©Saxe-Coburg Publications, 2011.
Trends in Parallel, Distributed, Grid and
Cloud Computing for Engineering

P. Ivanyi and B.H.V. Topping, (Editors)

Saxe-Coburg Publications, Stirlingshire, ScotlanM
DRAFT DRAFT DRAFT

Ontology for Contract Negotiations

in an Agent-based Grid Resource Management System

Chapter

M. Drozdowicz!, K. Wasilewska', M. Ganzha'?, M. Paprzycki'®, N. Attaoui*,

I. Lirkov>, R. Olejnik6, D. Petcu’ and C. Badica®

!Systems Research Institute Polish Academy of Sciences, Warsaw, Poland
2University of Gdansk, Poland, *Warsaw Management Academy, Poland
“University of Tetouan, Morocco

5Bulgarian Academy of Sciences, Sofia, Bulgaria, SCNRS, Lille, France g
"Western University of Timisoara, Romania/ilniversity of Craiova, Romania

Abstract

It is often claimed that software agents can become intelligent middleware facilitat-
ing high-level economy-based resource management in the grid [1]. Furthermore, an
argument can be put forward that all meta-level information in such system could be
ontology-based, and semantically processed [2]. Most importantly, this information
can be used in all forms of contract negotiations, which are needed to introduce grids
to business environments. To facilitate ontologically-driven resource management in
the grid, an existing grid ontology (CoreGRID) has been modified and extended. The
aim of the chapter is to summarize the reasoning that led us to the development of our
ontology, and to present and discuss its main features.

Keywords: software agents, grid, resource brokering and management, ontology, se-

mantic information processing. O

1 Introduction | Pilhed -

This chapter is concerned with the development of agent-based grid middleware, in
which (a) agents will work in teams (each team will be managed by the LMaster agent,
(b) all meta-information will be ontologically demarcated and semantically processed
(with all team information stored in and managed by the Client Information Center
(CIC) infrastructure being represented by the CIC agent), and (¢) an economic model
will be based on autonomic Service Level Agreement (SLA) negotiations and Quality
of Service (QoS) monitoring. More information about various aspects of the proposed
solution can be found in [3-8], which should be consulted for omitted details. The
aim of this chapter is to present the proposed grid ontology, which was developed
for the purpose of our system. To achieve this goal, let us start with describing in
some detail two major user case scenarios that became the driving force behind this

/;6



[T Al

ontology development: (1) “selling” a resource to the team for use in computation,
(2) “buying” resources for job execution. Note that in our work we are primarily
concerned with computational grids (as the main application area for grid computing
of today) rather than, for instance, data grids. However, the proposed ontology should
also be applicable to the other types of grid almost without modifications.

The first scenario involves a User wishing to make their resource available for use
by a team. Extending this scenario, to cover also the process of the team advertising its
need for additional worker(s), we can devise the following sequence of actions (see,
also [9], Figure 2):

1. The LMaster sends a message to the Client Information Center (CIC), stating
that the team is interested in accepting additional worker(s), and specifying con-
ditions (resources) that the worker should bring to the team.

2. User interacts with their LAgent, specifying the resource they would like to sell
to a team.

3. The LAgent communicates with the CIC, sending a description of offered re-
sources and receiving a list of teams that may be interested in it.

4. The LAgent sends a call for proposal (CFP) to the LMasters of teams acquired
from the CIC describing resources it represents and proposed contract details.

5. The LAgent and LMasters that respond to the CFP negotiate conditions of the
worker contract (for more details about negotiations, see [9]).

6. Assuming that the negotiations resulted in a successful establishment of the
Service Level Agreement with one of the LMasters, the LAgent assumes the role
of a worker in the team.

The second scenario describes a case of a User who wishes to have a job executed
using resources managed by one of the teams. It can be outlined as follows (see,
also [9], Figure 3):

1. User interacts with their LAgent, specifying a set of requirements a resource
should fulfil to be able to execute the job.

2. The LAgent communicates with the CIC, sending the resource constraints and
receiving a list of teams owning the resources satisfying its conditions.

3. The LAgent sends a call for proposal (CFP) to the selected LMasters and ne-
gotiates the job execution contract conditions—an SLA (again, for more details
about negotiations, see [9]).

4. If an SLA has been agreed, the LAgent sends the ]ob details and necessary data

to the contracted team.

A NPEE———



For these two scenarios, ontologies have to provide the necessary vocabulary to
describe all concepts required, both on the level of inter-agent communication, and
for storing information in agents’ knowledge bases. To start with, we can notice a
significant overlap in the set of ontology concepts used in both scenarios. They both
rely heavily on concepts describing resources, or resource requirements, which will
be named an AiG Grid Ontology. We will expand on this part of the ontology in
Section 2.1. Moreover, in both cases there is a strong requirement for concepts used
in contract negotiations and related to contract conditions between the participating
parties (agents). This is what will constitute the AiG Conditions Ontology (described
in section 2.3. The last remaining piece of the AiG Onrology is a set of classes repre-
senting messages exchanged by the agents—the foundation of the communication and
negotiation protocols in the system (described in Section 2.4). Here, let us stress that
the proposed ontology has been developed with the agent-based resource brokering
system in mind. Therefore, it extends concepts that are purely grid-based (that are
only a slight modification of the CoreGRID ontology) by a set of concepts and classes
that make autonomous negotiations leading to an SLLA formation possible.

