
Developers documentation

Poznań, Poland, 2006-08-08

Authors:
Maciej Gawinecki
Paweł Kaczmarek

Project site:
http://sourceforge.net/projects/e-travel

Contact:
maciej.gawinecki@ibspan.waw.pl

 Agent-based Travel Support System
 Copyright (C) 2006 Maciej Gawinecki & Pawel Kaczmarek

 This program is free software; you can redistribute it and/or
 modify it under the terms of the GNU General Public License
 as published by the Free Software Foundation; either version 2
 of the License, or (at your option) any later version.

 This program is distributed in the hope that it will be useful,
 but WITHOUT ANY WARRANTY; without even the implied warranty of
 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
 GNU General Public License for more details.

 You should have received a copy of the GNU General Public License
 along with this program; if not, write to the Free Software
 Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
 02110-1301, USA.

http://sourceforge.net/projects/e-travel
mailto:maciej.gawinecki@ibspan.waw.pl

Developer platform (suggested)

GUI Tool Kit (for
System Monitor
tool):

SWT: The Standard Widget Toolkit 3.2
http://www.eclipse.org/swt/

Diagrams design: yEd Graph Editor 2.3.1_02
http://www.yworks.com/en/products_yed_about.htm

JUDE Community 3.0.1
http://jude.change-vision.com/jude-
web/product/community.html

Ontology design: Protege 3.2 beta
http://protege.stanford.edu/

with OntologyBeanGenerator plugin
http://protege.cim3.net/cgi-
bin/wiki.pl?OntologyBeanGenerator

Programming IDE: Eclipse 3.2
http://www.eclipse.org/

with Visual Editor
http://www.eclipse.org/vep/WebContent/main.php

XML editor: Altova XML Spy 2006 Home Edition
http://www.altova.com/products/xmlspy/xml_editor.html

Text editor: EditPlus v2.12
http://www.editplus.com/

Additional Tools

System Monitoring

Helps to track what is going on with:

http://www.editplus.com/
http://www.altova.com/products/xmlspy/xml_editor.html
http://www.eclipse.org/vep/WebContent/main.php
http://www.eclipse.org/
http://protege.cim3.net/cgi-bin/wiki.pl?OntologyBeanGenerator
http://protege.cim3.net/cgi-bin/wiki.pl?OntologyBeanGenerator
http://protege.stanford.edu/
http://jude.change-vision.com/jude-web/product/community.html
http://jude.change-vision.com/jude-web/product/community.html
http://www.yworks.com/en/products_yed_about.htm
http://www.eclipse.org/swt/

Can be launched be calling bin\monitor-tss.bat script.

Use Cases

Issues

Session Tracking

Subscribing-for and informing-about new events

Exception handling and logging

We have variety of entities interested in results of requested operations:
– a user is willing to know whether system realized her request or not
– agent A need to know whether requested agent B realized the reqest or failed
– agent and its behaviours should now about errors thrown by used components
– a developer is willing to know why and when and in what context the exception was thrown

Therefore we use the following strategy at handling with exceptions and logging them
1. Exceptions are catched at the components level and, usually, wrapped into exception of

higher abstraction.
2. No logging is made inside of components, with an exception of static classes inilized

staticly.
3. Exceptions thrown by components has names as specific as possibile, describing error

in their well-known functionality or error referenced to input data. They should not
describe details of internal implementation.

4. Exceptions are finally catched at the level of behaviours and agents main code and they
are not further re-thrown. Behaviours and agents have to handle with them in one or
more of the following way:
(a) log this exception (due to a developer)
(b) if this exception occured during realization of other agent request, respond with

FAILURE ACL message, containing as a Result InternalSystemError with the
reason message.

(c) If above handling fails, log this handling failure
(d) if it is ProxyAgent, which met the exception or received FAILURE message, then

inform the user about the problem.

Dependencies

Data-roles assignment

Functional and datastore dependencies

Black lines tells the Agent A at beginning of arrows requires functionality of the

Agent B standaing at the end. When the line is continuoes, existing of Agent B
registered in DF is obligatory for registration and start of work of Agent A.
Dotted lines stands for optional existance, which allows Agent A to enhance it
functionality. This allowed to dismiss problem for circular depenedency
between agents.

