Comparative analysis of high performance solversfor solving
Stokes equation

Maria Ganzhg Ivan Lirkov' and Marcin Paprzycki

*Systems Research Institute, Polish Academy of Sciend&weélska 6, 01-447 Warsaw, Poland
TInstitute of Information and Communication TechnologRglgarian Academy of Sciences
Acad. G. Bonchey, bl. 25A, 1113 Sofia, Bulgaria

Abstract. We consider the time dependent Stokes equation on a finite time intervalnaadiniform rectangular mesh,
written in terms of velocity and pressure. A parallel algorithm based oreattn splitting approach is implemented. We are
targeting the massively parallel computer as well as clusters of maeyroales. The implementation is tested on the IBM
Blue Gene/P supercomputer and two Linux clusters. We compared thiesrieem the direction splitting algorithm with the
results from Finite Element software package for solving of Stokestiequa

Keywords: Navier-Stokes, time splitting, ADI, incompressible flowsegsure Poisson equation, parallel algorithm
PACS: 02.60.Cb, 02.60.Lj, 02.70.Bf, 07.05.Tp, 47.10.ad, 4Bt1.

The objective of this paper is to analyze the parallel penforce of a novel fractional time stepping technique,
based on a direction splitting strategy, developed to sthieencompressible Navier-Stokes equations.

Projection schemes were introduced in [1, 2] and they haea lbsed in Computational Fluid Dynamics since.
During these years, such techniques went through sometmrglbut the main paradigm, consisting of decomposing
vector fields into a divergence-free part and a gradientbkas preserved; see [3] for a review. In terms of computa-
tional efficiency, projection algorithms are far supermttie methods that solve the coupled velocity-pressuresyst
making them the most popular techniques for solving unstdiier-Stokes equations.

The alternating directions algorithm proposed in [4, Sjuegk the computational complexity of the enforcement of
the incompressibility constraint. The key idea consisehaindoning the projection paradigm in which vector fielés ar
decomposed into a divergence-free part plus a gradientpeparture from the projection paradigm has been proved
to be very efficient for solving variable density flows [6, lf].the new method, the pressure equation is derived from
a perturbed form of the continuity equation, in which theompressibility constraint is penalized in a negative norm
induced by the direction splitting. The standard Poissablem for the pressure correction is replaced by the series
of one-dimensional second-order boundary value probl@ims.technique is proved to be stable and convergent (see
[4, 5]). The aim of this paper is to experimentally investegthe parallel properties of the algorithm on three distinc
parallel systems, for two dimensional problems.

STOKES EQUATION

We consider the time-dependent Navier-Stokes equatiomsfimite time interval0, T], and in a rectangular domain
Q. Since the nonlinear term in the Navier-Stokes equatiots cot interfere with the incompressibility constraint,
we henceforth mainly focus our attention on the time-depah&tokes equations written in terms of velocity with
componentsgu,v) and pressure:

U — V (Uxx+ Uyy) + px = f

Wt — V (Vix+Vyy) + Py =90 in Qx(0,T)

Ux+Vvy =0 , Q)
Ulgo =Vlpo =0, nplog =0 in (0,T)

Ult—o =Uo, Vjt—o=Vo, Plti=0= Po in Q

where a smooth source term has componéhtg), v is the kinematic viscosity, anflip, o) is a solenoidal initial
velocity field with a zero normal trace. The time inter{@IT] was discretized on a uniform mesh andas the time
step.

PARALLEL ALTERNATING DIRECTIONSALGORITHM

Guermond and Minev introduced (in [4]) a fractional timepgtimg technique for solving the incompressible Navier-
Stokes equations, based on a direction splitting strafBggy used a singular perturbation of Stokes equation with
a perturbation parameter The standard Poisson problem was replaced by series afiorernsional second-order
boundary value problems.

For mulation of the Scheme

The scheme used in the algorithm is composed of the followarts: pressure prediction, velocity update, penalty
step, and pressure correction. We now describe an algotithhuses the direction splitting operator

] 0? 9?
wi= (1) (1- 5
« Pressure predictor

Denotingpp the pressure field at= 0, the algorithm is initialized by setting’% = p‘% = po. Then for alin >0
a pressure predictor is computed:

p*,n+% — an—% _ pn—%. (2)
« Velocity update

\ljg) and for alln > 0 the velocity update is computed by

solving the following series of one-dimensional problems

The velocity field is initialized by setting® =

n+l n
¢ Y VL Op*h2 = 2, & oa =0, 3
nn+147§n+1 v 92 nn+147un
T - E (Ix2) =0, ’7n+1‘0Q =0, (4)
un+1 _ r’n+1 v (92 un+1 —un
T - E (ayz) = 07 un+1|3Q = oﬂ (5)

i

Nl

wheref™3 — (e)r .
O (n+ 1)r
- Penalty step

The intermediate parametegris approximated by solvind\p = —%D -u™1, Owing to the definition of the
direction splitting operatah, this is done by solving the following series of one-dimensil problems:

