
Galley Proof 23/09/2005; 13:26 File: spr179.tex; BOKCTP/ p. 1

Scientific Programming 13 (2005) 1–14 1
IOS Press

Efficiency of JADE agent platform

Krzysztof Chmiela, Maciej Gawineckia, Pawel Kaczmareka, Michal Szymczaka and
Marcin Paprzyckib,c

aDepartment of Mathematics and Computer Science, Adam Mickiewicz University, Poznań, Poland
bComputer Science Department, Oklahoma State University, Tulsa, USA
cComputer Science, SWPS, Warsaw, Poland

Abstract. Agent oriented programming is often claimed to become the next breakthrough in development and implementation of
large-scale complex software systems. At the same time it is rather difficult to find successful applications of agent technology,
in particular when large-scale systems are considered. The aim of this paper is to investigate if one of the possible limits could
be the scalability of existing agent environments. For this purpose we have selected JADE agent platform and investigated its
performance in a number of test-scenarios. Results of our experiments are presented and discussed.

1. Introduction

For a number of years, researchers promise that soft-
ware agent technology is about to change the ways we
construct software [2,3] as well as have a much broader
impact on human-computer interactions [4,5]. Some of
the principle areas that the software agent technology
is expected to impact are [1–5]:

– development and maintenance of complex sys-
tems,

– resource management,
– delivery of personalized content,
– e-commerce on a large and small scale.

Obviously, this list is far from exhaustive, however,
the very breadth and depth of these areas supports the
claim that agent technology, if successful, can become
the next “extreme event,” leading to a substantial leap
forward in a number of fields. The agent paradigm also
promises to add a new dimension to our interaction with
computers. Here, the promise of being able to deal with
the informationoverload resulting from the exponential
growth of information available on the Internet, which
has been pledged in the influential work of P. Maes [5],
is particularly tempting.

Unfortunately, as it is easy to see, more then 10
years after publication of [5], promises furnished there
did not materialize (regardless of the rapidly increas-
ing number of agent-focused conferences, workshops,

publications, etc.). To the contrary, it is relatively diffi-
cult to point to successful large-scale implementations
of agent systems (as understood in [1,2,5]). Moreover,
what is particularly revealing, agent systems described
in [5] as successful implementations of agents, for one
reason or another, have never spread beyond the MIT
Media Laboratory. There are many possible reasons
for this fact and some of them have been discussed
in [11,18], but there exists also a different possibility,
and very simple one indeed.

The starting point for this paper was an exchange
of messages in one of electronic discussion groups de-
voted to a particular agent platform. One of the partici-
pants described an e-commerce system under develop-
ment. In this system a personal agent was to be devoted
to (instantiated for) each user logged into the system.
The question was therefore asked if it is possible to
scale his system, implemented using that specific plat-
form, to 500+ agents. The response, from someone
who clearly was a practitioner of agent-system appli-
cation development was that “this is a wrong way of
looking into the problem and one should not expect re-
alistically to scale an agent application to this number
of agents.” We found this response particularly fasci-
nating as it contradicted one of the most basic tenets
of agent system development that is constantly perme-
ating the agent-system-literature. There, it is typically
stated that an agent system should be designed exactly
in such a way that each user should be served by his/her

ISSN 1058-9244/04/$17.00 2005 – IOS Press and the authors. All rights reserved

Galley Proof 23/09/2005; 13:26 File: spr179.tex; BOKCTP/ p. 2

2 K. Chmiel et al. / Efficiency of JADE agent platform

“own” personal agent (see for instance [3,5]). More
generally, it is claimed that when problem is decom-
posed to be implemented using software agents, then
its well defined functionalities (e.g. agent deployment
managers, sellers, database managers, watchers, buy-
ers etc.) should be conceptualized and implemented
as independent agents [3,18]. We had therefore to
ask ourselves a question: is really the case that while
agents are to become the breakthrough in development
of software for large complex systems through their
functional decomposition into agents, the currently ex-
isting agent technology cannot support implementation
of large-scale software systems the way that they are
supposed to be implemented?