When considering the two user case scenarios, it is important to notice the key dif-
ference between the ways that ontology is used in them. The same concepts can be
used either to describe specific entities in the system, or as a means to specify require-
ments or constraints on these entities. As an example let us consider use of concepts
representing a computing resource. In the “selling a resource” scenario, the agent rep-
resenting the resource owner uses the AiG Grid Ontology to describe the particular
resource they offers (i.e. “their computer”). On the other hand, in the “buying a re-
source” scenario the User specifies the constraints that the team’s resources need to
satisfy in order to be able to complete the task (i.e. the minimal hardware configuration
that will be capable of completing the job). Our solution to issues involved in using
ontological terms for describing such constraints is described in Section 2.2. In this
context, let us note that while the proposed solution to the constraints problem uses
properties introduced in OWL 2.0, the remaining parts of the proposed grid resource
brokering ontology do not require them.

2 Agents in grid ontology P [R @ @
H I '

2.1 Describing grid resources S —

Let us start by describing in some details the developed AiG Grid Ontology (the com-
plete ontology can be found at [10]). Its goal is to provide a set of concepts that de-
scribe the infrastructure of the grid and enable detailed specification of grid resources.
As seen in the above scenarios, we need a vocabulary for a very detailed technical
specification of grid resources: (i) available through the members of the team to exe-
cute jobs, and (ii) offered to the team by a potential worker.

Our earlier research showed that a number of grid resource description formats, in-
cluding ontologies, already exist, and gave us hope for ontology reuse. As a result of



an extensive analysis (see, [11], for more details), we realized that the ontology closest
to our requirements is the Core Grid Ontology (developed as a part of the CoreGRID
project [12], and denoted by CGO in what follows). Unfortunately, we found it some-
what lacking in describing the hardware and software configuration of grid resources.
Therefore, we decided to extend it with additional classes and properties required by
our user case scenarios. Furthermore, our work was focused on improving the ease
of interacting with the ontology from the Java code (agents used in our system are
Java-based), which resulted in further modifications.

The description of the CoreGrid ontology can be found in [13], therefore in this
section we will focus on the classes and properties (both from the CGO and the AiG
Grid Ontology) that are the most important in our user cases, highlighting the changes,
and reasons why they were needed. The CGO contains a multitude of concepts related
to the structure, organization and configuration of grid elements, but for the task of
managing resources and scheduling jobs the most important are these contained in
the hierarchies of the GridComponent and the GridResource classes (see Figure 1).
Following is a detailed description of this part of the ontology. Newly added concepts
are highlighted in bold font.

hasinstalledSoftware

£+ GridComponent hasOperatingSystem

isRunningOS ® it OperatingSystem

Y

StorageComponent i

.t ComputingCompone

#2 ComputingElement 4% StorageElement ]

& WorkerNode . ‘ | ¢

hasMemory -~ ~ ’ hasStorageSpace

-~ hasCPU s
hasMemory

l* i+ StorageSpace J

. - hasFileSystem

hasStoragelnterface

R @ . F *2 Storagelnterface J * 2 FileSystem )

e e -——-—‘-""‘

PRSI s g

Figure 1: Resource concepts in grid ontology

o GridComponent: the base of all classes describing physical or virtual elements
of the grid, providing access to the grid resources, and hosting grid services.



-

]
54

o ComputingComponent: a subclass of the GridComponent that provides access
to computing resources. It is the domain of properties such as:

o haslInstalledSoftware: defines the software configuration of any grid com-
ponent using the Software class.

o hasOperatingSystem: specifies an operating system installed and avail-
able on the grid component using the OperatingSystem class.

o isRunningOS: the OperatingSystem currently running on the grid compo-
nent.

o WorkerNode: a ComputingComponent that is able to provide access to its com-
puting power. It has the following properties:

o hasCPU: An instance of the CPU class, describing the processing unit
exposed by the component.

o hasMemory: The memory available for use by the services accessing the
WorkerNode.

o isVirtualized: Property stating if the component is a physical or a virtual
machine.

o StorageElement: any GridComponent that exposes storage for use by services
and grid users. Linked to the StorageSpace class using the hasStorageSpace
property. GridResource the other important base class of the CGO ontology,
GridResource represents all computing, storage, networking, hardware and soft-
ware resources that can be used by services running on the grid.

o ComputingElement: A ComputingComponent that manages a set of WorkerN-
odes. It can be described using the following properties:

0 hasWN: links to a WorkerNode managed by the ComputingElement.

I‘“D“‘ o :hasQueue: Queue used by the component for storing jobs to be executed.
G)) \J\{ iu‘ n <:'1 'jrunningServices: services running on the component to handle tasks such
/ .as job management efc.

s TR R AR

e CPU.: subclass of ComputingResource, the processing unit of a grid component,
described using the following properties:

o hasCores: number of processor cores.

o hasLICacheSize, hasL2CacheSize, hasL3CacheSize: size of the internal
processor caches.

o hasClockSpeed: the clock speed of the processor. Property replaces the
clockSpeed property from the CGO, because clockSpeed was defined with
arange of string, while for reasoning, in our user cases, we need a numeric
data type.