- thx= —10-u™L yy|yo =0, (6)
-8y U Bloa =0

- Pressure update
The last sub-step of the algorithm consists of updating teequre:

un+1 un
P = ' E 4 g v T @

The algorithm is in a standard incremental form when therpatary = 0; while the algorithm is in a rotational
incremental form whery € (O, %]. The convergence tests reported in [4, 5] confirm that theticotal form of the
incremental version of the method is second-order in timg¢hfeL-norm of the velocity field.

TABLE 1. Compilers and libraries on the three computer systems

Galera HPCG IBM Blue Gene/P
Compiler Intel C Compiler 12.1.0 Intel C Compiler 12.1.0 IBM XL C Comp#e0
MPI OpenMPI 1.4.3 Intel MPI1 4.0.3.008 MPICH2

LAPACK Intel Math Kernel Library 10.0 Intel Math Kernel Library 1. Engineering and Scientific
Subroutine Library 5.1

Parallel Algorithm

We use a rectangular uniform mesh combined with a centrfairdiice scheme for the second derivatives for solving
equations (4-5), and (6). Thus the algorithm requires drdsblution of tridiagonal linear systems. The parall¢iora
is based on a decomposition of the domain into rectangulademains. Let us associate with each such sub-domain
a set of coordinatefiy,iy), and identify it with a given processor. The linear systeges)erated by one-dimensional
problems that need to be solved in each direction, are dividi® systems for sets of unknowns corresponding to
the internal nodes for each block that can be solved indegelydby a direct method. The corresponding Schur
complement for the interface unknowns between the blockssithve an equal coordinaiteor iy is also tridiagonal
and can be inverted directly. The overall algorithm recuiivaly exchange of the interface data, which allows for a
very efficient parallelization with an efficiency comparmabd that of explicit schemes.

EXPERIMENTAL RESULTS

The problem (1) is solved i = (0,1)?, fort € [0, 2] with Dirichlet boundary conditions. The discretizatiortime is
done with time step 1@, the parametex = % the kinematic viscosity = 10~3. The second order central differences

were used for the discretization in space on a rectangulahmith mesh size, = 15 andhy = Vlfl Thus, (4)

leads to linear systems of simg and (5) leads to linear systems of size The total number of unknowns in the
discrete problem is 60 ny.

To solve the problem, a portable parallel code was designddmaplemented in C, while the parallelization has
been facilitated using the MPI and OpenMP standards [8, 9110 We use the LAPACK subroutines DPTTRF and
DPTTS2 (see [12]) for solving tridiagonal systems in equai(4), (5), and (6) for the unknowns corresponding to
the internal nodes of each sub-domain. The same subroatiaesed to solve the tridiagonal systems with the Schur
complement.

The parallel code has been tested on three computer systatesa, located in the Centrum Informatyczne TASK,
on a cluster computer system HPCG located in the Institubefofmation and Communication Technologies, and on
the IBM Blue Gene/P machine at the Bulgarian Supercompu@iegter. Table 1 summarizes the information about
used compilers and libraries on the three computer systenasir experiments, times have been collected using the
MPI provided timer and we report the best results from midtipins. In the following tables, we report the elapsed
time T, in seconds usingn MPI processes ankl OpenMP processes, whepe= m x k, and the parallel speed-up

=T /Tp.

SpTabIe 2pshows the results collected on the Galera. It is add@huster with 336 nodes, and two Intel Xeon quad core
processors per node. Each processor runs at 2.33 GHz. Bocs@gthin each node share 8, 16, or 32 GB of memory,
while nodes are interconnected with a high-speed InfiniBaeitvork (see alsttt p: // ww. t ask. gda. pl /
kdnt spr zet / Gal er a). Here, we used an Intel C compiler, and compiled the code thé option “-O3 -openmp”.
For solving the tridiagonal systems of equations using LBRAubroutines we linked our code to multi-threaded layer
Intel Math Kernel Library (MKL, seéntt p: //sof tware.intel.conlen-us/articles/intel-nkl/).
The results obtained with an MPI implementation of the akliting directions algorithm were reported in [13]. We
observed slower performance using 8 cores on one node ofs3aeg MPI code. Now we used OpenMP and multi-
threaded layer Intel MKL for execution of the code on one ndlfe were unpleasantly surprised because the new
code has slower performance on 2, 4, and 8 cores, e.gy fern, = 3200 the execution time of the MPI code on 8
cores is 232 seconds while the execution time of the OpenME oo 8 cores is 550 seconds.

