5 µs and bandwidth 20 Gbps
(see also http://www.grid.bas.bg/hpcg/). We used an Intel C compiler, and
compiled the code with the option “-O3 -openmp”. For solving the tridiagonal
systems of equations using LAPACK subroutines, we linked our code to the
Intel Math Kernel Library (MKL). Initial results collected on the HPCG, orig-
inating from the MPI code linked to the multi-threaded Intel MKL, for solving
the linear systems, were published in [18]. Here, Tables 2 and 3 show the results
from the hybrid code using OpenMP for solving the linear systems (within a
multi-core node). Let us recall that one HPCG node has two processors with
eight physical cores that can run a code with 16 OpenMP threads using hyper-
threading. This is why we report also performance values for k = 16. The
execution time presented in Table 2 shows that it is possible to obtain some
performance gain when using hyper-threading (using 2 OpenMP threads per
physical core). However, this effect is not across-the-board. For instance, it is
easy to see that we gain very little from the effect of hyper-threading in the
case of linear systems with 200–400 rows (see, also Table 3). It is clear that
deficiencies in memory management hamper performance when k = 16 threads
are used to solve the largest problems.

Fig. 1 shows a comparison between the last two versions of the parallel
code: (i) the previous version, using multi-threaded Intel MKL for solving of
linear systems (for more details, see [18]) and, (ii) the new one using OpenMP
for solving the linear systems. It is relatively clear that the current approach
outperforms the previous one “across the board” of tried problem sizes, numbers
of nodes and cores. To provide an analytic view of the performance, the speed-
up obtained on the HPCG is reported in Table 4. Here, note that the largest
discrete problem that we could solve on a single blade has 128×106 grid points.
Furthermore, problems larger than these reported in the table did not fit into
the available memory (of a given number of nodes). For the largest problems
reported in Table 4, efficiency is slightly above 50%, e.g. for the largest case
overall; 400× 400× 800, for p = 128 it reaches about 53%.

5

nodes
2 4 8 16

nx ny nz k = 8
100 100 100 9.72 5.02 3.01 1.92
100 100 200 18.53 10.42 5.49 4.09
100 200 200 40.00 19.18 14.42 7.46
200 200 200 82.57 46.28 27.02 14.78
200 200 400 165.91 89.73 50.20 30.77
200 400 400 338.66 177.60 110.31 63.17
400 400 400 679.60 367.18 180.12 106.58
400 400 800 1327.64 722.13 379.21 216.08
400 800 800 2951.39 1486.41 773.56 423.47
800 800 800 3345.61 1623.03 855.05
800 800 1600 3412.26 1658.27
nx ny nz k = 16
100 100 100 8.70 4.85 3.88 2.87
100 100 200 19.79 10.44 6.85 5.32
100 200 200 38.88 19.65 12.13 9.07
200 200 200 79.32 41.54 22.56 12.70
200 200 400 164.07 78.43 41.78 25.27
200 400 400 318.29 158.46 80.30 46.67
400 400 400 668.37 321.32 167.18 88.88
400 400 800 1306.57 641.91 339.30 184.43
400 800 800 3108.37 1334.47 689.03 361.78
800 800 800 3380.27 1560.22 926.30
800 800 1600 3371.75 1827.10

Table 3: Execution times of solving the 3D problem on many nodes of the HPCG.

nx ny nz m× k
2 4 8 16 32 64 128

100 100 100 2.19 3.68 4.85 9.03 17.49 29.21 45.64
100 100 200 2.22 4.02 5.35 10.78 19.17 36.40 48.79
100 200 200 2.26 3.75 5.29 10.30 21.48 28.58 55.25
200 200 200 2.25 3.96 5.37 11.00 19.63 33.62 61.45
200 200 400 2.28 4.12 5.92 11.44 21.15 37.81 61.68
200 400 400 1.85 3.33 4.81 9.37 17.86 28.76 50.22
400 400 400 1.83 3.28 4.80 9.67 17.90 36.48 61.65
400 400 800 1.84 3.31 5.03 10.94 20.12 38.32 67.24

Table 4: Speed-up on the HPCG.

