
Comparative analysis of high performance solvers for solving
Stokes equation

Maria Ganzha∗, Ivan Lirkov† and Marcin Paprzycki∗

∗Systems Research Institute, Polish Academy of Science, ul.Newelska 6, 01-447 Warsaw, Poland
†Institute of Information and Communication Technologies,Bulgarian Academy of Sciences

Acad. G. Bonchev, bl. 25A, 1113 Sofia, Bulgaria

Abstract. We consider the time dependent Stokes equation on a finite time interval and on a uniform rectangular mesh,
written in terms of velocity and pressure. A parallel algorithm based on a direction splitting approach is implemented. We are
targeting the massively parallel computer as well as clusters of many-core nodes. The implementation is tested on the IBM
Blue Gene/P supercomputer and two Linux clusters. We compared the results from the direction splitting algorithm with the
results from Finite Element software package for solving of Stokes equation.

Keywords: Navier-Stokes, time splitting, ADI, incompressible flows, pressure Poisson equation, parallel algorithm
PACS: 02.60.Cb, 02.60.Lj, 02.70.Bf, 07.05.Tp, 47.10.ad, 47.11.Bc

The objective of this paper is to analyze the parallel performance of a novel fractional time stepping technique,
based on a direction splitting strategy, developed to solvethe incompressible Navier-Stokes equations.

Projection schemes were introduced in [1, 2] and they have been used in Computational Fluid Dynamics since.
During these years, such techniques went through some evolution, but the main paradigm, consisting of decomposing
vector fields into a divergence-free part and a gradient, hasbeen preserved; see [3] for a review. In terms of computa-
tional efficiency, projection algorithms are far superior to the methods that solve the coupled velocity-pressure system,
making them the most popular techniques for solving unsteady Navier-Stokes equations.

The alternating directions algorithm proposed in [4, 5] reduces the computational complexity of the enforcement of
the incompressibility constraint. The key idea consists ofabandoning the projection paradigm in which vector fields are
decomposed into a divergence-free part plus a gradient part. Departure from the projection paradigm has been proved
to be very efficient for solving variable density flows [6, 7].In the new method, the pressure equation is derived from
a perturbed form of the continuity equation, in which the incompressibility constraint is penalized in a negative norm
induced by the direction splitting. The standard Poisson problem for the pressure correction is replaced by the series
of one-dimensional second-order boundary value problems.This technique is proved to be stable and convergent (see
[4, 5]). The aim of this paper is to experimentally investigate the parallel properties of the algorithm on three distinct
parallel systems, for two dimensional problems.

STOKES EQUATION

We consider the time-dependent Navier-Stokes equations ona finite time interval[0,T], and in a rectangular domain
Ω. Since the nonlinear term in the Navier-Stokes equations does not interfere with the incompressibility constraint,
we henceforth mainly focus our attention on the time-dependent Stokes equations written in terms of velocity with
components(u,v) and pressurep:



















ut −ν (uxx+uyy)+ px = f
vt −ν (vxx+vyy)+ py = g in Ω× (0,T)
ux+vy = 0
u|∂Ω = v|∂Ω = 0, ∂np|∂Ω = 0 in (0,T)
u|t=0 = u0, v|t=0 = v0, p|t=0 = p0 in Ω

, (1)

where a smooth source term has components(f ,g), ν is the kinematic viscosity, and(u0,v0) is a solenoidal initial
velocity field with a zero normal trace. The time interval[0,T] was discretized on a uniform mesh andτ was the time
step.

PARALLEL ALTERNATING DIRECTIONS ALGORITHM

Guermond and Minev introduced (in [4]) a fractional time stepping technique for solving the incompressible Navier-
Stokes equations, based on a direction splitting strategy.They used a singular perturbation of Stokes equation with
a perturbation parameterτ. The standard Poisson problem was replaced by series of one-dimensional second-order
boundary value problems.

Formulation of the Scheme

The scheme used in the algorithm is composed of the followingparts: pressure prediction, velocity update, penalty
step, and pressure correction. We now describe an algorithmthat uses the direction splitting operator

A :=

(

1−
∂ 2

∂x2

)(

1−
∂ 2

∂y2

)

.