For solving the problem with, = ny = 12800 18 GB memory is needed. The physical memory on a sigle of
Galera is not large enough for solving of twice larger diseproblems and we used two and more nodes of the cluster
for such problems.

TABLE 2. Execution time for solving of 2D problem on Galera.

Ny n rocesses
y

1 2 4 8 16 32 64 128 256 512 1024 2048
800 800 47.4 201 22.4 19.6 9.2

4.6 2.4 13 0.8 0.6 05 15
800 1600 96.7 58.3 44.5 39.8 19.3

9.4 4.7 25 1.4 0.9 08 0.6
1600 1600 201.3 119.7 91.7 82.9 38.6 19.7 9.6 4.8 2.6 15 1.19 O.
1600 3200 437.2 2634 2129 200.0 79.3 39.5 19.8 9.8 5.0 278 11.2
3200 3200 1070.0 6726 6828 550.1 174.0

79.8 39.7 203 1011 530 19
3200 6400 2525.6 1754.7 1920.2 1477.6 4327 1783 80.5 40.8.7 2 10.2 57 3.2
6400 6400 7418.9 4750.9 4007.3 3137.8 993.8 4429 177.0 8545 209 108 59
6400 12800 12650.0 8146.2 5823.4 4956.7 2188.2

1087.3 4612955 859 419 218 113
12800 12800 34804.7 21416.3 14318.1 11272.0 4985.2 28061914 556.6 209.2 864 427 220
12800 25600

10317.4 5035.7 2387.2 1547.4 543.7 211.0 923 432
25600 25600 11465.1 5126.7 3195.8 1582.4 567.8 214.1 88.6
25600 51200 10507.2 5292.6 3406.1 1596.8 559.3 214.7
51200 51200

11678.2 5220.0 3381.2 1620.5 582.8

TABLE 3. Execution time for solving of 2D problem on HPCG.

Nx Ny processes
1 2 4 8 16 32 64 128
800 800 21.85 12.09 7.72 6.47 3.41 1.60 1.10 0.65

800 1600 46.79 25.27 15.98 13.29 6.94 3.67 2.03 1.13
1600 1600 95.89 50.63 31.53 25.43 13.87 6.65 4.16 2.20
1600 3200 194.19 100.66 63.58 50.56 29.60 13.52 7.96 4.23
3200 3200 400.59 206.77 129.85 106.50 51.77 28.20 14.97 8.25
3200 6400 901.91 470.02 299.95 240.32 116.79 53.55 29.97 3417.
6400 6400 1882.27 1108.73 696.65 562.38 253.67

113.27 71.735.34
6400 12800 4277.73 2323.90 1463.49 1113.83 562.59

337.08.835 72.42
12800 12800 8068.33 4748.90 3119.29 2761.58 1217.21 5933%.91 161.65

Table 3 shows the results collected on the HPCG cluster. HiBt€H Platform Express 7000 enclosures with 36
blades BL 280c, dual Intel Xeon X5560 processors (total ®ré). Each processor runs at 2.8 GHz. Processors within
each blade share 24 GB RAM, while nodes are interconnectédnen-blocking DDR Interconnection via \oltaire
Grid director 2004 with latency 2.fs and bandwidth 20 Gbps (see also http://www.grid.baspog/f. Again, we
used an Intel C compiler, and compiled the code with the ogt®3 -openmp”. For solving the tridiagonal systems
of equations using LAPACK subroutines we linked our code tdththreaded layer Intel MKL.

Again, the somehow slower performance using 8 cores islgleible. There are some factors which could play
role for the slower performance using all processors of glsinode. Generally, they are a consequence of limitations
of memory subsystems and their hierarchical organizationadern computers. One such factor might be the limited
bandwidth of the main memory bus.