PROSE

o hasArchitecture: the architecture of the system expressed using the CPU-
Architecture class.

o hasVendor: the producer of the CPU as a link to the CPUVendor class.

o hasModelName: the exact model name of the CPU. Property replaces the
modelName property from the CGO to provide a domain specification to
its definition which provides us with better explorability of the ontology,
especially for processing by agents.

e Memory: the class representing the memory of a grid component. In the AiG
Grid Ontology two subclasses of this type have been introduced: PhysicalMem-
ory and VirtualMemory. Memory can be described using the following proper-
ties:

o hasAvailableSize: the amount in megabytes of the current free memory.

o hasTotalSize: the total amount of memory installed on the machine.

o Software: class representing a piece of software that can be installed on a ma-
chine. The existing subclasses include: OperatingSystem, Exec, Lib but can
be extended when the need arises. Each instance of Software can be described
using the following properties:

o hasName: the product name of the software.

o hasVersion: the official version number of the software.

e StorageResource: a subclass of GridResource and a superclass of concepts re-
lated to access to the storage available on grid components.

e FileSystem: a subclass of StorageResource, representing the type of file system
in which the storage is formatted. Currently available subclasses are: LINUX-
EXT3 and WINNT.

e Storagelnterface: the interface for connecting mass storage devices to comput-
ers. The subclasses currently included in the ontology are IDE, SCSI and SATA.

e StorageSpace: the main class used for representing the storage available in the
grid. It uses the other aforementioned StorageResource subclasses through the
hasFileSystem and the hasStoragelnterface properties. Other properties that
describe it include:

‘ U o :]tiasAvailableSize: the current available storage space in megabytes.
j ] o g,h;asTotalSize: the total capacity of the storage resource in megabytes.

Another minor change we needed to make to the CGO ontology resulted from
some consistency issues when attempting to classify the ontology using the Protege
4.1 default reasoners (HermiT and Fact++). We found that some individuals defined in



i a2

the ontology had datatype property values inconsistent with the range definition of the
properties. These included the properties hasName, hasModel, clockspeed, the range
of which was “&xsd;string” but in the case of some individuals the value was set as an
XML literal—"“xml:lang=en”. The issue with classifying the ontology was probably
caused by the introduction of new data types in OWL 2.0, which is the OWL version
used by the reasoners. Therefore, we changed the value type of these individuals’
properties to “&xsd;string” to fix the issue.

2.1.1 Example 1

Let us now look at two examples of resource descriptions using our AiG Grid On-
tology. First, a single PC is available to the grid users. It is running the Windows
Vista operating system and is equipped with an Intel Core 2 Duo processor, 4 GB of
memory of which 2.5 GB is available to the users, and 300 GB of storage space on an
NTES partition.

The desktop computer itself is of types WorkerNode and StorageElement, because
it exposes computing capabilities as well as the storage space. Using the ontology it
would be described as shown in the following listing.

:desktopWorkerNodel
a cgo:WorkerNode , cgo:StorageElement ;
:hasMemory [
a :PhysicalMemory ;
:hasAvailableSize ”2500"""xsd:int ;
:hasTotalSize 740007 "xsd:int .
1

:hasStorageSpace [ ,
a cgo:StorageSpace ; P
:hasAvailableSize ”25000”""xsd:int ; |
:hasFileSystem :winnt ; ) '

:hasStoragelnterface [N
cide ’
;hasTotalSize “300000”""xsd:int

1

:isRunningOS :vista_sp2 ;
cisVirtualized “false ”""xsd:boolean ;
cgo:hasCPU :intel_core2duo_e8300

cvista_sp2
a cgo:Windows ;
:hasVersion 76.0.6002.18005.090410 —1830"""xsd: string ;
cgo:hasName "Windows Vista Service Pack 27""xsd:string

rintel_.core2duo_e8300
a cgo:CPU ;
:hasArchitecture :Intel64 ;
:hasClockSpeed ”2830"""xsd:int ;
:hasCores 72”""xsd:int ;
:hasL2CacheSize 76000”""xsd:int ;
:hasModelName “Intel Core 2 Duo Processor E8300"""xsd:string ;
:hasVendor :lIntel ;
cgo:hasName "Intel Core 2 Duo Processor E8300
(6M Cache, 2.83 GHz, 1333 MHz FSB)”""xsd:string



Let us now consider a more complex scenario. We would like to represent a com-
puting grid element consisting of two virtualized machines working together under
the control of the Condor middleware [14]. They both use the Debian Linux operat-
ing system and have a similar hardware configuration. The representation of such a
computing system is an instance of the ComputingElement class.

The WorkerNode instances representing the components of such an “aggregate grid
node” would be described as in the following listing.

:compositeWorker
a cgo:ComputingElement ;
:isRunningOS8 :debian_5.0 ;
cgo:hasWN :condorWorkerNodel , :condorWorkerNode2
cgo:runningServices
:condor

i

:condorWorkerNodel
a cgo:WorkerNode ;
:hasMemory [
a :PhysicalMemory ;
:hasAvailableSize ”1500”""xsd:int ;
:hasTotalSize ”3000”""xsd:int
1;
:hasStorageSpace [
a cgo:StorageSpace ;
:hasAvailableSize 7120000”""xsd:int ;
:hasFileSystem :ext3 ;
:hasStoragelnterface
cide
:hasTotalSize ”350000”""xsd:int
Is

:isRunningOS :debian_5.0 ; e
;isVirtualized “true”""xsd:boolean ; N
cgo:hasCPU :intel_xeon_.e7430 . : [] ;
:condorWorkerNode2 l
i

a cgo:WorkerNode ;

rhasMemory [
a :PhysicalMemory ;
:hasAvailableSize 72000"""xsd:int ;
:hasTotalSize ”3000”""xsd:int