For us, this was a question of agent system scalabil-
ity. Proceedings with a literature review we have found
that there exist a number of papers that discuss various
aspects of this problem [6–10]. However, we have also
realized that these papers contain an almost philosophi-
cal discussion attempting to answer the question “what
is agent scalability?” With our research background
in computational mathematics, we were interested in a
more pragmatic route, where one starts form the basic
assumption that “a good agent system is one that is
implemented” (see also [11]). In the next step, such an
implemented agent system has to be thoroughly tested
to establish its performance characteristics for varying
number of agents and/or messages etc. In this way we
follow and expand work reported in [12,13]. While
there, focus was only on agents exchanging messages,
we decided to expand the area of interest. Therefore,
we studied different scenarios involving messaging but
also added tests of efficiency of agent creation and mi-
gration.

A methodological remark is in order. Since there
exists no “benchmarking suite” to test performance of
agent systems (similar to these found in scientific com-
puting; in particular in computational linear algebra),
questions about “what should be measured and why”
remain unanswered. Scenarios proposed here were not
designed to become the missing collection of bench-
marks. Rather, we were interested in obtaining a broad
understanding as to how our agent platform of choice
(JADE) behaves when the number of messages and
agents is increasing as well as obtaining some general
assessment of efficiency of agent creation and migra-
tion. We believed that if results confirm robust scalabil-
ity (of JADE) then one will no longer be able to make a
case for implementing only limited size demonstrator
systems. In this way we would strengthen arguments
and research program put forward in the highly critical,
but inspiring, work of Nwana and Ndumu [11].

To obtain such a general assessment of robustness of
existing agent platforms, we have selected one of the
best of them: JADE (version 3.1) [13,14] and “stress-
tested” it in four scenarios, that can be divided into two
groups: the first test studied JADEs message exchang-
ing capabilities (results reported in the next section) and
the remaining three of them were focused primarily on
performanceof agent creation and/or migration (results
reported in Section 3). Work presented in this paper is
an extension of results reported in [19]. Here, follow-
up tests have been run for the tests that were carried
over and a new test scenario has been introduced.

2. Performance of agent message exchanges

In this section we present results of a test that was
aimed at messaging capabilities of JADE. This test dif-
fers from, but follows in spirit these reported in [12].
The main rationale is that in agent-based systems, when
during design and implementation functionality is di-
vided into agents (each agent is responsible for a par-
ticular sub-function of the system e.g. search agent,
query agent, database wrapper agent etc.) it is typi-
cally assumed that these agents coordinate their actions
(and communicate for all other purposes) by exchang-
ing messages [3,18]. Assuming that a (very) large num-
ber of agents are to be used (which is a fundamental
assumption made across this paper), a large number
of messages have to be exchanged between them. We
have therefore tried to establish the message-load ro-
bustness of the JADE agent platform. An additional
test involving agent messaging combined with database
access was reported in [19] and its results concur with
our findings presented here.

2.1. Spamming test

Our messaging test is very simple and is designated
to flood the system withAgent Communication Lan-
guage(ACL) messages [16] (the ACL is the FIPA stan-
dardized language used for agent-agent communica-
tion). We have created a system with two types of
agents: (1)spammeragents that send a large number
of messages to (2)useragents that have to receive and
“process” them. The current version of JADE sup-
ports only agent systems consisting of a singleplat-
form (environment in which all agents “exist,” move
and communicate) with multiple containers (“places”
where agents reside and between which they move);
agent migration between platforms is not permitted.

Galley Proof 23/09/2005; 13:26 File: spr179.tex; BOKCTP/ p. 3

K. Chmiel et al. / Efficiency of JADE agent platform 3

Spamming direction

Computer 1

Spammer

User

Computer 2

Spammer

User

Computer 3

Spammer

User

Fig. 1. Spamming scheme.