Orange lines tells about read/write access of Agent from/to data models.

Semantic processing

Scheme ontologies (T-Box)

These ontologies are stored in memory-base models.

Domain ontology
file:ontology/restaurant.owl
file:ontology/location.owl
file:ontology/money.owl

Based on Chefmoz dinning guide [http://chefmoz.com] ontology models domain of a restaurant
and referenced concepts (location and money)

User modelling ontology
file:ontology/user-modelling.owl

Define classes for profiles, stereotypes, events and user behaviours.

file:///ontology/user-modelling.owl
http://chefmoz.com/
file:///ontology/money.owl
file:///ontology/location.owl
file:///ontology/restaurant.owl

Data model ontology
file:ontologies/data-model.owl

Define structures (see LayoutStructure class) and links (see Link class) between them for
models constructured by SessionHandlingAgent and PersonalAgent. Structures is used later as
source for transformation by the ViewTransformingAgenta and links are used to controll data
flow of user scenario.

Messaging ontology
file:ontology/messageging.owl

FIPA SL0 compatible ontology used by system agents to communicate. It is used as a source for
JADE ontology classes, generated with use of OntologyBeanGenerator.

Database ontologies (A-Box)

These ontologies introduce individuals and, due to their vast capacity, most of are stored in
database. For the first run of the system they are loaded from initial files into database.

Polish Restaurants database
file:db/restaurants.owl

Describes 8700 Polish restaurants, translated into OWL from RDF file provided by Chefmoz
dinning guide [http://chefmoz.com].

Stereotypes
file:db/stereotypes.owl

List of predefined stereotypes used for initialization of user profile.

Statistics
file:db/statistics.owl

Empty file for statistics

Users
file:db/users.owl

Empty file for accounts of registered users.

Profiles
file:db/profiles.owl

Empty file for user profiles.

History
file:db/history.owl

Empty file for logged events (actions performed by the logged user).

Templates
file:db/templates.owl

Templates describing layout of displayed screens.

Converting data between different ontological representation

Jastor -> Thing -> Resource -> OntModel -> Jena

file:///db/templates.owl
file:///db/history.owl
file:///db/profiles
file:///db/users.owl
file:///db/statistics.owl
file:///db/stereotypes.owl
http://chefmoz.com/
file:///db/restaurants.owl
file:///ontology/messageging.owl
file:///ontologies/data-model.owl

OWLData (messaging ontology) -> hasDataModel -> OntModel RDF/XM serialization

ibspan.tss.core.semantic.Memory

public void add(OntModel m);
public void add(Thing t);
public void add(Resource r);
public void add(OWLData o);
public OntModel getModel();
public OWLData buildOWLData();

Learning profiles

Implementing single step for user scenario

Preparing view and structure

1. Write template of a web page by defining instance of LayoutStructure class in
db/templatates.owl file. The example below shows screen of constructing
Register1Structure in Protege ontology editor.

2. Refresh JavaBeans for new template, by calling standard ”onto” ant target from
command line:

ant onto

3. Register template inside of constructor for SHAResponder class.

r = LayoutStructure.Register1Structure;
templates.register(ViewParams.GET_REGISTER_1_SCREEN_ACTION,

 DataModelFactory.getLayoutStructure(r, mTemplatesDB));

ViewParams is interface for storing common used constant names for fields and
variables used in user GUI.

4. Write RxSLT stylesheet, which will be used by Raccoon server to transform
prepared template into media-specific document, e.g. HTML. Each stylesheet must:

• import layout/*_layout.rxsl stylesheet, where * stands for media type, e.g.
HTML. This stylesheet is responsible for providing standard processing of fields
described in the template, you created. It also provides a few useful functions
and variables.

• Implement „main” xsl:template, to define additional content as e.g. forms.

This is described on the following figure.

Below we present except from templates/templates/html_register_1.rxsl file.

 <xsl:include href="../layout/html_layout.rxsl"/>

 <xsl:template name="main">

 <form action="{$interface-host}:{$interface-port}"
 method="get">

 <xsl:call-template name="form">
 <xsl:with-param name="action-name"
 select="'check-register-1-screen'"/>
 </xsl:call-template>

 <table align="center">
 <tr>
 <td align="right">your name: </td>
 <td><input type="text" name="user-name" /></td>
 </tr>
 ...