1;
:hasStorageSpace [
a owl:Thing , owl:NamedIndividual ;
:hasAvailableSize “70000”""xsd:int ;
:hasFileSystem :ext3 ;
:hasStoragelnterface
ride
:hasTotalSize ”250000”""xsd:int
1;
:isRunningOS :debian_5.0 ;
cisVirtualized “true”""xsd:boolean ;
cgo:hasCPU :intei_xeon_e7430

:debian.5.0
a cgo:Linux ;
:hasName ”Debian GNU/Linux 5.0 ( lenny )" "xsd:string
:hasVersion ”5.07""xsd:string

cintel_xeon_e7430
a cgo:CPU ;



:hasArchitecture :Intel64 ;

:hasClockSpeed 72130”""xsd:int ;

:hasCores 74”""xsd:int ;

:hasL2CacheSize ”12000”""xsd:int e
:hasModelName ”Intel Xeon Processor E7430”""xsd:string

:hasName ”Intel Xeon Processor E7430 R
(12M Cache, 2.13 GHz, 1066 MHz FSB)”""xsd:string ; i
:hasVendor :Intel . :\

{

2.2 Modeling requirements and constraints

Let us now consider the problem that is essential for effective use of our ontology in
the AiG system: matching resources to resource requirements. As follows from the
two user case scenarios, there are two situations when this is necessary:

1. When a User wishes to sell a resource to a team, its LAgent sends to the CIC a
specific description of the resource it offers. The CIC matches this description
against a collection of resource requirements received from the registered teams
and returns a list of teams seeking such a worker.

2. When a User wishes to complete a job, its LAgent sends to the CIC a message
containing constraints on resource description, limiting the resource configura-
tion space to these that are capable of executing the job. In this case, the CIC
needs to find a list of resources satisfying the received requirements.

We can see that these two cases are very similar, they deal with matching resource
description(s) and a set of resource constraints (requirements), but the matching itself
proceeds from “opposite directions.” In the first case, a description of a resource
is matched against a set of requirements (constraints), while in the second case, a
definition of requirements (constraints) is matched against a set of descriptions. In
both cases we need to describe the constraints imposed on a resource in a way that
enables matching with resource description. Moreover, to support the first scenario,
giving the CIC the ability of gathering the team requirements, it is necessary that this
constraint representation is easy to store in a knowledge base.

As an example, let us consider a case where a User expresses a demand that the job
should be executed on a machine that is running the Debian Linux operating system,
has a quad-core CPU of at least 2.5 GHz and a minimum of 4 GB of physical memory.
As one can easily understand, this is a different task from merely specifying the values
of the properties. Here, we deal with value ranges (minimum, maximum, between) as
well as logical operators between different conditions (a machine with faster CPU or
with more memory).

Our solution takes advantage of the class expressions and datatype restrictions in-
troduced in OWL 2.0. Specifically, individuals satisfying some constraints can be
expressed as an OWL class defined using restrictions on the properties that describe
it. To illustrate it with a simple example let us consider a case where we would like to
define a set of CPUs that have a clock speed greater than 2.5 GHz. We would express
it using the following OWL class:



:RequiredCPU
a owl:Class ;
owl:intersectionQOf (
cgo :CPU

[ F o N e S
a owl:Restriction ; { D D i3
owl:onProperty aiggo:hasClockSpeed ; ’ U
owl:someValuesFrom [ '

N

AN
i
il
i
N
|
i

a rdfs:Datatype ; I'F

=]
o
owl:onDatatype xsd:int ; v i A...M_;mf;,/f
owli: withRestrictions
([ xsd:minlnclusive 2500])

) .

In the snippet we can also see an example of using the datatype restriction intro-
duced in OWL 2.0 in the form of the mininclusive element. Such a constraint class
can then be used in a definition of a class representing WorkerNodes that are necessary
to perform a job, as in the following listing.

:RequiredResource
a owl:Class ;
rdfs :subClassOf cgo:WorkerNode ;
owl:equivalentClass [
a owl:Restriction ;
owl:onProperty cgo:hasCPU ;
owl:someValuesFrom :RequiredCPU

1.

Using this approach, the task of finding a list of individuals satisfying the require-
ments simplifies to using an OWL 2.0 capable reasoner (e.g. Fact++ [15] or Her-
miT [16]), to classify the knowledge base and infer which individuals are of the Re-
quiredResource class. Since the class expressions system in OWL enable mixing re-
strictions on multiple properties, by using this approach one will be able to construct
constrains even for complex use cases.

Another challenge was to assign weights to the defined constraints so that we can
not only restrict the individuals but also rank them according to our requirements. The
proposed solution is to take advantage of the OWL annotations system as a means of
linking the weight to the constraint. Specifically, we use a special annotation: con-
straintWeight, defined in the ContractConditions that we will assign to the aforemen-
tioned constraint class descriptions. Naturally, the reasoner will not be able to make
use of this annotation when processing the knowledge base. Therefore, a custom
component will post-process the result of the inference to rank matched individuals.
In our implementation we will interpret the lack of the constraintWeight annotation on
a constraint class as a weight of one for that property.

Let us illustrate this process with an example. We will extend the requirements
placed on a GridResource by introducing an additional constraint on the available
physical memory. Moreover, we would like to make sure that this amount is valued
more (i.e. is more important to the user) than the clock speed of the CPU. We would
express this set of requirements as follows. ‘

-~ & ’
:RequiredMemory , D rD .
a owl:Class ; : o
aigco:constraintWeight 7"5”""xsd:float ; H j
L —




owl:equivalentClass [
a owl:Class ;
owl:intersectionOf (

cgo : Memory ‘ o
[ o e b ey i £ i BB -

a owl:Restriction

owl:onProperty aiggo:hasAvailableSize ; (

owl:someValuesFrom [ |
a rdfs:Datatype ; ”

owl:onDatatype xsd:int ;
owl: withRestrictions
([ xsd:minlnclusive 3000 1)

1.