Since agent systems are to be developed in the context
of networked computers we have developed our test in
such a way that separate containers were located on
separate machines (one container on one computer). In
the initial test setup, each JADE container hosted a pair:
one user agent and onespammeragent. At a given time
all spammeragents started sending messages to all user
agents (including these residing within their own con-
tainers/computers). The general scheme of interaction
between threespammeragents and three user agents
(located on three computers) is illustrated in Fig. 1.
Here, aspammeragent from Container-1 (located on
Computer 1) sends messages to user agents residing
within Containers 1, 2 and 3 (located on Computers
1, 2 and 3). Similarlyspammeragent residing within
Container-2 (located on Computer 2) sends messages
to user agents residing within containers 1, 2 and 3
etc. Note that, within the JADE platform, all posted
messages are put in a receivers’ message queue [14,15]
and then they are processed by the receiver (see Fig. 2)
and thus message spamming is rather expensive from
the point of view of memory utilization.

To measure the performance we utilized a starter
agent which initiated the spamming process and mea-
sured processing times. During the execution of the
test, each spammer agent “broadcasted” a certain num-
ber of messages and the total time of this broadcast was
measured. Separately the time of processing of all mes-
sages flooding the system (from the time that the start
command was released, until the last agent completed
processing of its last message) was also measured.

The first series of tests was performed on 8 Sun work-
stations, each with an UltraSparc III processor running
at 300 MHz and 192 Mb of RAM. All these machines

Table 1
Message sending and receiving times

Agent pairs Spamming Receiving
time (ms) time (ms)

2 40034 87053
3 24440 141778
4 25128 217501
5 25217 313625
6 28843 448181
7 35164 634847
8 40624 821341

were Internet-connected through a Cisco switch with
full backplane 100 Mbits/s transmission rate. We have
used ACL messages with content consisting of 300
ASCII characters. A total of 5000 messages were sent
by each spamming agent to each user agent. Experi-
mental results are summarized in Table 1 and Fig. 3.

A number of observations can be made. (1) For the
(relatively small) number of computers used in this test
the total “spamming time” practically does not depend
on the number of recipients (Fig. 3) and it can be re-
lated to the broadcast command used to send messages
around. It is only after the total number of spamming
agents becomes larger than 5 when the total spamming
time starts to increase. (2) As the total number of agent
pairs increases, the receiving time starts to increase im-
mediately. (3) When each of 8spammerssent 5,000*8
= 40,000 messages; resulting in a total of 320,000 mes-
sages flooding the system (with each message size be-
ing slightly more than 0.3 Kbytes – message and its
ACL wrapper – totaling approximately 100 Mbytes of
data), user agents were able to process them in no more
than 14 minutes.

In the second series of experiments we have changed
the setup in such a way that in each container located

Galley Proof 23/09/2005; 13:26 File: spr179.tex; BOKCTP/ p. 4

4 K. Chmiel et al. / Efficiency of JADE agent platform

Table 2
Message sending and receiving time; varying number of computers,
message size and computer mixture

Number of containers and Message size Spamming Receiving
computers used (characters) time (ms) time (ms)

2 (2 pc) 200 1610 2954
2 (2 pc) 400 1266 2344
2 (2 pc) 800 1110 2141
4 (4 pc) 200 2782 7798
4 (4 pc) 400 1688 6517
4 (4 pc) 800 859 6579
8 (8 pc) 200 3985 26456
8 (8 pc) 400 2063 23284
8 (8 pc) 800 2157 23019
10 (8 pc+ 2 sun) 200 21909 201380
10 (8 pc+ 2 sun) 400 15096 200230
10 (8 pc+ 2 sun) 800 31838 198812
12 (8 pc+ 4 sun) 200 24530 290579
12 (8 pc+ 4 sun) 400 23344 289528
12 (8 pc+ 4 sun) 800 18719 291536
14 (8 pc+ 6 sun) 200 26701 398910
14 (8 pc+ 6 sun) 400 22437 393028
14 (8 pc+ 6 sun) 800 30484 398046

Distributed JAD E runtime

A1

A2

Post the message in

A2 s message queueSend the message

Prepare the

message to

A2

Get the message from

message queuue and

process it

Fig. 2. JADE message processing scheme.

on each computer we have instantiated three spammer-
user agent pairs (the remaining parts of the test sce-
nario were unchanged); see Fig. 4. This time we have
utilized 6 Sun workstations and 8 PC’s with Pentium
4 processors running at 1.6 GHz, while each computer
had 256 Mb of RAM. In our experiments we have var-
ied the message size and experimented with homoge-
neous and heterogeneous environments. The results
are summarized in Table 2.