6

100

101

102

103

104

 1 2 4 8 16 32 64 128

T
im

e
[s

]

number of cores

Execution time on HPCG

library nx=ny=nz=100
library nx=ny=nz=200
library nx=ny=nz=400
library nx=ny=nz=800

OpenMP nx=ny=nz=100
OpenMP nx=ny=nz=200
OpenMP nx=ny=nz=400
OpenMP nx=ny=nz=800

Figure 1: Execution times of the two versions of the code on the HPCG.

nx ny nz k
1 2 4 8

100 100 100 172.74 98.79 67.53 57.54
100 100 200 370.96 211.34 143.28 129.28
100 200 200 831.13 482.54 325.89 281.96
200 200 200 1731.85 994.65 680.83 575.11
200 200 400 3476.49 2040.48 1397.81 1175.16
200 400 400 7137.60 4200.39 2855.00 2374.29
400 400 400 14609.90 8424.69 5865.67 4845.97
400 400 800 29444.40 16885.00 11975.70 10093.00

Table 5: Execution times of solving the 3D problem on a single node of the Galera.

Tables 5 and 6 show the results collected on the Galera cluster. It is a Linux
cluster with 336 nodes, and two Intel Xeon quad core processors per node. Each
processor runs at 2.33 GHz. Processors within each node share 8, 16, or 32 GB
of memory. Nodes are interconnected with a high-speed InfiniBand network
(see also http://www.task.gda.pl/kdm/sprzet/Galera). When running our
code on the Galera, we used the Intel C compiler, and compiled the code with
the options “-O3 -openmp”. To use the LAPACK subroutines, we linked our
code to the Intel MKL. The results on the Galera, collected when running the
MPI code linked to the optimized multi-threaded Intel MKL, for solving the
tridiagonal linear systems, were also published in [18]. Here, Tables 5 and 6
show the results from the hybrid code using the OpenMP for solving the linear
systems. Again, the discrete problem with nx = ny = 400, nz = 800 requires
22 GB of memory. That is why, for larger problems, we could not run the code

7

nx ny nz nodes
2 4 8 16 32 64 128 256

100 100 100 29.2 13.7 7.0 4.3 2.6 1.9 2.2 1.7
100 100 200 63.3 29.0 14.1 8.0 4.6 2.6 2.1 2.1
100 200 200 139.1 64.0 31.1 16.5 8.4 4.6 3.7 3.0
200 200 200 288.6 132.2 62.1 32.9 15.7 8.0 5.5 4.0
200 200 400 586.3 278.4 138.2 72.4 33.8 15.9 10.4 6.4
200 400 400 1197.1 590.8 300.9 161.4 74.4 34.5 22.4 11.9
400 400 400 2395.2 1194.4 626.0 318.6 148.8 67.8 39.5 19.3
400 400 800 4780.9 2448.7 1273.2 651.5 316.9 150.9 90.5 45.1
400 800 800 10562 4815.9 2843.7 1336.9 664.1 329.0 197.3 95.1
800 800 800 11165 5008.4 2789.6 1389.0 668.0 359.1 181.3
800 800 1600 14764 8955.9 2970.2 1427.4 755.8 382.6
800 1600 1600 15637 5008.5 2985.8 1609.7 762.1

1600 1600 1600 15318 8302.4 3452.7 1584.9
1600 1600 3200 20063 14609 3678.3

Table 6: Execution times of solving the 3D problem on many nodes of the Galera.

for the small number of nodes (it did not fit into the available memory). As a
matter of fact, the largest problem, reported in Table 6, requires a minimum of
64 nodes to be solved.

As can be seen, on a single node of Galera, using OpenMP allows to take
advantage of 2 threads per processor (note that k = 4 means that two processors
within a node were running two threads each). Furthermore, while the actual
gain, when moving from k = 4 to k = 8 for the largest case, provides only about
16% performance improvement; in the real wall-clock time this is more than 30
minutes of actual run-time reduction. This latter number shows that the actual
performance gain (considered from the perspective of the user who is “awaiting
results”) is substantial, nevertheless.

Fig. 2 shows a comparison of the execution times, on the Galera, between the
last two versions of the parallel code: using multi-threaded Intel MKL for solving
the linear systems, and using OpenMP for solving them. Again, the improved
code, considered in this paper, outperforms the previous one across the board
(for the larger problems). Note that time is reported using a logarithmic scale.

