
Users documentation

Poznań, Poland, 2006-08-08

Authors:
Maciej Gawinecki
Paweł Kaczmarek

Project site:
http://sourceforge.net/projects/e-travel

Contact:
maciej.gawinecki@ibspan.waw.pl

 Agent-based Travel Support System
 Copyright (C) 2006 Maciej Gawinecki & Pawel Kaczmarek

 This program is free software; you can redistribute it and/or
 modify it under the terms of the GNU General Public License
 as published by the Free Software Foundation; either version 2
 of the License, or (at your option) any later version.

 This program is distributed in the hope that it will be useful,
 but WITHOUT ANY WARRANTY; without even the implied warranty of
 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
 GNU General Public License for more details.

 You should have received a copy of the GNU General Public License
 along with this program; if not, write to the Free Software
 Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
 02110-1301, USA.

http://sourceforge.net/projects/e-travel
mailto:maciej.gawinecki@ibspan.waw.pl

Setting up the system

The system was tested one a single machine with MS Windows XP and therefore it
provides only batch files for running the system. Users of Linux and Unix systems are
encouraged to prepare own shell scripts, similar to those in bin/ directory.

Preparing environment

Runtime platform

Runtime
environment:

 JRE 1.5
http://java.sun.com

Agent platform: JADE 3.4
http://jade.tilab.com

Semantic
framework:

 JENA 2.4
http://jena.sourceforge.net

Access to OWL via
JavaBeans

 Jastor 1.0.3
http://jastor.sourceforge.net

RDF/XML to HTML
(WML)
Transformer:

 Raccoon server (Rx4RDF 0.6.0)
http://www.liminalzone.org/Raccoon

Prerequisite:
• Python 2.3, http://www.python.org/
• 4Suite XML library 1.0b3 , http://4suite.org/
• RDFLib, http://www.rdflib.net/

Relational
Database for
Persistent Model
Storage:

PostgreSQL 8.0
http://www.postgresql.org/

JDBC Connector: JDBC 3 for Version 8.0
http://jdbc.postgresql.org/

Configuring access to database

1. Create a database account, which will be used for the system to authorize access to the
database.

2. Create database (e.g. named tss), where the system will store persistent data models.
Account created in step 1 must be granted all privilages to this database.

3. Configure access to the database in file: etc/db-conn.properties.
4. Configure path with JDBC driver in bin/setenv.bat file.

Configuring Raccoon server

1. Install Raccoon together with prerequisites.
2. Configure Python root path in bin/setenv.bat file.
3. Fix $PYTHONDIR/Lib/site-packages/rx/RxPathDom.py file by putting the patch

somewhere about line 1838, by changing the following instructions:

def invokeRxSLT(RDFPath, stylesheetPath):

http://jdbc.postgresql.org/
http://www.postgresql.org/
http://www.rdflib.net/
http://4suite.org/
http://www.python.org/
http://www.liminalzone.org/Raccoon
http://jastor.sourceforge.net/
http://jena.sourceforge.com/
http://jade.tilab.com/
http://jade.tilab.com/

 #_4suiteModel, db = RxPath.deserializeRDF(RDFPath)
 #model = RxPath.FtModel(_4suiteModel)

 uri = RxPath.Uri.OsPathToUri(modelPath)
 model = RxPath.MemModel(RxPath.parseRDFFromURI(uri))
 rxPathDom = RxPath.createDOM(model)
 stylesheetContents = file(stylesheetPath).read()
 return RxPath.applyXslt(rxPathDom, stylesheetContents)

into these (note the line with the patch comment):

def invokeRxSLT(RDFPath, stylesheetPath):
 #_4suiteModel, db = RxPath.deserializeRDF(RDFPath)
 #model = RxPath.FtModel(_4suiteModel)

 modelPath = RDFPath # PATCH

 uri = RxPath.Uri.OsPathToUri(modelPath)
 model = RxPath.MemModel(RxPath.parseRDFFromURI(uri))
 rxPathDom = RxPath.createDOM(model)
 stylesheetContents = file(stylesheetPath).read()
 return RxPath.applyXslt(rxPathDom, stylesheetContents)

Configuring CLASSPATH

1. Adjust paths to root directory of Jena, JADE and Jastor directories in bin/setenv.bat
file.

Launching the system

1. From bin/ directory call run-tss.bat script.

 tss> cd bin
 tss\bin> run-tss

Two console windows should be opened: one with Raccoon server and the one
system starting. Please be patient, since for the first time systems must load all
necessary data into database. Especially loading database with restaurants is time
consuming (about 3-4 hours).

When the systems finished initializing without any problem, you will be informed
by following information on the system console:

 2006-08-27 06:25:21 ibspan.tss.agents.pra.http.MainServer <init>
 INFO: HTTP Server for html-media listening on port 3000 ...
 2006-08-27 06:25:21 ibspan.tss.agents.pra.http.MainServer <init>
 INFO: HTTP Server for wml-media listening on port 3001 ...

2. When the systemsFrom bin/ directory launch browse-tss.url file, which will open start
page of the system in your favourite web browser:

3. Surf on!

Acknowledgements

The authors would like to thank you the following person for their contribution Wiktor
Moderau (for dig-art), Mateusz Dominiak (for support for individuals in Jastor), Adam
Souzis and Michał Olczak (for support in configuration of Raccoon in Python), Mateusz
Kruszyk (for stereotypes design), Michał Szymczak (for design of restaurant ontology and
referenced domains), Minor Gordon (for vital design ideas), dr Maria Ganzha for
mathematical considerations and diagrams validation and many thans to Marcin Paprzycki
for his enforcing power to do it. Also many thanks for people from very active jena-dev
mailgroup and also for authors of Raccoon, JADE and Jastor for their support.