The results are quite interesting. (1) Overall pro-
cessing time does not seem to depend too strongly on
the message size; at least in the range of messages that
we have used. Here, we have conjectured that 800
ASCII characters represent a rather large message for a
standard, communication oriented, message exchange.
(2) This time we have run our experiments in batches,
where sending messages of size 200 was followed by
sending messages of size 400 and 800. We believe
that this process explains in part the drop in message

sending time (some form of process initialization takes
place within JADE). We do not have, however any rea-
sonable explanation for the further drop of message
sending time between messages of size 400 and 800
that occurred in some cases. (3) Overall, in the largest
case we were able to process: (3× 14)*(3 × 14)*50
= 135200 messages; for a total of more than 108.2 Mb
of data; in approximately 6 minutes. (4) This latter re-
sult, combined with these obtained in the first series of
experiments confirms thatJADE scales very well when
agent-to-agent messaging is concerned.

3. Performance of agent creation and migration

The second group of tests was designated to test the
support that JADE provides for creation and migration
of a large number of agents. This is in response to po-
tential of utilization of agents in implementation of sys-

Galley Proof 23/09/2005; 13:26 File: spr179.tex; BOKCTP/ p. 5

K. Chmiel et al. / Efficiency of JADE agent platform 5

0

5

10

15

20

25

2 3 4 5 6 7 8

agent "pairs"

ti
m

e
 p

er
 m

es
sa

g
e

[m
s]

Spamming

Receiving

Fig. 3. Average message sending and receiving times for 2–8 ma-
chines (and thus spammer-user pairs); calculated by dividing total
times by a number of sent messages.

tems in context of which agent mobility is considered
to be particularly attractive.

3.1. Agent migration

The first experiment was focused on pure agent mi-
gration and was mimicking a relay-race. As previously,
a fixed number of containers were placed on separate
computers. Each container constituted a “place” where
agent runners “exchange batons.” The “race” starts
in JADE’s “Main-Container” and participating agents
move to ‘Container-1” (on a different computer). There
agents “pass the relay baton” by exchanging ACL mes-
sages with agents awaiting them and then stop and wait
for the next time when they will become runners. In the
meantime, the second group of agents (these that have
received message-batons), proceeds to the “Container-
2” (on the next computer). Then the process repeats.

In the first series of experiments the complete race
consisted of 5 laps and ended when the last agent com-
pleted the last lap and reached the “Main-Container.”
Here, two tests were performed. In the first one, four
runner teams were migrating within an increasing num-
ber of containers/computers.

For the homogeneous setup each container was
placed on a Sun workstation (as described above). We
have also used two PC’s with a Pentium 120 MHz pro-
cessor and 48 Mb of RAM to create a heterogeneous
configuration consisting of 4 Suns and 2 PC’s. In Figs 5
and 6 we depict the total migration time for four agent
groups and increasing number of containers.

In the second test, an increasing number of run-
ner teams migrated around four homogeneous comput-

ers/containers, or around a heterogeneous setup con-
sisting of two Sun workstations and two PC’s. Figures 7
and 8 illustrate the results of increasing the number of
agent-teams while keeping the number of containers
constant.

In the third series of experiments we have decided
to substantially increase the number of agent teams. In
Fig. 9 we present the total race time for the homoge-
neous environment consisting of 4 and 8 Sun worksta-
tions and 20, 40,. . ., 100 agent teams. The results for
4 workstations are very similar to these in the case of a
small number of agents (as the number of agent teams
increases, race time increases almost linearly). The
situation changes considerably for 8 machines. Here,
we were not able to complete the experiment for the
largest case (100 agent teams) due to the “out of mem-
ory” error. This is likely to explain the faster increase
of race time for more than 40 agent teams per machine.
As memory becomes a scarce resource, total execution
time increases more rapidly. Observe, however, that
even in this case, for 40–80 agent teams, the increase
of race time is almost linear again.

In the next series of experiments, we have scruti-
nized 20 runner-teams migrating around 8 Sun Work-
stations for an increasing number of laps. Results are
summarized in Fig. 10 and, as expected, the race time
is almost linear again.