Table 4 presents execution time collected on the IBM BluegB@machine at the Bulgarian Supercomputing Center.
It consists of 2048 compute nodes with quad core PowerPC Axf@gsors (running at 850 MHz). Each node has 2
GB of RAM. For the point-to-point communications a 3.4 Gb 3@gh network is used. Reduction operations are
performed on a 6.8 Gb tree network (for more details teetep: / / www. scc. acad. bg/). We have used the IBM
XL C compiler and compiled the code with the following optsoft+O5 -gstrict -qarch=450d -qtune=450 -gsmp=omp”.
For solving the tridiagonal systems using LAPACK subroegimve linked our code to multi threaded Engineering and
Scientific Subroutine Library (ESSL, sée¢t p: // ww« 03. i bm coni syst ens/ sof t war e/ essl /i ndex.
ht m).

Again, the new code has slower performance than the MPI co@eamd 4 cores. The memory of one node of IBM
supercomputer is substantially smaller than on cluste@R%s. 24 or 32 GB) and the largest discrete problem in our
experiments which can be solved on one node Imave ny = 3200.

The execution time on the three parallel systems is showiginlFBecause of the slower processors, the execution
time obtained on the Blue Gene/P is substantially largen that on the clusters. At the same time, the parallel

efficiency obtained on a large number of nodes on the supgratamis better. The main reason of this can be related

TABLE 4. Execution time for solving of 2D problem on IBM Blue Gene/P.

Ny Ny processes
1 2 4 8 16 32 64 128 256 512 1024 2048 4096

800 800 4324 2370 1486 695 344 173 8.8 4.8 2.6 1.7 11 0®6
800 1600 879.2 505.1 3058 1440 698 355 17.3 9.5 4.9 3.2 186 1.0
1600 1600 17729 979.6 595.1 3120 1528 716 356 17.7 923 5.30 22 15
1600 3200 3600.3 2082.4 12954 6339 313.1 1484 720 36.5.0 1810.3 55 39 24
3200 3200 7439.4 4281.1 27209 1324.2 608.7 320.8 157.3 733B.5 187 10.0 6.1 3.7

3200 6400 2795.3 13271 651.0 321.7 1511 733 380 19.1 1165
6400 6400 27775 13541 6254 323.7 1601 749 379 203 11.2
6400 12800 2853.8 1357.3 656.4 3250 1542 757 410 210
12800 12800 2844.2 1362.2 628.7 329.2 163.7 784 405
12800 25600 2867.5 1365.6 666.7 330.9 160.8 79.5
25600 25600 2858.7 1376.7 639.1 335.9 168.9
25600 51200 2897.0 1381.0 679.0 338.5
51200 51200 2884.5 1390.8 649.2

Execution time
10* T T T T T T T

- T -
Galera n,=n,= 800 —x—
HPCG n,=ny=800 ---x---

Blue Gene n,=n;= 800 -

A Galera n,=n,=1600 —o—

. HPCG n,=n,= 1600 ---o---

3la ol s Blue Gene n,=n,=1600 ---&---
10) T Galera n,=n =3200 —5— -

o HPCG n,=n,= 3200 --a---

% Blue Gene nx=r¥y=3200 e

= T Galera n,=n,=6400 —&—

. HPCG n,=n = 6400 ---a---
“ Blue Gene n,=n, =6400 &

10

Time

e

10t

10°

number of processes

FIGURE 1. Execution time for 2D problem withy = ny, = 800,160Q 3200 6400

to the superior performance of the networking infrastreetf the Blue Gene.

To round up the performance analysis of the alternatingctioes algorithm, the speed-up obtained on Galera is
reported in Table 5, while the speed-up on HPCG — in Tableéspeed-up on the IBM Blue Gene/P — in Table 7,
and the parallel efficiency — in Table 8.

In each case, when increasing the number of cores of the tvateck, the parallel efficiency decreases on 8 cores
and after that it increases. As expected, the parallel effggi on the IBM Blue Gene/P improves with the size of the
discrete problems. The efficiency on 1024 cores increases 39% for the smallest problems to 73% for the largest
problems.

For solving of the same 2D Stokes problem Elmer [14] Open @otinite Element Software for Multiphysical

Problems (sebatt p: //ww. csc. fi/english/ pages/ el mer) was used with the following keywords in the
solver input file:

TABLE 5. Speed-up on Galera.