To address this requirement, the RequiredResource class was modified in the fol-
lowing way.

:RequiredResource
a owl:Class ;
rdfs :subClassOf cgo:WorkerNode ;
owl:equivalentClass [
owl:intersectionOf (

[

a owl: Restriction ;
owl:onProperty cgo:hasCPU ;
owl:someValuesFrom :RequiredCPU

a owl: Restriction ;

owl:onProperty aiggo:hasMemory ; .
owl:someValuesFrom :RequiredMemory D ¥ '
] N
) L n !
. ) { , A N

As mentioned before, we accept constraint definitions with no weight annotation,
therefore, no further changes are needed to the RequiredCPU class.

1

2.3 Describing contract conditions

The conditions of contracts between the agents, both in the case of a resource joining
the team, and a user contracting the team to execute a job on its resources, are de-
scribed using the AiG Conditions Ontology. It consists of two parts. First, it uses the
vocabulary from the AiG Grid Ontology to describe owned, or used, grid resources.
Second, it contains an added terminology, covering availability, quality of service and
payment terms. These terms will be needed in the SLA negotiations (see, also [9]).

Here, the root classes are: WorkerContractConditions and JobFExecutionCondi-
tions; used, respectively, during “selling resource” and “buying resource” scenarios.

The ontology supports multiple pricing options, using the Pricing class, several
payment methods, through the PaymentMechanism class, and charging the user, based
on the real usage of various parameters, thanks to the hierarchy of the ServiceChar-
gableltem. Let us start by describing these core concepts in more detail.



%

et Wy

PROOF.

\__._-»-- R

o PaymentConditions: the class that defines complete information about the con-
tract conditions concerning payment for the services either of the team, or of the
worker. The following properties can be used to describe it:

o offeredChargableltem: a set of ServiceChargableltem instances that de-
scribe the various commodities (e.g. memory, storage space, CPU time)
that can be utilized during job execution, along with their prices per unit.
The commodities mentioned here are represented using the classes from
the AiG Grid Ontology.

o fixedAvailabilityPrice and fixedUtilizationPrice: additional properties de-
scribing prices per hour of resource availability and utilization, indepen-
dent on the way the resource is used. They can be used to define the job
execution cost combined with the chargeable items, or instead of them—if
the cost calculation model is simple.

o leadTime: the time, in hours, during which the payment should be made
after completing the job execution.

o delayPenalty: the amount of money that needs to be paid if the payment
deadline specified by leadTime is not observed.

o paymentMechanism: the mechanism of payment accepted by the sides of
the agreement. The possible values of this property are defined as sub-
classes of the PaymentMechanism class described below.

o ServiceChargableltem: the description of a commodity offered as a part of the
contract, for utilization during job execution, including its pricing information
and the grid component that was used. The information that the class can be
described with, include:

o availabilityPrice: the price that will have to be paid for the availability of
the commodity. The domain of this property is not a simple datatype, but
the Pricing class that enables a much more robust definition of the pricing

_..conditions.

utllzzatzonPrlce the price of a unit of utilization of a commodity.

sedResource the GridResource which the service utilized, or that was
eserved for availability.

\ ,__,_,*_~-—~———”* usedComponent the GridComponent which the service utilized, or that

was reserved for availability.

The importance of the ServiceChargableltems concept is in its subclass hierar-
chy, which is built of the following items:

o MemoryUsageChargableltem: the memory used when serving the user.

o NetworkBandwithChargableltem: the network bandwidth used by the ser-
vice; further split into: DownloadChargableltem and UploadChargable-
Item subclasses; for the possibility of an even more fine grained pricing
specification.



PROCE

e T R RDRSLAW LA RS e

am P,

o ProcessingTimeChargableltem: the processing time spent when serving
the user. Can be described also using one of its subclasses: CPUTimeChar-
gableltem: pure CPU time used; or WallClockTimeChargableltem: the
total time including /O etc.

o ProcessorNumberChargableltem: used to specify the pricing of availabil-
ity and utilization of the number of processors of the used resource.

o SoftwareChargableltem: the price of a software resource required by the
user task.

o StorageChargableltem: the price of storage on the Grid resource. This
item is split into two sub-items: TemporaryStorageChargableltem, which
describes the storage that is used only for the time of executing a job and
is cleaned afterwards; and PermanentStorageChargableltem - storage that
should be retained between successive service executions.

e Pricing: a class describing the different pricing options depending on the con-
ditions in which the job is executed. The various prices are specified using the

following datatype properties:
bt J:

o discountWhenLightlyLoaded: enables specifying a discount that applies
when the resource’s load is less than a certain value (e.g. 50%).

o peakTimePrice: the price used during peak hours
o offPeakTimePrice. the price used during off-peak hours 4“

o holidayTimePrice: the price effective during holidays

'
.

o lunchTimePrice: the price effective during lunch time

o raiseWhenHighDemand: enables specifying an additional price increase
that applies when the resource’s load is greater than a certain value (e.g.
50%).

e PaymentMechanism: a hierarchy of classes that describe the accepted mecha-
nisms of paying for the team’s, or worker’s, services. Currently, it consists of
the following subclasses:

o GrantsBased: the payment is not processed directly, but is charged against
an account managed by being based on some up front agreement.

o PrePaid: the payment is transferred in advance.

o UseAndPayLater: the payment is made after the job execution has been
finished in the time specified by the leadTime property of the Payment-
Conditions class.