In the final series of experiments we have used 4,
6 and 8 PC’s with Pentium 4 processors running at
1,6 GHz, with 256 Mb of RAM each. We have experi-
mented with 20, 40 and 60 runner-teams completing 3
laps. The results are summarized in Fig. 11; and, again,
an almost linear behavior can be observed.

Overall, regardless of the test, we have observed be-
havior that, for all practical purposes, should be re-
garded as linear scaling (the case of running out of
memory does not contradict this general assessment).
Note also that JADE did not collapse even when a to-
tal of 640 agents (80 agent teams on 8 machines each)
were residing and migrating in eight containers on eight
computers with a relatively small amount of available
memory (196 Mbytes).

3.2. Shop performance – agent flooding

In this scenario we wanted to test the performance
of JADE when one of its nodes (a JADE container)
was flooded by a mass of agents migrating into it from
other machines within the platform. As an example
of such a situation we have implemented a simplistic
simulation of an e-commerce scenario. Here, one of

Galley Proof 23/09/2005; 13:26 File: spr179.tex; BOKCTP/ p. 6

6 K. Chmiel et al. / Efficiency of JADE agent platform

Container
(Computer) 1

Spammer 1

User 1

User 2

User 3

Spammer 2

Spammer 3

Container
(Computer) 2

 Spammer 1

User 1

User 2

User 3

Spammer 2

Spammer 3

Spamming direction

Fig. 4. Spamming scheme for second set of experiments.

0

20000

40000

60000

80000

100000

120000

140000

160000

180000

200000

2 3 4 5 6

number of containers

ti
m

e
(m

se
c)

Fig. 5. Total migration time; heterogeneous environment; 4 agent teams; increasing number of containers.

the computers represented an e-shop. This machine
(namedServer) contained theMotherShop(MS) agent
(sales manager) whose task was to create aSeller(S)
agent for eachClient(C) agent which visited the e-store
and requested to be served. TheSelleragent and the
Clientagent “negotiated” (exchangingACL messages),
about goods and prices (in our case the “negotiation”
had the simplified form: “do you have beer?,” “yes,”
“please give me one,” “here you are,” “thank you”) and
when the negotiations were completed, theSelleragent
sent to theMotherShopagent the results of this process
and self destructed. At the same time, theClient agent
moved back to the container in which it was created
to report to itsMotherClient(MC) agent (agent which
generated and sent it to the e-store) and after completing
a report self-destruct. Here, theMotherClientagents
were extremely simplistic. They just generated a given
number ofClientagents and sent all of them to “flood”

the e-shop and then waited for their return. This overall
schema of operation is similar to that described in more
detail in [20] and is depicted in Fig. 12.

In the first series of experiments, we have, again, ex-
perimented on the same network of Sun workstations.
EachMotherClientagent was located within a differ-
ent container located on a different machine, while the
shop was also located in a separate container on a sep-
arate computer. Thus, in the largest reported case, 5
MotherClientagents were located on 5 machines, while
theMotherShopwas located on the sixth workstation.
The experimental results (in milliseconds) of system
processing 30, 40, 50 and 120 agents generated by 1, 2,
. . ., 5MotherClientagents (in the largest case a total of
5× 120= 600 agents flooding the system) are depicted
in Fig. 13.

As previously, the processing time is almost linear.
We have experimented also with a very large number

Galley Proof 23/09/2005; 13:26 File: spr179.tex; BOKCTP/ p. 7

K. Chmiel et al. / Efficiency of JADE agent platform 7

0

20000

40000

60000

80000

100000

120000

2 3 4 5 6

number of containers

ti
m

e
(m

se
c)

Fig. 6. Total migration time; homogeneous environment; 4 agent teams; increasing number of containers.

60000

70000

80000

90000

100000

110000

120000

130000

140000

1 2 3 4 5 6

number of agent-teams

ti
m

e
(m

se
c)

Fig. 7. Total migration time; heterogeneous environment; 2 Sun stations+ 2 PCs; increasing number of agent-teams.

of agents in the system and we have found that the pro-
cessing time was still approximately linear e.g. for 520
Client agents the processing time was approximately
75 seconds, while for 1020Clientagents time increased
to approximately 136 seconds. However, we have also
found that at approximately 1430Client agents Java
generated an “out of memory” exception. To verify
the connection of an amount of RAM and numbers of
agents we have made a test on a weaker configuration
which consisted of PC’s with 4 times smaller amount
of available RAM (48 Mb). In this test the exception
appeared after generating approximately 370 agents;
again an almost linear relationship.