Table 7 contains the speed-up obtained on Galera. For the reasons described
above, it was impossible to calculate the standard speed-up (time on a single
core vs. time on p cores). That is why we report the speed-up on Galera only
for the problems with nx, ny = 100, 200, 400, nz = 100, 200, 400, 800. However
it is easy to calculate the “normalized” speed-up even for the largest problem.
For instance, when comparing execution time on 128 and 256 cores, with that
on 64 cores, for nx = ny = nz = 1600 one can say that such speed-up is 2.405
and 5.238 respectively. Here, the super-linear speed-up can be attributed to the
well-known effect caused by halving the problem size and improving memory
management. These results indicate also that the communication in the parallel

8

100

101

102

103

104

105

 1 4 16 64 256 1024

T
im

e
[s

]

number of cores

Execution time on Galera

library nx=ny=nz=100
library nx=ny=nz=200
library nx=ny=nz=400
library nx=ny=nz=800

OpenMP nx=ny=nz=100
OpenMP nx=ny=nz=200
OpenMP nx=ny=nz=400
OpenMP nx=ny=nz=800

Figure 2: Execution times of the two versions of the code on the Galera.

nx ny nz m× k
2 4 8 16 32 64 128 256 512 1024 2048

100 100 100 1.75 2.56 3.00 5.92 12.63 24.80 39.86 66.78 88.46 77.08 98.77
100 100 200 1.76 2.59 2.87 5.86 12.80 26.29 46.12 81.21 140.08 177.58 175.12
100 200 200 1.72 2.55 2.95 5.98 12.98 26.75 50.25 99.22 180.87 223.65 272.43
200 200 200 1.74 2.54 3.01 6.00 13.10 27.88 52.70 110.61 216.79 314.53 435.54
200 200 400 1.70 2.49 2.96 5.93 12.49 25.16 47.99 102.89 218.00 332.65 543.20
200 400 400 1.70 2.50 3.01 5.96 12.08 23.72 44.23 95.92 206.72 318.90 599.96
400 400 400 1.73 2.49 3.01 6.10 12.23 23.34 45.86 98.15 215.41 369.85 755.35
400 400 800 1.74 2.46 2.92 6.16 12.02 23.13 45.20 92.92 195.14 325.29 653.10

Table 7: Speed-up on the Galera.

algorithm is mainly local. Specifically, if halving the problem leads to super-
linear speed-up, it means that communication between nodes (facilitated by
calls to the MPI primitives) is not as important as memory contention within a
node. For the largest case, for which we were able to fit the problem on a single
node, the efficiency of the performance for p = 2048 is about 31%. Interestingly,
when comparing the results for p = 128 reported in Table 7 with these reported
in Table 4, one can see that the HPCG machine reaches substantially higher
parallel efficiency (35% vs. 53%).

Tables 8, 9, 10, 11, 12, and 13 show the results collected on the MareNostrum,
the most powerful supercomputer in Spain. It has 3,056 compute nodes, and two
Intel SandyBridge 8-core processors per node. Each processor runs at 2.6 GHz.
Processors within each node share 32, 64, or 128 GB of memory. Nodes are
interconnected with a high-speed InfiniBand FDR10 network (see also http://

9

nx ny nz k
1 2 4 8 16

100 100 100 55.67 34.12 21.29 15.61 13.57
100 100 200 120.01 73.28 46.63 33.58 28.64
100 200 200 303.67 180.39 109.94 77.30 62.77
200 200 200 646.36 390.89 239.14 158.96 128.48
200 200 400 1318.25 801.08 489.24 323.87 250.90
200 400 400 2918.51 1813.99 1024.21 652.63 516.24
400 400 400 6133.14 3763.26 2120.11 1333.70 1002.37
400 400 800 15278.10 8139.33 4585.25 2814.30 2061.91
400 800 800 30456.10 17545.70 9583.50 5999.65 4319.39
800 800 800 82170.30

Table 8: Execution times of solving the 3D problem on a single node of the MareNostrum
using multi-threaded layer library for solving the linear systems.