Let us now turn our attention to the classes used only in either of the two user
case scenarios. We will begin by describing the class representing the conditions of a
contract between a resource owner and the team.



PROUE

[N

Nt st e T

o WorkerContractConditions: describes the detalls of the agreement between a
worker and the team. This class is the domain of the following properties:

e}

contractPeriod: uses the TemporalEntity class from the OWL~Time ontol-
ogy to specify the period of time during which the contract is in effect.

contractedResource: the GridComponent (from the Grid Ontology) that is
the subject of the contract.

guaranteedU'tilization: the percentage of contracted time that the team
commits to utilize the contracted resource. In the case of our system, re-
gardless of the real usage of the resource, the utilization of the resource
taken into account when calculating the payment will not be less than the
value of this property.

isContractExtensionPossible: specifies whether, after the ending of the
contractPeriod, the agreement can be extended.

workerAvailability: the period of time, or a set of such, during which the
worker commits to being available for utilization by the team. Defined
using the Temporal Entity class.

paymentConditions: the conditions on which the resource owner will be
rewarded for its services to the team. The property’s range is the Payment-
Conditions class described further on.

We will illustrate the usage of this class in an example of conditions of an extend-
able agreement between an owner of a grid resource and the team wishing to take

advantage

of capabilities of that resource—the desktopWorkerNode from 2.1. The re-

source will work for the team five days a week (Monday — Friday) from 18:00 to 8:00
for the next two weeks. The worker will be paid a fixed fee of ten grid tokens for an
hour when it is available for use, and forty tokens when it is actively used. Addition-
ally, the user is charged separately for incoming and outgoing bandwidth, used disk
space, and CPU time. The owner of the resource receives the payment ina pay -after-
use manner at the end of each week.

:DesktopNodeContract
a :WorkerContractConditions

contractedResource aiggo:desktopWorkerNodel

:contractPeriod :Decl3Dec24 ; P R @ @ ”

:isCont

"true”

ractExtensionPossible

xsd: boolean ;

:workerAvailability :Decl3Decl4 , :Decl4Decl5 , :Decl5Decl6é , :Decl6Decl7 ,
:Dec20Dec21 , :Dec21Dec22 , :Dec22Dec23 , :Dec23Dec24 ;
:paymentConditions [

a P

aymentConditions ;

:fixedAvailabilityPrice [

a

:Pricing ;

:offPeakTimePrice ”10.0”""xsd:float

13

;fixedUtilizationPrice [

a

:Pricing ;

:offPeakTimePrice 740.0”""xsd:float

1;

:offeredChargableltem



i

\

i
i

N
{ a :UploadChargableltem ;

[OPRE PR M

|
|
i
b
!
|
i

s

:utilizationPrice [ a :Pricing ; :offPeakTimePrice ”4.0”""xsd:float]
1.,
[ a :DownloadChargableltem ;
:utilizationPrice [a :Pricing ; :offPeakTimePrice "2.0"”""xsd:float ]
1,
[ a :WallClockTimeChargableltem ;
:utilizationPrice [ a :Pricing ; :offPeakTimePrice ”10.0"""xsd: float ]
1,
[ a :TemporaryStorageChargableltem ;
;utilizationPrice [ a :Pricing ; :offPeakTimePrice ”5.0”""xsd:float ]
N
: paymentMechanism :useAndPayLater
]
:Decl3Dec24

a time: Properlnterval ;
time: hasBeginning [

a time:Instant ;

time : inXSDDateTime “2010—12—13T00:00:00”"" xsd: dateTime
13
time : hasEnd [

a time:Instant ;

time :inXSDDateTime ”2010—12-24T23:59:59”"" xsd : dateTime
1.

:Decl3Decl4d

a time: Properlnterval

time : hasBeginning |
a time:Instant ;
time :inXSDDateTime ”2010—12—13TI18:00:00”"" xsd: dateTime
1
time :hasEnd [

a time:Instant ;

time :inXSDDateTime ”2010—12-14T08:00:00”"" xsd : dateTime

].
:Decl4Decl5 .
a time: Properlnterval ; '
time : hasBeginning [
a time:Instant ; .
time : inXSDDateTime ”2010—12—14T18:00:00”“xsd:dateTlme e e s 2t e e rapmers o
] .

time : hasEnd [
a time:Instant ;
time :inXSDDateTime ”2010—12-15T08:00:00”"" xsd: dateTime

Let us now move to the second scenario and the JobExecutionConditions class.
Here we see:

o JobExecutionConditions: the conditions of the contract between the User schedul-
ing the task for execution and the team accepting the job. The class is described
with the following properties:

o contractedResource: the GridComponent that will be used to perform the
job. Note that this instance does not need to match a physically existing
grid resource, but can be used only to describe the agreed hardware or
software configuration. Moreover, we expect that in most cases a different
solution to specifying the constraints of the requested / contracted grid



" e sty et e —

R@@[F

resource will be used (see 2.2). — M___,.__--m PSP

o jobExecutionTimeline: the TemporalEntity that describes either the period
of time during which the job should be executed (including start time and
deadline), or simply a time instance specifying the deadline.

o deadlinePenalty: the monetary amount that will be paid to the User in case
of missing the deadline, as specified in the contract.

o paymentConditions: the payment related details of the contract. They are
specified using the same PaymentConditions class as in the case of the
WorkerContractConditions.