In the second series of experiments we have made our
comparisons on two configurations consisting of PCs.
The first configuration (namedweak) consisted of the

MotherShopagent residing within a container on a PII
350 MHz with 128 Mb RAM while theMotherClient
agents resided on 4 PCs with 166 MHz Pentium proces-
sors and 48 Mb of RAM and 5 PCs with 350 MHz PII
processors and 128 Mb RAM each. The second con-
figuration (namedstrong) consisted of a homogeneous
environmentof PC’s with Celeron 2.00 GHz processors
and 256 Mb of RAM each. In Figs 14–16 we present
the results for 10, 20 and 40Clientagents generated on
1, 2,. . ., 9 MotherClientagents.

In Fig. 16 we observe a sudden jump in processing
time when 8× 40= 320 agents flooded theweakcon-
figuration system. Up to this moment (and in previous
experiments- Figs 14 and 15) we observed an almost
linear growth of processing time. We were able to es-
tablish that the jump in processing time was caused by

Galley Proof 23/09/2005; 13:26 File: spr179.tex; BOKCTP/ p. 8

8 K. Chmiel et al. / Efficiency of JADE agent platform

30000

35000

40000

45000

50000

55000

60000

65000

1 2 3 4 5 6

number of agent-teams

ti
m

e
(m

il
i

se
c)

Fig. 8. Total migration time; homogeneous environment; 4 Sun stations; increasing number of agent-teams.

0

5

10

15

20

25

30

35

40

45

20 40 60 80 100

number of agent teams

ti
m

e
in

 m
in

u
te

s

4
8

Fig. 9. Total migration time; 4 and 8 Sun workstations; large and increasing number of agent-teams.

near-exhaustion of memory available within theweak
configuration (note that thestrongconfiguration pro-
cessed, without any problems, total of 40× 9 = 360
agents). To establish limits of both configurations we
have initiated experiments with 160 agents released by
eachMotherClientagent. Here we have clearly reached
limits of what JADE can reliably process on our com-
puters. The system simply started to crash randomly for
large number of MotheClient agents. More precisely,
on in the case of the weak configuration we were able
to repeatedly and reliably complete work with up to 3
MotherClientagents (total of 3× 160= 480 agents).
In the case of the strong configuration we were able
to reliably complete work when up to 5MotherClient

agents flooded in the system (total of 5× 160= 800
agents).

Finally, it is rather revealing to compare the results
obtained on the PC’s running JADE on top of Windows
with these obtained on Sun workstations running JADE
on top of Solaris. We were able to process 1000+
agents on Sun workstations with 198 MB of RAM and
only 800+ agents (of the same size etc.) on PC’s with
256 MB of RAM.

3.3. Geospatial data conflation performance

The last scenario that we have experimented with
originates from [13]. There an agent system devel-

Galley Proof 23/09/2005; 13:26 File: spr179.tex; BOKCTP/ p. 9

K. Chmiel et al. / Efficiency of JADE agent platform 9

2

3

4

5

6

7

8

9

10

11

1 2 3 4 5
number of laps

ti
m

e
in

 m
in

u
te

s

20

Fig. 10. Total migration time; 8 Sun workstations; 20 agent teams; increasing number of laps.

5

10

15

20

25

30

35

40

45

4 6 8
number of PC s

ti
m

e
in

 m
in

u
te

s

20
40

60

Fig. 11. Total migration time; homogeneous environment; 20, 40, 60 agent teams increasing number of PC’s.