nx ny nz nodes
2 4 8 16 32 64 128

100 100 100 7.05 3.84 2.20 1.55 1.16 0.91 2.88
100 100 200 14.17 7.18 4.01 2.86 1.68 1.26 2.88
100 200 200 29.62 14.60 7.65 4.91 2.88 1.86 5.41
200 200 200 64.58 30.22 15.13 8.42 4.71 2.96 7.18
200 200 400 128.76 60.34 31.02 16.62 8.77 5.30 6.60
200 400 400 259.00 130.47 67.00 32.56 16.93 9.51 10.88
400 400 400 517.45 258.18 134.22 65.00 33.69 17.61 15.02
400 400 800 1047.55 539.52 260.59 135.19 66.61 35.01 24.66
400 800 800 2151.33 1075.80 527.48 288.99 139.85 73.20 45.00
800 800 800 4367.25 2127.17 1050.29 570.65 274.10 143.43 81.41
800 800 1600 9024.27 4478.21 2161.97 1176.59 572.33 277.95 183.30
800 1600 1600 9158.31 4487.02 2354.38 1126.30 558.01 371.42
1600 1600 1600 9040.61 4671.52 2257.58 1098.03 705.93

Table 9: Execution times of solving the 3D problem on many nodes of the MareNostrum using
multi-threaded Intel MKL.

10

nx ny nz m× k
2 4 8 16 32 64 128 256 512 1024 2048

100 100 100 1.63 2.62 3.57 4.10 7.90 14.50 25.36 35.9 50.9 61.2 19.3
100 100 200 1.64 2.57 3.57 4.19 8.47 16.70 29.91 41.9 71.3 95.3 41.7
100 200 200 1.68 2.76 3.93 4.84 10.25 20.80 39.69 61.8 105.4 163.7 56.1
200 200 200 1.65 2.70 4.07 5.03 10.01 21.39 42.71 76.7 137.3 218.6 90.0
200 200 400 1.65 2.69 4.07 5.25 10.24 21.85 42.50 79.3 150.4 248.6 199.7
200 400 400 1.61 2.85 4.47 5.65 11.27 22.37 43.56 89.5 172.4 306.7 268.3
400 400 400 1.63 2.89 4.60 6.12 11.85 23.75 45.69 94.4 182.0 348.2 408.3
400 400 800 1.88 3.33 5.43 7.41 14.58 28.32 58.63 113.0 229.4 436.4 619.7
400 800 800 1.74 3.18 5.08 7.05 14.16 28.31 57.74 105.4 217.8 416.1 676.8
800 800 800 18.82 38.63 78.24 143.9 299.8 572.9 1009.4

Table 10: Speed-up on the MareNostrum using the multi-threaded Intel MKL.

nx ny nz k
1 2 4 8 16

100 100 100 56.72 31.73 16.26 9.71 7.38
100 100 200 120.78 66.09 36.12 22.04 16.11
100 200 200 303.93 169.93 90.51 54.29 37.59
200 200 200 657.86 359.78 202.08 114.64 79.97
200 200 400 1365.13 754.74 417.60 238.22 157.10
200 400 400 3050.03 1712.71 886.85 484.13 317.52
400 400 400 6424.91 3572.48 1841.49 991.14 635.04
400 400 800 17766.80 7761.12 4033.29 2157.43 1343.79
400 800 800 30452.10 16752.70 8484.86 4676.80 2874.20
800 800 800 81398.50

Table 11: Execution times of solving the 3D problem on a single node of the MareNostrum
using OpenMP for solving the linear systems.

11

nx ny nz nodes
2 4 8 16 32 64 128

100 100 100 3.99 2.26 1.55 1.23 0.96 0.79 3.69
100 100 200 8.02 4.20 2.55 2.06 1.32 1.02 5.07
100 200 200 17.45 8.37 4.60 3.33 2.00 1.47 6.46
200 200 200 39.97 17.91 8.66 5.23 3.04 2.11 5.29
200 200 400 81.37 35.98 18.22 10.43 5.52 3.50 5.10
200 400 400 167.05 80.98 42.17 20.18 10.49 6.16 6.02
400 400 400 326.71 163.37 84.07 40.14 20.79 11.16 10.03
400 400 800 690.09 347.05 164.31 87.49 41.04 22.15 19.07
400 800 800 1421.90 687.08 340.43 188.25 90.45 47.63 29.90
800 800 800 2934.58 1417.05 671.78 376.33 178.01 93.76 52.09
800 800 1600 6386.14 3036.08 1436.45 792.65 381.07 182.18 126.41
800 1600 1600 6554.86 2996.60 1574.35 755.64 364.60 242.45
1600 1600 1600 6801.71 3201.66 1504.29 721.48 462.74