• Pressure predictor.
Denotingp0 the pressure field att = 0, the algorithm is initialized by settingp−

1
2 = p−

3
2 = p0. Then for alln≥ 0

a pressure predictor is computed:

p∗,n+
1
2 = 2pn− 1

2 − pn− 3
2 . (2)

• Velocity update.

The velocity field is initialized by settingu0 =

(

u0
v0

)

, and for alln ≥ 0 the velocity update is computed by

solving the following series of one-dimensional problems

ξ n+1−un

τ
−ν∆un+∇p∗,n+

1
2 = fn+ 1

2 , ξ n+1|∂Ω = 0, (3)

ηn+1−ξ n+1

τ
−

ν
2

∂ 2(ηn+1−un)

∂x2 = 0, ηn+1|∂Ω = 0, (4)

un+1−ηn+1

τ
−

ν
2

∂ 2(un+1−un)

∂y2 = 0, un+1|∂Ω = 0, (5)

wherefn+ 1
2 =

(

f |t=(n+ 1
2)τ

g|t=(n+ 1
2)τ

)

.

• Penalty step
The intermediate parameterφ is approximated by solvingAφ = − 1

τ ∇ · un+1. Owing to the definition of the
direction splitting operatorA, this is done by solving the following series of one-dimensional problems:

ψ −ψxx = − 1
τ ∇ ·un+1, ψx|∂Ω = 0,

φ −φyy = ψ, φy|∂Ω = 0,
(6)

• Pressure update
The last sub-step of the algorithm consists of updating the pressure:

pn+ 1
2 = pn− 1

2 +φ − χν∇ ·
un+1+un

2
(7)

The algorithm is in a standard incremental form when the parameterχ = 0; while the algorithm is in a rotational
incremental form whenχ ∈ (0, 1

2]. The convergence tests reported in [4, 5] confirm that the rotational form of the
incremental version of the method is second-order in time for theL2-norm of the velocity field.

TABLE 1. Compilers and libraries on the three computer systems

Galera HPCG IBM Blue Gene/P

Compiler Intel C Compiler 12.1.0 Intel C Compiler 12.1.0 IBM XL C Compiler 9.0
MPI OpenMPI 1.4.3 Intel MPI 4.0.3.008 MPICH2
LAPACK Intel Math Kernel Library 10.0 Intel Math Kernel Library 10.0 Engineering and Scientific

Subroutine Library 5.1

Parallel Algorithm

We use a rectangular uniform mesh combined with a central difference scheme for the second derivatives for solving
equations (4–5), and (6). Thus the algorithm requires only the solution of tridiagonal linear systems. The parallelization
is based on a decomposition of the domain into rectangular sub-domains. Let us associate with each such sub-domain
a set of coordinates(ix, iy), and identify it with a given processor. The linear systems,generated by one-dimensional
problems that need to be solved in each direction, are divided into systems for sets of unknowns corresponding to
the internal nodes for each block that can be solved independently by a direct method. The corresponding Schur
complement for the interface unknowns between the blocks that have an equal coordinateix or iy is also tridiagonal
and can be inverted directly. The overall algorithm requires only exchange of the interface data, which allows for a
very efficient parallelization with an efficiency comparable to that of explicit schemes.

EXPERIMENTAL RESULTS

The problem (1) is solved inΩ = (0,1)2, for t ∈ [0,2] with Dirichlet boundary conditions. The discretization intime is
done with time step 10−2, the parameterχ = 1

2, the kinematic viscosityν = 10−3. The second order central differences
were used for the discretization in space on a rectangular mesh with mesh sizeshx =

1
nx−1 andhy =

1
ny−1. Thus, (4)

leads to linear systems of sizenx and (5) leads to linear systems of sizeny. The total number of unknowns in the
discrete problem is 600nx ny.