Fig. 12. Agent shop experiment; MS – MotherShop agent, S – Seller
agent, MC – MotherClient agent, C – Client agent.

oped to support conflation of geospatial data originat-
ing from multiple heterogeneous data sources was pre-
sented. An initial skeleton of system was implemented
using Grasshopper agent environment [21] and tested
vis-à-vis a client-server architecture. Since this is an
interesting application of mobile software agents we

0

20000

40000

60000

80000

100000

1 2 3 4 5
Number of MotherClient agents

T
im

e
(m

s)

Fig. 13. Agent shop experiment; 30, 40, 50 and 120 agents generated
by each MotherClient agent; increasing number of MotherClient
agents.

have implemented, in JADE, its somewhat simplified
version. Let us start form a very brief description of
the application. For more details as well as background
information reader should consult [13] and references

Galley Proof 23/09/2005; 13:26 File: spr179.tex; BOKCTP/ p. 10

10 K. Chmiel et al. / Efficiency of JADE agent platform

0

5000

10000

15000

20000

0 2 4 6 8 10
Number of MC

T
im

e
(m

s)

Fig. 14. Agent shop; 10 agents generated by each MotherClient
agent; weak and strong configuration.

presented there. Here, Fig. 17 represents a high-level
overview of the system, which consists of the following
agents:

– ROI agents(RA): responsible for managing up-
dates for a particularRegion of Interest(ROI). For
instance, the United Nation divides the world into
ten such regions.RAsare static and remain con-
nected to the central database during the entire
process.

– Conflation Manager(CM): a static agent, located
in the central database and is responsible for gen-
erating a conflation agent for each update request
entry in the queue and initiating the conflation pro-
cess.

– Queue Manager(QM): agent responsible for su-
pervising a priority queue of updates generated by
theRAs.

– Conflation Agent(CA): generated by theCM, is
responsible for a single update request.CAstravel
to the data repositories (feeder databases) to per-
form conflation in a round robin fashion (described
below).

– Query Agent(QA): released from the central
database by theCAs to gather information for
conflation-related queries. Prior to theCA, QAs
arrive in all pertinent databases (for each request
a subset of all feeder databases), perform initial
queries and post the result to be used in the confla-
tion process by theCA. TheQA cooperates with
the Wrapper Agent (WA) to translate the data into
the common data format of the system.

– Change Detection Agent(CDA): small and “unin-
telligent” agent that logs changes to the database,
queries for necessary information and interact with
the WAs to create an update object for transfer to
theRAs.

0

10000

20000

30000

40000

50000

0 2 4 6 8 10
Number of MC

T
im

e
(m

s)

Fig. 15. Agent shop; 20 agents generated by each MotherClient
agent; weak and strong configuration.

-10000

10000

30000

50000

70000

90000

110000

0 2 4 6 8 10
Number of MC

T
im

e
(m

s)

Fig. 16. Agent shop; 40 agents generated by each MotherClient
agent; weak and strong configuration.

– Wrapper Agent(WA): responsible for translating
different geospatial data formats to the common
data model of the system.

Let us now describe a typical scenario of autonomous
management of geospatial data. Here, we assume that
initially data in the feeder databases is synchronized
with the central database. Suppose now, from Fig. 17,
that an update to an attribute value of a spatial fea-
ture is performed on theDB1 database. The resident
CDAnotes the change and queries the database for the
information needed for an update object, namely, the
database identifier, the feature ID and type informa-
tion, bounding box coordinates, and type of update per-
formed (metadata, attribute, topology, geometry or un-
known). This information is given to theWA to create
the update object, which is then sent to the properRA
in the central database (flows 1, Fig. 17). At this mo-
ment, theWAcan self-suspend, while the CDA returns
to watch the database updates.

When the update object arrives at the central
database, it is placed in a quad-tree that contains pre-
defined region objects represented by theRAs. Each
RAmanages updates and when it determines that it is

Galley Proof 23/09/2005; 13:26 File: spr179.tex; BOKCTP/ p. 11

K. Chmiel et al. / Efficiency of JADE agent platform 11

(1)

RA CM QM

WA

CDA

CA

WA

CDA
WA

CDA

CA

CA

QA

QA

QA

CA

Database 1

Central Database 1

(1)

(1)
(2) (2)

(2)
(3)

(4)
(5)

(6)

Database 3

Database 2

Fig. 17. The general multi-agent architecture of the conflation system.

time to check for updates, all the update objects are
placed in a conflation queue managed by theQM, from
where theCM agent removes the highest priority up-
date request from the queue and initiates the confla-
tion process by generating an appropriateCA. TheCA
generatesQAs to retrieve data needed for performing
conflation on that object. TheQAsare sent in parallel
to all the feeder databases in which a potential conflict
with the update exists (flow2, Fig. 17), and begin the
data extraction process.QAs communicate with the
WA agents to translate the data to the common data
format of the system and make it ready for theCA to
start the conflation process.