Table 12: Execution times of solving the 3D problem on many nodes of the MareNostrum
using OpenMP for solving the linear systems.

nx ny nz m× k
2 4 8 16 32 64 128 256 512 1024 2048

100 100 100 1.79 3.49 5.84 7.69 14.22 25.12 39.42 46.1 64.9 71.4 15.4
100 100 200 1.83 3.34 5.48 7.50 15.06 28.77 48.04 58.8 101.2 118.8 23.8
100 200 200 1.79 3.36 5.60 8.08 17.42 36.33 66.04 91.2 151.9 206.8 47.1
200 200 200 1.83 3.26 5.74 8.23 16.46 36.74 75.92 125.8 216.9 311.5 124.5
200 200 400 1.81 3.27 5.73 8.69 16.78 37.94 74.94 131.0 247.2 389.9 267.5
200 400 400 1.78 3.44 6.30 9.61 18.26 37.67 72.32 151.1 290.8 494.9 506.6
400 400 400 1.80 3.49 6.48 10.12 19.67 39.33 76.43 160.1 309.1 575.6 640.3
400 400 800 2.29 4.41 8.24 13.22 25.75 51.19 108.13 203.1 432.9 802.2 931.8
400 800 800 1.82 3.59 6.51 10.59 21.42 44.32 90.01 161.8 336.7 639.3 1018.4
800 800 800 27.74 57.44 121.17 216.3 457.3 868.2 1562.7

Table 13: Speed-up on the MareNostrum using OpenMP for solving the linear systems.

12

100

101

102

103

104

105

 1 4 16 64 256 1024

T
im

e
[s

]

number of cores

Execution time on MareNostrum

library nx=ny=nz=100
library nx=ny=nz=200
library nx=ny=nz=400
library nx=ny=nz=800

OpenMP nx=ny=nz=100
OpenMP nx=ny=nz=200
OpenMP nx=ny=nz=400
OpenMP nx=ny=nz=800

Figure 3: Execution time of the two versions of the code on the MareNostrum.

www.bsc.es/marenostrum-support-services/mn3). When running our code
on the MareNostrum, we used the Intel C compiler, and compiled the code with
the options “-O3 -openmp”. To use the LAPACK subroutines, we linked our
code to the optimized Intel MKL. The execution time in Tables 8 and 9 were
obtained using multi-threaded Intel MKL for solving the linear systems. The
results in Tables 11 and 12 were obtained when using OpenMP for solving the
linear systems.

Comparing the results in Tables 9 and 12 one can see that the code using
OpenMP is almost twice faster than the code which uses the MKL library, for
solving the linear systems. This fact can be observed also in Fig. 3, which
illustrates the execution times on the MareNostrum.

Parallel efficiency for p = 512, for the largest problem reported in Table 13
is quite high (about 89%). The parallel efficiency for p = 128 is also the highest
among machines considered thus far (about 95%). Furthermore, the approach
advocated here is faster across the board (Fig. 3). This is particularly visible
for the largest problems depicted there.

Tables 14 and 15 present times collected on the IBM Blue Gene/P super-
computer. For our experiments we used the BG/P machine located at the
Bulgarian Supercomputing Center. The supercomputer has two BG/P racks.
One BG/P rack consists of 1024 compute nodes with quad core PowerPC 450
processors (running at 850 MHz). Each node has 2 GB of RAM. For the point-
to-point communications a 3.4 Gb 3D mesh network is used (for more details,
see http://www.scc.acad.bg/). In our experiments, we have used the IBM XL
C compiler and compiled the code with the following options: “-O5 -qstrict

-qarch=450d -qtune=450 -qsmp=omp”. To use the LAPACK subroutines, we
linked our code to the Engineering and Scientific Subroutine Library (ESSL).