To solve the problem, a portable parallel code was designed and implemented in C, while the parallelization has
been facilitated using the MPI and OpenMP standards [8, 9, 10, 11]. We use the LAPACK subroutines DPTTRF and
DPTTS2 (see [12]) for solving tridiagonal systems in equations (4), (5), and (6) for the unknowns corresponding to
the internal nodes of each sub-domain. The same subroutinesare used to solve the tridiagonal systems with the Schur
complement.

The parallel code has been tested on three computer systems:Galera, located in the Centrum Informatyczne TASK,
on a cluster computer system HPCG located in the Institute ofInformation and Communication Technologies, and on
the IBM Blue Gene/P machine at the Bulgarian SupercomputingCenter. Table 1 summarizes the information about
used compilers and libraries on the three computer systems.In our experiments, times have been collected using the
MPI provided timer and we report the best results from multiple runs. In the following tables, we report the elapsed
time Tp in seconds usingm MPI processes andk OpenMP processes, wherep = m× k, and the parallel speed-up
Sp = T1/Tp.

Table 2 shows the results collected on the Galera. It is a Linux cluster with 336 nodes, and two Intel Xeon quad core
processors per node. Each processor runs at 2.33 GHz. Processors within each node share 8, 16, or 32 GB of memory,
while nodes are interconnected with a high-speed InfiniBandnetwork (see alsohttp://www.task.gda.pl/
kdm/sprzet/Galera). Here, we used an Intel C compiler, and compiled the code with the option “-O3 -openmp”.
For solving the tridiagonal systems of equations using LAPACK subroutines we linked our code to multi-threaded layer
Intel Math Kernel Library (MKL, seehttp://software.intel.com/en-us/articles/intel-mkl/).
The results obtained with an MPI implementation of the alternating directions algorithm were reported in [13]. We
observed slower performance using 8 cores on one node of Galera using MPI code. Now we used OpenMP and multi-
threaded layer Intel MKL for execution of the code on one node. We were unpleasantly surprised because the new
code has slower performance on 2, 4, and 8 cores, e.g. fornx = ny = 3200 the execution time of the MPI code on 8
cores is 232 seconds while the execution time of the OpenMP code on 8 cores is 550 seconds.

For solving the problem withnx = ny = 12800 18 GB memory is needed. The physical memory on a single node of
Galera is not large enough for solving of twice larger discrete problems and we used two and more nodes of the cluster
for such problems.

TABLE 2. Execution time for solving of 2D problem on Galera.

nx ny processes
1 2 4 8 16 32 64 128 256 512 1024 2048

800 800 47.4 29.1 22.4 19.6 9.2 4.6 2.4 1.3 0.8 0.6 0.5 1.5
800 1600 96.7 58.3 44.5 39.8 19.3 9.4 4.7 2.5 1.4 0.9 0.8 0.6

1600 1600 201.3 119.7 91.7 82.9 38.6 19.7 9.6 4.8 2.6 1.5 1.1 0.9
1600 3200 437.2 263.4 212.9 200.0 79.3 39.5 19.8 9.8 5.0 2.7 1.8 1.2
3200 3200 1070.0 672.6 682.8 550.1 174.0 79.8 39.7 20.3 10.1 5.1 3.0 1.9
3200 6400 2525.6 1754.7 1920.2 1477.6 432.7 178.3 80.5 40.8 20.7 10.2 5.7 3.2
6400 6400 7418.9 4750.9 4007.3 3137.8 993.8 442.9 177.0 85.441.5 20.9 10.8 5.9
6400 12800 12650.0 8146.2 5823.4 4956.7 2188.2 1087.3 461.5205.5 85.9 41.9 21.8 11.3

12800 12800 34804.7 21416.3 14318.1 11272.0 4985.2 2806.5 1111.4 556.6 209.2 86.4 42.7 22.0
12800 25600 10317.4 5035.7 2387.2 1547.4 543.7 211.0 92.3 43.2
25600 25600 11465.1 5126.7 3195.8 1582.4 567.8 214.1 88.6
25600 51200 10507.2 5292.6 3406.1 1596.8 559.3 214.7
51200 51200 11678.2 5220.0 3381.2 1620.5 582.8