Ny Ny processes
2 4 8 16 32 64 128 256 512 1024 2048

800 800 163 212 241 508 10.38 19.71 3594 5546 81.01 687.125.33

800 1600 1.66 2.17 243 497 10.27 2051 3880 67.11 106.830.142 127.52
1600 1600 168 220 243 512 1024 2090 41.90 74.07 135.793.13 229.49
1600 3200 1.66 2.05 219 551 11.06 22.08 44.61 87.61 160.236.52 361.04
3200 3200 159 157 194 6.15 13.39 2694 5274 10598 209.331.23 562.98
3200 6400 1.44 132 171 567 1418 3144 6193 12234 246443.73 779.57
6400 6400 156 185 236 680 16.75 4192 86.86 178.57 354G88.90 1259.92
6400 12800 1.55 217 255 578 11.63 2740 6153 147.18 B301380.05 1118.72
12800 12800 1.63 243 3.09 6.98 1240 31.32 6253 166.39 9402815.48 1584.34

TABLE 6. Speed-up on HPCG.

Ny Ny processes
2 4 8 16 32 64 128

800 800 181 283 338 6.40 13.65 20.52 33.82
800 1600 1.85 293 352 6.74 1276 23.04 4147
1600 1600 1.89 3.04 3.77 6.92 1443 23.05 4355
1600 3200 193 3.05 3.84 6.56 1437 2439 4587
3200 3200 194 3.08 376 7.74 1420 26.76 48.58
3200 6400 192 3.01 375 7.72 16.84 30.09 52.01
6400 6400 1.70 2.70 335 7.42 16.62 26.22 53.26
6400 12800 1.84 292 384 7.60 1269 27.80 59.07
12800 12800 1.70 2.59 292 6.63 13.60 24.02 49.91

Simulation

Coordinate System = "Cartesian 2D"
Simulation Type = Transient
Timestep intervals = 200

Timestep Sizes = 0.01

End

Solver 1

Equation = Navier-Stokes

Procedure = "FlowSolve" "FlowSolver"
Variable = Flow Solution[Velocity:2 Pressure:1]
Flow Model = Stokes

Stabilize = True

Optimize Bandwidth = True

Stabilization Method = Stabilized

Linear System Solver = Iterative

Linear System lIterative Method = BiCGStab
Linear System Max Iterations = 500

Linear System Convergence Tolerance = 1.0e-6
Linear System Preconditioning = ILU2

Linear System ILUT Tolerance = 1.0e-3
End

Fig. 2 shows the measured CPU time for solving of the 2D Stpkatslem using Elmer software on the Blue Gene/P
machine for discrete problems with = n, = 100, 200,400.

TABLE 7. Speed-up on IBM Blue Gene/P.

Ny Ny processes
2 4 8 16 32 64 128 256 512 1024 2048 4096

800 800 182 291 6.22 1257 2505 4899 89.10 168.67 247.90.68 46548 687.32
800 1600 1.74 287 6.10 1260 24.75 50.69 9220 177.88 276486.02 552.26 897.63
1600 1600 1.81 298 5.68 11.60 24.76 49.81 99.87 192.28 3325B2.66 808.05 1180.51
1600 3200 1.73 2.78 5.68 1150 24.26 49.97 98.57 200.07 849851.68 923.50 1522.27
3200 3200 1.74 273 562 1222 23.19 47.30 101.85 203.58 7897744.26 1209.29 2009.58

TABLE 8. Parallel efficiency.

Ny Ny processes
2 4 8 16 32 64 128 256 512 1024 2048 4096

Galera

800 800 0.813 0.529 0.302 0.321 0.324 0.308 0.281 0.217 0.16885 0.015

800 1600 0.829 0.543 0.304 0.314 0.321 0.320 0.303 0.262 90.2D117 0.076
1600 1600 0.841 0.549 0.304 0.326 0.320 0.328 0.327 0.299650.20.179 0.114
1600 3200 0.830 0.513 0.273 0.345 0.346 0.345 0.348 0.342130.30.231 0.176
3200 3200 0.795 0.392 0.243 0.391 0.419 0.421 0.412 0.414090.40.343 0.275
3200 6400 0.720 0.329 0.214 0.365 0.443 0.490 0.483 0.477810.40.433 0.381
6400 6400 0.781 0.463 0.296 0.467 0523 0.655 0.679 0.698930.60.673 0.615
6400 12800 0.776 0.543 0.319 0.361 0.363 0.428 0.481 0.575890. 0.566 0.546
12800 12800 0.813 0.608 0.386 0.436 0.388 0.489 0.489 0.650870 0.796 0.774