13

nx ny nz k
1 2 4

100 100 100 881.59 468.72 239.50
100 100 200 1812.58 946.49 493.11
100 200 200 3779.01 1963.90 1014.33
200 200 200 7664.79 3963.43 2149.08

Table 14: Execution times of solving the 3D problem on a single node of the IBM Blue Gene/P.

k=4
nx ny nz nodes

2 4 8 16 32
100 100 100 111.71 56.17 28.62 15.85 8.41
100 100 200 239.66 119.95 57.80 30.91 15.98
100 200 200 483.06 244.59 122.30 59.83 29.91
200 200 200 1032.40 498.51 250.14 127.00 60.34
200 200 400 2079.17 1035.53 501.06 261.43 127.81
200 400 400 2067.20 1047.61 510.72 256.84
400 400 400 2141.69 1094.20 531.46
400 400 800 2216.74 1096.65
400 800 800 2173.92

nodes
64 128 256 512 1024

100 100 100 4.88 3.46 2.45 1.69 1.56
100 100 200 8.65 6.17 4.26 2.58 2.36
100 200 200 16.22 11.41 6.89 4.12 3.81
200 200 200 29.68 19.22 11.59 6.90 5.09
200 200 400 61.52 36.47 22.15 11.91 8.95
200 400 400 122.20 72.37 39.41 21.46 16.39
400 400 400 261.89 135.18 73.72 37.57 25.51
400 400 800 534.29 284.94 153.23 74.47 47.85
400 800 800 1088.32 577.08 297.02 143.91 93.37
800 800 800 2275.78 1154.25 588.49 295.28 161.66
800 800 1600 2315.33 1222.41 592.77 349.23
800 1600 1600 2374.26 1193.87 701.46

1600 1600 1600 2443.41 1299.52

Table 15: Execution times of solving the 3D problem on many nodes of the IBM Blue Gene/P.

14

nx ny nz m× k
2 4 8 16 32 64

100 100 100 1.88 3.68 7.89 15.69 30.80 55.62
100 100 200 1.92 3.68 7.56 15.11 31.36 58.65
100 200 200 1.92 3.73 7.82 15.45 30.90 63.17
200 200 200 1.93 3.57 7.42 15.38 30.64 60.35

m× k
128 256 512 1024 2048 4096

100 100 100 104.78 180.69 254.47 359.97 520.3 566.4
100 100 200 113.40 209.60 293.94 425.16 703.7 767.5
100 200 200 126.34 232.99 331.19 548.47 916.4 991.3
200 200 200 127.03 258.27 398.80 661.27 1110.7 1507.2

Table 16: Speed-up on the IBM Blue Gene/P.

Here we have to note that one node of the BG/P machine that we have
used, has only 2 GB of RAM. That is why on a single node we could run the
code only for nx, ny, nz ≤ 200. Table 16 contains the speed-up on the BG/P
for the problems, which could have been solved on a single node. On 128 nodes
the parallel efficiency is 82–99% and on 256 nodes a super-linear speed-up is
observed (with the same reasons for this effect as these discussed above). To
estimate the efficiency of the code for larger problems one can calculate the,
so called, weak scalability (defined as how the solution time varies with the
number of processors for a fixed problem size per processor). For example, the
weak scalability for problems with 106 grid points per compute node is between
81.1% and 99.9% on up to 512 compute nodes.

Fig. 4 shows a comparison of the execution times on the IBM Blue Gene/P
obtained by the last two versions of the parallel code: using multi-threaded Intel
MKL for solving the linear systems and using OpenMP for solving the linear
systems. As on the remaining machines, the improved approach outperforms
the previous-best-one “across the board.” As a matter of fact, on the Blue Gene
the performance gain is the most pronounced of all computers we have run our
experiments on.