TABLE 3. Execution time for solving of 2D problem on HPCG.

nx ny processes
1 2 4 8 16 32 64 128

800 800 21.85 12.09 7.72 6.47 3.41 1.60 1.10 0.65
800 1600 46.79 25.27 15.98 13.29 6.94 3.67 2.03 1.13

1600 1600 95.89 50.63 31.53 25.43 13.87 6.65 4.16 2.20
1600 3200 194.19 100.66 63.58 50.56 29.60 13.52 7.96 4.23
3200 3200 400.59 206.77 129.85 106.50 51.77 28.20 14.97 8.25
3200 6400 901.91 470.02 299.95 240.32 116.79 53.55 29.97 17.34
6400 6400 1882.27 1108.73 696.65 562.38 253.67 113.27 71.7935.34
6400 12800 4277.73 2323.90 1463.49 1113.83 562.59 337.00 153.85 72.42

12800 12800 8068.33 4748.90 3119.29 2761.58 1217.21 593.05335.91 161.65

Table 3 shows the results collected on the HPCG cluster. HP Cluster Platform Express 7000 enclosures with 36
blades BL 280c, dual Intel Xeon X5560 processors (total 576 cores). Each processor runs at 2.8 GHz. Processors within
each blade share 24 GB RAM, while nodes are interconnected with non-blocking DDR Interconnection via Voltaire
Grid director 2004 with latency 2.5µs and bandwidth 20 Gbps (see also http://www.grid.bas.bg/hpcg/). Again, we
used an Intel C compiler, and compiled the code with the option “-O3 -openmp”. For solving the tridiagonal systems
of equations using LAPACK subroutines we linked our code to multi-threaded layer Intel MKL.

Again, the somehow slower performance using 8 cores is clearly visible. There are some factors which could play
role for the slower performance using all processors of a single node. Generally, they are a consequence of limitations
of memory subsystems and their hierarchical organization in modern computers. One such factor might be the limited
bandwidth of the main memory bus.

Table 4 presents execution time collected on the IBM Blue Gene/P machine at the Bulgarian Supercomputing Center.
It consists of 2048 compute nodes with quad core PowerPC 450 processors (running at 850 MHz). Each node has 2
GB of RAM. For the point-to-point communications a 3.4 Gb 3D mesh network is used. Reduction operations are
performed on a 6.8 Gb tree network (for more details, seehttp://www.scc.acad.bg/). We have used the IBM
XL C compiler and compiled the code with the following options: “-O5 -qstrict -qarch=450d -qtune=450 -qsmp=omp”.
For solving the tridiagonal systems using LAPACK subroutines we linked our code to multi threaded Engineering and
Scientific Subroutine Library (ESSL, seehttp://www-03.ibm.com/systems/software/essl/index.
html).

Again, the new code has slower performance than the MPI code on 2 and 4 cores. The memory of one node of IBM
supercomputer is substantially smaller than on clusters (2GB vs. 24 or 32 GB) and the largest discrete problem in our
experiments which can be solved on one node havenx = ny = 3200.

The execution time on the three parallel systems is shown in Fig. 1. Because of the slower processors, the execution
time obtained on the Blue Gene/P is substantially larger than that on the clusters. At the same time, the parallel
efficiency obtained on a large number of nodes on the supercomputer is better. The main reason of this can be related

TABLE 4. Execution time for solving of 2D problem on IBM Blue Gene/P.

nx ny processes
1 2 4 8 16 32 64 128 256 512 1024 2048 4096

800 800 432.4 237.0 148.6 69.5 34.4 17.3 8.8 4.8 2.6 1.7 1.1 0.90.6
800 1600 879.2 505.1 305.8 144.0 69.8 35.5 17.3 9.5 4.9 3.2 1.81.6 1.0