HPCG

800 800 0.904 0.708 0.422 0.400 0.426 0.321 0.264
800 1600 0.926 0.732 0.440 0.421 0.399 0.360 0.324
1600 1600 0.947 0.760 0.471 0432 0451 0.360 0.340
1600 3200 0.965 0.764 0.480 0.410 0.449 0.381 0.358
3200 3200 0.969 0.771 0470 0.484 0.444 0.418 0.380
3200 6400 0.959 0.752 0.469 0.483 0.526 0.470 0.406
6400 6400 0.849 0.675 0418 0464 0519 0.410 0.416
6400 12800 0.920 0.731 0.480 0.475 0.397 0.434 0.461
12800 12800 0.849 0.647 0.365 0.414 0.425 0.375 0.390

IBM Blue Gene/P

800 800 0912 0.727 0.777 0.786 0.783 0.765 0.696 0.659 0.48892 0.227 0.168
800 1600 0.870 0.719 0.763 0.787 0.773 0.792 0.720 0.695 00.54475 0.270 0.219
1600 1600 0.905 0.745 0.710 0.725 0.774 0.778 0.780 0.751500.60.579 0.395 0.288
1600 3200 0.864 0.695 0.710 0.719 0.758 0.781 0.770 0.782830.60.636 0.451 0.372
3200 3200 0.869 0.684 0.702 0.764 0.725 0.739 0.796 0.795770.70.727 0.590 0.491

ACKNOWLEDGMENTS

Computer time grants from the Bulgarian Supercomputingt&@gBGSC) and the TASK are kindly acknowledged.
This research was partially supported by grants DCVP 0241@1h/5 of the Bulgarian NSF. Work presented here is a
part of the Poland-Bulgaria collaborative grant “Paradied] distributed computing practices”.

REFERENCES
1. A.J.ChorinMath. Comp22, 745-762 (1968).
2. R. TemamArch. Rat. Mech. AnaB3, 377-385 (1969).
3. J.-L. Guermond, P. Minev, and J. Sh@uomput. Methods Appl. Mech. Engf®5, 6011-6054 (2006).
4. J.-L.

Guermond, and P. Mine@omptes Rendus Mathematide#s, 581-585 (2010).

©oNou

P

11.

12.

13.

14.

Execution time

10° [T T T T T T T T T
=N o~
X =N o
T gl
10* | R [_
e \
T
10° | i
Blue Gene alternating directions n,=n,=100 —=—
Blue Gene alternating directions n,=n;,=200 —=—
“E’ Blue Gene alternating directions n,=n;,=400 —e—
F 10? I Blue Gene Elmer n,=n;=100 ---x--- i

Blue Gene Elmer n,=n;=200 ---=---
Blue Gene Elmer nx:ny:400 J S

10° |

1 1 1 1 1 1 1 1 1 1
1 2 4 8 16 32 64 128 256 512
number of processes

FIGURE 2. Execution time for 2D problem withy = ny = 100,200,400

J.-L. Guermond, and P. MineZomputer Methods in Applied Mechanics and Enginee?id@® 2083—-2093 (2011).

J.-L. Guermond, and A. Salgadopmptes Rendus Mathematicg#s, 913—918 (2008).

J.-L. Guermond, and A. Salgadimurnal of Computational Physi@28, 2834-2846 (2009).

M. Snir, S. Otto, S. Huss-Lederman, D. Walker, and J. Dongktfd; The Complete ReferencBcientific and engineering
computation series, The MIT Press, Cambridge, Massachusetts,sSE2®hd printing.

D. Walker, and J. Dongarr§upercompute83, 56—68 (1996).

R. Chandra, R. Menon, L. Dagum, D. Kohr, D. Maydan, and édDbhald,Parallel programming in OpenMPMorgan
Kaufmann, 2000.

B. Chapman, G. Jost, and R. Van Der Résing OpenMP: portable shared memory parallel programmiug. 10, MIT
press, 2008.

E. Anderson, Z. Bai, C. Bischof, S. Blackford, J. Demmel, Jad2ora, J. D. Croz, A. Greenbaum, S. Hammarling,
A. McKenney, and D. SorensebhAPACK Users’ GuideSIAM, Philadelphia, 1999, third edn.

I. Lirkov, M. Paprzycki, and M. Ganzha, “Performance An@ysf Parallel Alternating Directions Algorithm for Time
Dependent Problems,” idth international conference on Parallel Processing and Applied Mathies)y@PAM 2011, Part
I, edited by R. Wyrzykowski, J. Dongarra, K. Karczewski, and Jsihi&wski, Springer, 2012, vol. 7203 bécture notes in
computer sciengep. 173-182.

M. Lyly, J. Ruokolainen, and E. JarvingdSC-report on scientific computir2§00, 156—-159 (1999).