Finally, in Fig. 5, we represent execution time of the hybrid code on all
four systems. Results are presented for problems of size nx = ny = nz =
100, 200, 400, 800. Here, it can be seen that the MareNostrum is the most effi-
cient computer architecture for our problem. Observe also that one core of the
HPCG (and of the MareNostrum) is about 12–15 times faster than one core of
the Blue Gene/P. The situation changes as the number of cores increases. For
128 cores the clusters are only about 6–7 times faster than the supercomputer.
It is clear that using more than 64 nodes on the Galera cluster, for the small-
est problem with nx = ny = nz = 100, results in a case of Amdahl’s effect
(where adding more resources does not result in a time reduction). This is not
the case for the BG/P machine, where the relative “weakness” of a “relatively
old” processor is significantly compensated by the efficiency of its networking

15

100

101

102

103

104

 1 4 16 64 256 1024 4096

T
im

e
[s

]

number of cores

Execution time on Blue Gene/P

library nx=ny=nz= 100
library nx=ny=nz= 200
library nx=ny=nz= 400
library nx=ny=nz= 800

library nx=ny=nz=1600
OpenMP nx=ny=nz= 100
OpenMP nx=ny=nz= 200
OpenMP nx=ny=nz= 400
OpenMP nx=ny=nz= 800

OpenMP nx=ny=nz=1600

Figure 4: Execution times of the two versions of the code on the IBM Blue Gene/P.

infrastructure.

4. Concluding remarks

We have implemented an improved, hybrid-parallel version of the partition
method for solving of a tridiagonal system of linear equations, which arise in
the alternating directions algorithm used for solving a class of Navier-Stokes
equations. Specifically, our implementation was based on combining the MPI
and OpenMP standards. In our hybrid implementation, each MPI process owns
a small number of rows of the tridiagonal matrix, while each OpenMP thread
solves the tridiagonal system with a small number of rows and a small number of
right hand side vectors. The experimental results show an essential improvement
of the hybrid parallel code, combining the MPI with the OpenMP, over the
previous implementation; when running experiments for a variety of problem
sizes and number of cores / threads on four distinct parallel computer systems.

Acknowledgments

Computer time grants from the TASK computing center in Gdansk, Poland,
the Bulgarian Supercomputing Center (BGSC), and the Barcelona Supercom-
puting Center are kindly acknowledged. This research was partially supported
by grant I01/5 from the Bulgarian NSF. Work presented here is a part of the
Poland-Bulgaria collaborative grant “Parallel and distributed computing prac-
tices”.

16

 1

 4

 16

 64

 256

 1024

 4096

100 101 102 103 104 105

nu
m

be
r

of
 c

or
es

Time [s]

Execution time

Blue Gene/P nx=ny=nz= 100
Blue Gene/P nx=ny=nz= 200
Blue Gene/P nx=ny=nz= 400
Blue Gene/P nx=ny=nz= 800

Galera nx=ny=nz= 100
Galera nx=ny=nz= 200
Galera nx=ny=nz= 400
Galera nx=ny=nz= 800

Galera nx=ny=nz=1600

HPCG nx=ny=nz=100
HPCG nx=ny=nz=200
HPCG nx=ny=nz=400
HPCG nx=ny=nz=800

MareNostrum nx=ny=nz=100
MareNostrum nx=ny=nz=200
MareNostrum nx=ny=nz=400
MareNostrum nx=ny=nz=800

MareNostrum nx=ny=nz=1600

Figure 5: Execution time for nx = ny = nz = 100, 200, 400, 800.

17

References

[1] T. M. Austin, M. Berndt, J. D. Moulton, A memory efficient parallel tridi-
agonal solver, Preprint LA-VR-03-4149 (2004).

[2] E. A. Hayryan, J. Busa, E. E. Donets, I. Pokorny, O. I. Strel’tsova, Nu-
merical studies of perturbed static solutions decay in the coupled system of
Yang-Mills-dilaton equations with use of MPI technology, Tech. rep., Lab-
oratory of Information Technologies, Joint Institute for Nuclear Research,
Dubna (Russian Federation) (2004).

[3] H. Wang, A parallel method for tridiagonal equations, ACM Transactions
on Mathematical Software (TOMS) 7 (2) (1981) 170–183.

[4] L. H. Thomas, Elliptic problems in linear difference equations over a net-
work, Watson Sci. Comput. Lab. Rept., Columbia University, New York.

[5] R. Hockney, O. Buneman, A fast direct solution of Poissons equation using
fourier analysis, Communications of the ACM 6 (7) (1963) 357–357.

[6] H. S. Stone, An efficient parallel algorithm for the solution of a tridiagonal
linear system of equations, Journal of the ACM (JACM) 20 (1) (1973)
27–38.