To give an example of its usage let us consider a contract, where the team agrees
to finish job execution by the 20th of December 2010 with a penalty for missing the
deadline equal to one hundred grid tokens. The team also commits to having the job
executed on a composite computing node running the Linux operating system in a
Condor environment—the compositeWorker from Section 2.1. In return, the other
party agrees to pay the team a fee of twenty grid tokens for each hour of CPU wall
clock time, as well as 0.002 tokens for each megabyte of physical memory used per
hour and 1 for each megabyte transferred over the network, regardless if it is inbound
or outbound. Because the computing node is also utilized by the organization owning
it, the price for the CPU processing depends on whether it is used during peak or off-
peak hours. The lower, off-peak price is eighteen grid tokens per hour. The customer
will make a payment within seven days from the job completion. The details of such
a contract would be represented as follows.

:CondorJobContract

a :JobExecutionConditions ;

:contractedResource aiggo:compositeWorker ;

:deadlinePenalty ”100.0”""xsd:float ;

:jobExecutionTimeline [

a time:lInstant ;

time : inXSDDateTime 72010-12-20T23:59:59”"" xsd: dateTime
1;
:paymentConditions [

a :PaymentConditions ;

:leadTime ”2010—-12-28T00:00:00”"" xsd:dateTime ;

:offeredChargableltem
[ a :MemoryUsageChargableltem ;

cutilizationPrice [ a :Pricing ; :
:offPeakTimePrice ”3.0”""xsd:float ;
:peakTimePrice ”3.0”""xsd: float
] i
1, - J .

[ a :NetworkBandwithChargableltem ; T I
cutilizationPrice [a :Pricing ;
:offPeakTimePrice ”1.0”""xsd:float
:peakTimePrice ”1.07""xsd: float

1,
[ a :WallClockTimeChargableltem ;
rutilizationPrice [ a :Pricing ;
:offPeakTimePrice ”18.07""xsd:float
:peakTimePrice ”20.0"""xsd: float



‘\

l
2.4 Ontology of contract negotiation messages | , [P [R @ @ [F :

The AiG Messages Ontology was created mostly as a basis for the comrfrunlc:atlo'rr"“~
between negotiating agents and contains definitions of exchanged messages. Matching

the two user case scenarios, the ontology consists of two parallel sets of concepts

- related to a worker joining a team (subclasses of TeamJoingMessage), and a User
wanting to execute a job (subclasses of JobExecutionMessage). The first part of the
ontology comprises the following classes and properties:

o TeamJoiningMessage: the superclass of all message classes related to the case
of a resource joining a team.

e TeamEnquiry: the class describing a message initiating the process of negotiat-
ing the terms of joining a team. The hardware and software configuration of the
resource wishing to join is described using the offeredResource property linking
to the GridComponent class from the AiG Grid Ontology. The message itself
may also contain a definition of a class based on the JobExecutionConditions,
defining the constraints on the contract parameters, such as availability or price
(see 2.2).

o TeamOffer: the class representing a response to the TeamEnquiry. The proposed
contract conditions are defined using the WorkerContractConditions through the
proposedWorkerContract.

e TeamRefusal: the message sent as a response to the TeamEnquiry if the team
decides it is not interested in the LAgent joining its ranks.

o TeamOfferAccept: the class representing a message sent by the LAgent stating
that it accepts the contract conditions and wants to join the team.

e TeamOfferReject: the message sent by the worker stating that it does not accept
the contract conditions and wants to break the negotiations.

o TeamCounterOffer: the definition of a message sent by the worker in response
to TeamOffer in which it rejects the offered contract conditions but wishes to
continue the negotiations in a multi-round manner, proposing a different set
of conditions specified using the proposedWorkerContract property. The team
should respond to such a proposition using the TeamOfferAccept, THE TeamOf-
ferReject, or the TeamCounterOffer message.

o JobExecutionMessage: the superclass of all message classes related to the sce-
nario of a User wishing to execute a job in the grid.

The part of the AiG Messages Qntology regarding job execution negotiations, con-
sists of the following concepts:




P Yy

2@R6®F;

e JobExecutionEnquiry: the class representing a message sent by the User to the
LMasters of selected teams, as a call for proposal (CFP) regarding the execution
of a job. In our system, along with an instance of this class, a definition of an-
other class will be sent as a means of describing the constraints of the resources

necessary to execute the job. This approach is discussed in Section 2.2.

o JobExecutionOffer: the response to the job execution CFP, sent by the team
as a means of describing the proposed conditions of the contract (instance of
JobExecutionConditions through the proposedJobExecutionContract property)
as well as the resources belonging to the team that are available and suitable for
the job (instance of GridComponent through the offeredResource property).

e JobExecutionRefusal: the message sent by the team to User as a response to the
CFP in a case when it is impossible (or not profitable) to execute the job.

e JobExecutionOfferAccept: the message informing the team that it has been se-
lected to execute the job on the proposed conditions.

e JobExecutionOfferReject: the message informing the team that its offer has been
rejected and the User is not interested in continuing negotiations.

o JobExecutionCounterQffer: the message informing the team that its offer has
been rejected, but the User would like to propose a different set of conditions.
The revised contract is described in the JobExecutionConditions class using the
proposedJobExecutionContract. The team should respond to such proposition
using either the JobExecutionOfferAccept, the JobExecutionOfferReject, or the
JobExecutionCounterOffer.