1600 1600 1772.9 979.6 595.1 312.0 152.8 71.6 35.6 17.7 9.2 5.3 3.0 2.2 1.5
1600 3200 3600.3 2082.4 1295.4 633.9 313.1 148.4 72.0 36.5 18.0 10.3 5.5 3.9 2.4
3200 3200 7439.4 4281.1 2720.9 1324.2 608.7 320.8 157.3 73.036.5 18.7 10.0 6.1 3.7
3200 6400 2795.3 1327.1 651.0 321.7 151.1 73.3 38.0 19.1 11.76.5
6400 6400 2777.5 1354.1 625.4 323.7 160.1 74.9 37.9 20.3 11.2
6400 12800 2853.8 1357.3 656.4 325.0 154.2 75.7 41.0 21.0

12800 12800 2844.2 1362.2 628.7 329.2 163.7 78.4 40.5
12800 25600 2867.5 1365.6 666.7 330.9 160.8 79.5
25600 25600 2858.7 1376.7 639.1 335.9 168.9
25600 51200 2897.0 1381.0 679.0 338.5
51200 51200 2884.5 1390.8 649.2

100

101

102

103

104

 1 4 16 64 256 1024 4096

T
im

e

number of processes

Execution time

Galera nx=ny= 800
HPCG nx=ny= 800

Blue Gene nx=ny= 800
Galera nx=ny=1600
HPCG nx=ny= 1600

Blue Gene nx=ny=1600
Galera nx=ny=3200
HPCG nx=ny= 3200

Blue Gene nx=ny=3200
Galera nx=ny=6400
HPCG nx=ny= 6400

Blue Gene nx=ny=6400

FIGURE 1. Execution time for 2D problem withnx = ny = 800,1600,3200,6400

to the superior performance of the networking infrastructure of the Blue Gene.
To round up the performance analysis of the alternating directions algorithm, the speed-up obtained on Galera is

reported in Table 5, while the speed-up on HPCG — in Table 6, the speed-up on the IBM Blue Gene/P — in Table 7,
and the parallel efficiency — in Table 8.

In each case, when increasing the number of cores of the two clusters, the parallel efficiency decreases on 8 cores
and after that it increases. As expected, the parallel efficiency on the IBM Blue Gene/P improves with the size of the
discrete problems. The efficiency on 1024 cores increases from 39% for the smallest problems to 73% for the largest
problems.

For solving of the same 2D Stokes problem Elmer [14] Open Source Finite Element Software for Multiphysical
Problems (seehttp://www.csc.fi/english/pages/elmer) was used with the following keywords in the
solver input file:

TABLE 5. Speed-up on Galera.

nx ny processes
2 4 8 16 32 64 128 256 512 1024 2048

800 800 1.63 2.12 2.41 5.08 10.38 19.71 35.94 55.46 81.01 87.16 25.33
800 1600 1.66 2.17 2.43 4.97 10.27 20.51 38.80 67.11 106.83 120.14 127.52

1600 1600 1.68 2.20 2.43 5.12 10.24 20.90 41.90 74.07 135.77 183.15 229.49
1600 3200 1.66 2.05 2.19 5.51 11.06 22.08 44.61 87.61 160.21 236.53 361.04
3200 3200 1.59 1.57 1.94 6.15 13.39 26.94 52.74 105.98 209.44351.23 562.98
3200 6400 1.44 1.32 1.71 5.67 14.18 31.44 61.93 122.34 246.74443.73 779.57
6400 6400 1.56 1.85 2.36 6.80 16.75 41.92 86.86 178.57 354.76688.90 1259.92
6400 12800 1.55 2.17 2.55 5.78 11.63 27.40 61.53 147.18 301.45 580.05 1118.72

12800 12800 1.63 2.43 3.09 6.98 12.40 31.32 62.53 166.39 402.91 815.48 1584.34

TABLE 6. Speed-up on HPCG.

nx ny processes
2 4 8 16 32 64 128

800 800 1.81 2.83 3.38 6.40 13.65 20.52 33.82
800 1600 1.85 2.93 3.52 6.74 12.76 23.04 41.47