[7] C. H. Walshaw, Diagonal dominance in the parallel partition method for
tridiagonal systems, SIAM journal on matrix analysis and applications
16 (4) (1995) 1086–1099.

[8] P. Yalamov, V. Pavlov, On the stability of a partitioning algorithm for tridi-
agonal systems, SIAM journal on matrix analysis and applications 20 (1)
(1998) 159–181.

[9] P. Amodio, L. Brugnano, Parallel factorizations and parallel solvers for
tridiagonal linear systems, Linear algebra and its applications 172 (1992)
347–364.

[10] P. Amodio, L. Brugnano, T. Politi, Parallel factorizations for tridiagonal
matrices, SIAM journal on numerical analysis 30 (3) (1993) 813–823.

[11] X.-H. Sun, H. Z. Sun, L. M. Ni, Parallel algorithms for solution of tridiag-
onal systems on multicomputers, in: Proceedings of the 3rd international
conference on Supercomputing, ACM, 1989, pp. 303–312.

[12] S. Bondeli, Divide and conquer: A parallel algorithm for the solution of
a tridiagonal linear system of equations, Parallel Computing 17 (4) (1991)
419–434.

[13] J. Hofhaus, E. F. Van de Velde, Alternating-direction line-relaxation meth-
ods on multicomputers, SIAM Journal on Scientific Computing 17 (2)
(1996) 454–478.

18

[14] J.-L. Guermond, P. Minev, A new class of fractional step techniques for the
incompressible Navier-Stokes equations using direction splitting, Comptes
Rendus Mathematique 348 (9–10) (2010) 581–585.

[15] J.-L. Guermond, P. Minev, A new class of massively parallel direction split-
ting for the incompressible Navier-Stokes equations, Computer Methods in
Applied Mechanics and Engineering 200 (23) (2011) 2083–2093.

[16] M. Ganzha, K. Georgiev, I. Lirkov, S. Margenov, M. Paprzycki, Highly
parallel alternating directions algorithm for time dependent problems, in:
C. Christov, M. Todorov (Eds.), Applications of Mathematics in Techni-
cal and Natural Sciences, AMiTaNS 2011, Vol. 1404 of AIP Conference
Proceedings, 2011, pp. 210–217.

[17] I. Lirkov, M. Paprzycki, M. Ganzha, Performance analysis of paral-
lel alternating directions algorithm for time dependent problems, in:
R. Wyrzykowski, J. Dongarra, K. Karczewski, J. Waśniewski (Eds.), 9th
international conference on Parallel Processing and Applied Mathemat-
ics, PPAM 2011, Part I, Vol. 7203 of Lecture notes in computer science,
Springer, 2012, pp. 173–182.

[18] I. Lirkov, M. Paprzycki, M. Ganzha, P. Gepner, Performance evaluation of
MPI/OpenMP algorithm for 3D time dependent problems, in: M. Ganzha,
L. Maciaszek, M. Paprzycki (Eds.), Preprints of Position Papers of the Fed-
erated Conference on Computer Science and Information Systems, Vol. 2
of Annals of Computer Science and Information Systems, 2013, pp. 27–32.

[19] M. Snir, S. Otto, S. Huss-Lederman, D. Walker, J. Dongarra, MPI: The
Complete Reference, Scientific and engineering computation series, The
MIT Press, Cambridge, Massachusetts, 1997, second printing.

[20] D. Walker, J. Dongarra, MPI: a standard Message Passing Interface, Su-
percomputer 63 (1996) 56–68.

[21] R. Chandra, R. Menon, L. Dagum, D. Kohr, D. Maydan, J. McDonald,
Parallel programming in OpenMP, Morgan Kaufmann, 2000.

[22] B. Chapman, G. Jost, R. Van Der Pas, Using OpenMP: portable shared
memory parallel programming, Vol. 10, MIT press, 2008.

[23] E. Anderson, Z. Bai, C. Bischof, S. Blackford, J. Demmel, J. Dongarra,
J. D. Croz, A. Greenbaum, S. Hammarling, A. McKenney, D. Sorensen,
LAPACK Users’ Guide, 3rd Edition, SIAM, Philadelphia, 1999.

19