Function form is used to paste session-specific data into document. These data must be
preserved during interaction between user and the system.

5. Add the stylesheet entry to Raccoon configuration file: etc/raccoon-config.py.

 STYLESHEET = {('html-media', 'get-welcome-screen') :
 'templates/html_standard_screen.rxsl',
 ('html-media', 'get-register-1-screen') :

 'templates/html_register_1_screen.rxsl'
 }

Preparing control over data flow

Data flow was described in much detail in referenced documentation. Here we describe things
that were mainly changed, with giving the focus on Model-View-Controller (MVC) architecture.
The sequence diagram below shows typical realization of user request in the system, when

ProxyAgent (PrA) receives the request.

Our main interest will be realization of MVC inside of SessionHandlingAgent (SHA), because
the rest of process is usually the same for all case and do not need intervention of a developer.

MVC architecture is realized by three classes (or classes extending them): Controller,
ModelConstructor and ViewConstructor, which will be described below in a form of an
example. The statechart diagram below presents how theses classes behaves during realization
of a request.

We will remind how whole registration scenario looks, mainly from the user perspective:

We have prepared template for describing registration window, now we would like to prepare
implementation for checking registration data usered entered and choosing appriopriate
response for her (choices made after „Prompting for user login data” state). These is how we
proceed:

1. Create instance of Controller inside of constructor SHAResponder class.

 Controller c = new Controller(myAgent, getDataStore(),
 ACTION_KEY, ACTION_NAME_KEY, REQUEST_KEY,
 RESULT_NOTIFICATION_KEY);

2. Write class extending ModelConstructor. This class is responsible for preparing
instance of DataModel class, containing copy of registrated template and, optionally,
some additional ontological data, e.g. results of restaurants' search. DataModel should
also contain constructionActionName set up, which is used as suggestion for
ViewConstructor (and further for ViewTransformingAgent), for choosing
appriopriate transformation. A developer is provided with set a useful functions to
access user request data, update state of the session or access its data.

protected SHA_process_user_request getAction()
 protected UserRequest getUserRequest()

protected String getActionName()
 protected Session getSession(String sessionID)
 protected LayoutStructure getTemplateCopy(String actionName)

Of course whole request does not have to be completely realized by SHA and can be
forwarded to other agent, e.g. to PersonalAgent (PA).

The result of operation should be returned with one of the provided functions:

 protected void putModel(DataModel model)
protected void putError(InternalError error)

Full implementation of our example can be found in
CheckRegistration1ModelConstructor.java source file.

3. Re-use extension of ViewConstructor. Usually SimpleViewConstructor
(utilizing VTA and Raccoon service) will be enough for your purposes. However you
may write your own extension, but please rember, that model constructed by
ModelConstructor can be access by the following method

protected DataModel getModel()
and the result of view constructing process should be put in local DataStore with one of
functions:

protected void putView(DataView view)
protected void putError(InternalError error)

4. Register ModelConstructor and ViewConstructor in Controller:

 c.registerModelConstructor(mc);
 c.registerViewConstructor(vc);

Please remember, that ModelConstructor and ViewConstructor use its own space
in DataStore to exchange operation results, and therefore they cannot be shared among
different instances of Controller class.

5. Bind Controller with the specific action request inside of constructor of
SHAResponder class.

selector.registerHandler(false,
 ViewParams.CHECK_REGISTER_1_ACTION, c);

The following screen shows the result of providing invalid data by the user.

Acknowledgements

The authors would like to thank you the following person for their contribution Wiktor
Moderau (for dig-art), Mateusz Dominiak (for support for individuals in Jastor), Adam
Souzis and Michał Olczak (for support in configuration of Raccoon in Python), Mateusz
Kruszyk (for stereotypes design), Michał Szymczak (for design of restaurant ontology and
referenced domains), Minor Gordon (for vital design ideas), dr Maria Ganzha for
mathematical considerations and diagrams validation and many thans to Marcin Paprzycki
for his enforcing power to do it. Also many thanks for people from very active jena-dev
mailgroup and also for authors of Raccoon, JADE and Jastor for their support.