1600 1600 1.89 3.04 3.77 6.92 14.43 23.05 43.55
1600 3200 1.93 3.05 3.84 6.56 14.37 24.39 45.87
3200 3200 1.94 3.08 3.76 7.74 14.20 26.76 48.58
3200 6400 1.92 3.01 3.75 7.72 16.84 30.09 52.01
6400 6400 1.70 2.70 3.35 7.42 16.62 26.22 53.26
6400 12800 1.84 2.92 3.84 7.60 12.69 27.80 59.07

12800 12800 1.70 2.59 2.92 6.63 13.60 24.02 49.91

Simulation
Coordinate System = "Cartesian 2D"
Simulation Type = Transient
Timestep intervals = 200
Timestep Sizes = 0.01
End

Solver 1
Equation = Navier-Stokes
Procedure = "FlowSolve" "FlowSolver"
Variable = Flow Solution[Velocity:2 Pressure:1]
Flow Model = Stokes
Stabilize = True
Optimize Bandwidth = True
Stabilization Method = Stabilized
Linear System Solver = Iterative
Linear System Iterative Method = BiCGStab
Linear System Max Iterations = 500
Linear System Convergence Tolerance = 1.0e-6
Linear System Preconditioning = ILU2
Linear System ILUT Tolerance = 1.0e-3
End

Fig. 2 shows the measured CPU time for solving of the 2D Stokesproblem using Elmer software on the Blue Gene/P
machine for discrete problems withnx = ny = 100,200,400.

TABLE 7. Speed-up on IBM Blue Gene/P.

nx ny processes
2 4 8 16 32 64 128 256 512 1024 2048 4096

800 800 1.82 2.91 6.22 12.57 25.05 48.99 89.10 168.67 247.90 401.65 465.48 687.32
800 1600 1.74 2.87 6.10 12.60 24.75 50.69 92.20 177.88 276.51486.02 552.26 897.63

1600 1600 1.81 2.98 5.68 11.60 24.76 49.81 99.87 192.28 332.75 592.66 808.05 1180.51
1600 3200 1.73 2.78 5.68 11.50 24.26 49.97 98.57 200.07 349.59 651.68 923.50 1522.27
3200 3200 1.74 2.73 5.62 12.22 23.19 47.30 101.85 203.58 397.74 744.26 1209.29 2009.58

TABLE 8. Parallel efficiency.

nx ny processes
2 4 8 16 32 64 128 256 512 1024 2048 4096

Galera

800 800 0.813 0.529 0.302 0.321 0.324 0.308 0.281 0.217 0.1580.085 0.015
800 1600 0.829 0.543 0.304 0.314 0.321 0.320 0.303 0.262 0.209 0.117 0.076

1600 1600 0.841 0.549 0.304 0.326 0.320 0.328 0.327 0.299 0.265 0.179 0.114
1600 3200 0.830 0.513 0.273 0.345 0.346 0.345 0.348 0.342 0.313 0.231 0.176
3200 3200 0.795 0.392 0.243 0.391 0.419 0.421 0.412 0.414 0.409 0.343 0.275
3200 6400 0.720 0.329 0.214 0.365 0.443 0.490 0.483 0.477 0.481 0.433 0.381
6400 6400 0.781 0.463 0.296 0.467 0.523 0.655 0.679 0.698 0.693 0.673 0.615
6400 12800 0.776 0.543 0.319 0.361 0.363 0.428 0.481 0.575 0.589 0.566 0.546

12800 12800 0.813 0.608 0.386 0.436 0.388 0.489 0.489 0.650 0.787 0.796 0.774

HPCG

800 800 0.904 0.708 0.422 0.400 0.426 0.321 0.264
800 1600 0.926 0.732 0.440 0.421 0.399 0.360 0.324

1600 1600 0.947 0.760 0.471 0.432 0.451 0.360 0.340
1600 3200 0.965 0.764 0.480 0.410 0.449 0.381 0.358
3200 3200 0.969 0.771 0.470 0.484 0.444 0.418 0.380
3200 6400 0.959 0.752 0.469 0.483 0.526 0.470 0.406
6400 6400 0.849 0.675 0.418 0.464 0.519 0.410 0.416
6400 12800 0.920 0.731 0.480 0.475 0.397 0.434 0.461