3 Concluding remarks

In this chapter we have presented the main features of our ontology designed for a grid
resource brokering system, which consists of three main parts, (a) ontology of grid
resources, (b) ontology of terms needed in contract negotiations, and (c) messaging
ontology. This ontology can be found at [17] and is ready to be tested and applied
in development of grid applications. We will use it in our Agents in Grid system to
facilitate contract negotiations in both the above described user-case scenarios.

Acknowledgement {IP IR @ @ [F )

The work of Maria Ganzha and Michal Drozdowicz was supported by the “Funds for
Science” of the Polish Ministry for Science and Higher Education for years 2008-
2011, as a research project (contract number N516 382434). The Polish-Bulgarian
collaboration was partially supported by the Parallel and Distributed Computing Prac-
tices grant. The Polish-French collaboration was partially supported by the PICS grant




New Methods for Balancing Loads and Scheduling Jobs in the Grid and Dedicated
Systems. The Polish-Romanian collaboration was partially supported by the Agent-
Based Service Negotiation in Computational Gr1ds and the Agents Grids and Het-

erogeneous Computing grants.

References ~~-—--m..,_,,

[1] I. Foster, N.R. Jennings, C. Kesselman, “Brain Meets Brawn: Why Grid
and Agents Need Each Other”, International Joint Conference on Autonomous
Agents and Multiagent Systems, 1, 8-15, 2004,

[2] J. Hendler, “Agents and the Semantic Web”, IEEE Intelligent Systems, 16(2),
30-37, 2001.

[3] M. Dominiak, M. Ganzha, M. Gawinecki, W. Kuranowski, M. Paprzycki,
S. Margenov, 1. Lirkov, “Utilizing Agent Teams in Grid Resource Brokering”,
International Transactions on Systems Science and Applications, 3(4), 296-306,
2008.

[4] M. Drozdowicz, M. Ganzha, W. Kuranowski, M. Paprzycki, 1. Alshabani,
R. Olejnik, M. Taifour, M. Senobari, I. Lirkov, “Software Agents in ADAJ: Load
Balancing in a Distributed Environment”, in M. Todorov, (Editor), “Applications
of Mathematics in Engineering and Economics’34”, AIP Conf. Proc., 1067,527—
540, American Institute of Physics, College Park, MD, 2008.

[5] W. Kuranowski, M. Ganzha, M. Gawinecki, M. Paprzycki, 1. Lirkov,
S. Margenov, “Forming and managing agent teams acting as resource brokers in
the Grid—preliminary considerations”, International Journal of Computational
Intelligence Research, 4(1), 9-16, 2008.

[6] M. Ganzha, M. Paprzycki, 1. Lirkov, “Trust Management in an Agent-based
Grid Resource Brokering System—Preliminary Considerations”, in M. Todorov,
(Editor), “Applications of Mathematics in Engineering and Economics’33”, AIP
Conf. Proc., 946, 35—46, American Institute of Physics, College Park, MD, 2007.

[7]1 M. Dominiak, M. Ganzha, M. Paprzycki, “Selecting grid-agent-team to execute
user-job—initial solution”, in “Proceedings of the Conference on Complex, In-
telligent and Software Intensive Systems”, 249-256, IEEE CS Press, Los Alami-
tos, CA, 2007.

[8] W. Kuranowski, M. Paprzycki, M. Ganzha, M. Gawinecki, 1. Lirkov,
S. Margenov, “Agents as resource brokers in grids—forming agent teams”, 4818,
472480, Springer, Berlin, 2007.

[9] K. Wasielewska, M. Drozdowicz, M. Ganzha, M. Paprzycki, N. Attaui, D. Petcu,
C. Badica, R. Olejnik, I. Lirkov, “Negotiations in an Agent-based Grid Resource
Brokering Systems”, in P. Ivanyi, B.H.V. Topping, (Editors), “Trends in in Par-
allel, Distributed, Grid and Cloud Computing for Engineering”, Saxe-Coburg
Publications, Stirlingshire, UK, 2011.

[10] “Agents in the grid—resource management”. http://sourceforge.net/
projects/gridagents



[11] M. Drozdowicz, M. Ganzha, M. Paprzycki, R. Olejnik, I. Lirkov, P. Telegin, M.
Senobari, “Ontologies, Agents and the Grid: An Overview”, in B.H.V. Topping,
P. Ivanyi, (Editors), “Parallel, Distributed and Grid Computing for Engineer-
ing”, Saxe-Coburg Publications, Stirlingshire, UK, Chapter 7, 117-140, 2009.
doi:10.4203/csets.21.7

[12] W. Xing, M.D. Dikaiakos, R. Sakellariou, S. Orlando, D. Laforenza, “Design and
Development of a Core Grid Ontology”, in “Proc. of the CoreGRID Workshop
’Integrated research in Grid Computing”, 21-31, November 2005.

[13] “Core Grid Ontology”. http://grid.ucy.ac.cy/grisen/cgo.owl

(14] D. Thain, T. Tannenbaum, M. Livny, “Condor and the Grid”, in F. Berman,
G. Fox, T. Hey, (Editors), “Grid Computing: Making the Global Infrastructure a
Reality”, John Wiley & Sons Inc., December 2002.

[15] “OWL: FaCT++”. http://owl.man.ac.uk/factplusplus/

[16] “HermiT OWL Reasoner”. http://hermit-reasoner.com/

[17] “Agents in the Grid Project”. http://sourceforge.net/projects/
gridagents