12800 12800 0.849 0.647 0.365 0.414 0.425 0.375 0.390

IBM Blue Gene/P

800 800 0.912 0.727 0.777 0.786 0.783 0.765 0.696 0.659 0.4840.392 0.227 0.168
800 1600 0.870 0.719 0.763 0.787 0.773 0.792 0.720 0.695 0.540 0.475 0.270 0.219

1600 1600 0.905 0.745 0.710 0.725 0.774 0.778 0.780 0.751 0.650 0.579 0.395 0.288
1600 3200 0.864 0.695 0.710 0.719 0.758 0.781 0.770 0.782 0.683 0.636 0.451 0.372
3200 3200 0.869 0.684 0.702 0.764 0.725 0.739 0.796 0.795 0.777 0.727 0.590 0.491

ACKNOWLEDGMENTS

Computer time grants from the Bulgarian Supercomputing Center (BGSC) and the TASK are kindly acknowledged.
This research was partially supported by grants DCVP 02/1 and I01/5 of the Bulgarian NSF. Work presented here is a
part of the Poland-Bulgaria collaborative grant “Paralleland distributed computing practices”.

REFERENCES

1. A. J. Chorin,Math. Comp.22, 745–762 (1968).
2. R. Temam,Arch. Rat. Mech. Anal.33, 377–385 (1969).
3. J.-L. Guermond, P. Minev, and J. Shen,Comput. Methods Appl. Mech. Engrg.195, 6011–6054 (2006).
4. J.-L. Guermond, and P. Minev,Comptes Rendus Mathematique348, 581–585 (2010).

100

101

102

103

104

105

 1 2 4 8 16 32 64 128 256 512

T
im

e

number of processes

Execution time

Blue Gene alternating directions nx=ny=100
Blue Gene alternating directions nx=ny=200
Blue Gene alternating directions nx=ny=400

Blue Gene Elmer nx=ny=100
Blue Gene Elmer nx=ny=200
Blue Gene Elmer nx=ny=400

FIGURE 2. Execution time for 2D problem withnx = ny = 100,200,400

5. J.-L. Guermond, and P. Minev,Computer Methods in Applied Mechanics and Engineering200, 2083–2093 (2011).
6. J.-L. Guermond, and A. Salgado,Comptes Rendus Mathematique346, 913–918 (2008).
7. J.-L. Guermond, and A. Salgado,Journal of Computational Physics228, 2834–2846 (2009).
8. M. Snir, S. Otto, S. Huss-Lederman, D. Walker, and J. Dongarra,MPI: The Complete Reference, Scientific and engineering

computation series, The MIT Press, Cambridge, Massachusetts, 1997, second printing.
9. D. Walker, and J. Dongarra,Supercomputer63, 56–68 (1996).
10. R. Chandra, R. Menon, L. Dagum, D. Kohr, D. Maydan, and J. McDonald,Parallel programming in OpenMP, Morgan

Kaufmann, 2000.
11. B. Chapman, G. Jost, and R. Van Der Pas,Using OpenMP: portable shared memory parallel programming, vol. 10, MIT

press, 2008.
12. E. Anderson, Z. Bai, C. Bischof, S. Blackford, J. Demmel, J. Dongarra, J. D. Croz, A. Greenbaum, S. Hammarling,

A. McKenney, and D. Sorensen,LAPACK Users’ Guide, SIAM, Philadelphia, 1999, third edn.
13. I. Lirkov, M. Paprzycki, and M. Ganzha, “Performance Analysis of Parallel Alternating Directions Algorithm for Time

Dependent Problems,” in9th international conference on Parallel Processing and Applied Mathematics, PPAM 2011, Part
I, edited by R. Wyrzykowski, J. Dongarra, K. Karczewski, and J. Waśniewski, Springer, 2012, vol. 7203 ofLecture notes in
computer science, pp. 173–182.

14. M. Lyly, J. Ruokolainen, and E. Järvinen,CSC-report on scientific computing2000, 156–159 (1999).