TheCA first moves to the database from which the
update originated (flow 3, Fig. 17) and obtains the nec-
essary data form theQAagent. TheCA traverses all of
the relevant databases, collecting the information and
executing the conflation algorithm. It assembles the
conflated data in a Round Robin fashion and then brings
the results back to the central database for updates (flow
6, Fig. 17).

For the purpose of our test we have reduced the scope
of the system. In particular,CAswere created directly
by theRA and communicated with WAs and the RA
without mediation ofCDAs, QM andQAs. In Fig. 18
we present an output generated by the JADE provided
Sniffer agent in the case of two regional databases, i.e.
two WA agents named C1 and C2 residing in Contain-
ers 1 and 2. The illustration shows messages sent for
two updates in local databases. First of them requires
intervention of oneCAand two are needed in the second
case.

For our experiments we have used the above de-
scribed Sun workstations and, in the second series of

experiments, PC’s with P3 processors running at 2G Hz
and with 256 MB of RAM each and connected by a 100
Mbytes/s switch. In all cases, separate instances run-
ning MySQL database were used and separate JADE
containers were located on separate machines. To
test the performance of JADE we have set theCen-
tral Databaseon one of the computers. The remaining
computers hosted “feeder databases.” Then we have
observed time of completion of a single round of system
operation while increasing the total number ofConfla-
tion Agents. In the first experiment, we have used 7 and
8 Sun workstations (6 and 7 feeder databases) and were
able to increase the total number of conflation agents to
250. For 300 conflation agents the system has ground
to a halt and did not produce results within a couple of
hours. The results are summarized in Fig. 19.

Interestingly, we observe here a similar behavior as
we did for the experiments with spamming, where the
early increase of “problem size” resulted in decrease of
total completion time. We believe that we have run into
the same problem as in the case reported in Section 2.

In the second series of experiments, we have used 1
through 7 PC’s running feeder databases and increased
the total number of conflation agents from 50 to 1000.
The results are summarized in Fig. 20 and, again il-
lustrate an almost linear scalability of the system. The
only exception is when we run the system with one
central database and one feeededr database (an extreme
case). Here, we were not able to reliably complete
execution of the system with more then 200 confla-
tion agents. Since we were able to complete execu-
tion of the system with 1000 agents, we have decided
to use 7 PC’s running feeder databases and increase

Galley Proof 23/09/2005; 13:26 File: spr179.tex; BOKCTP/ p. 12

12 K. Chmiel et al. / Efficiency of JADE agent platform

Fig. 18. Sniffer agent output. 1–2. local database registration; 3. notice of update in C1, RA creates CAtask00 agent; 4. this agent migrates
to the container with C1and asks it for an update; 5. C1 queries its database and replies; 6–7. analogical actions of CAtask00, this time within
container hosting C2; 8. CA returns to Main-Container and reports to RA, the latter performs insert query; 9. notice of update in C2, RA creates
CAtask10 and CAtask11 agents; 10–19 analogical as in the case of actions of the CAtask00 agent.

70000

60000

50000

40000

30000

20000

10000
50 100 150 200 250

Number of Conflation Agents (CA)

T
im

e
(m

s)

Fig. 19. Geospatial Data conflation, 7 and 8 Sun workstations, increasing number of conflation agents.

the total number of conflation agents until the system
crashes. We were able to reliably complete one round
of “pseudo-conflation” with up to 2000 agents. The
results are illustrated in Fig. 21.

As we can see, even in a relatively complicated sce-
nario, the system scales almost linearly. Furthermore,

when 8 computers with a relatively large amount of
memory are used, system scales up to 2000 agents.
However, during our experiments we were able to find
a strong relationship between the behavior of the sys-
tem and the network support. When performing exper-
iments on a larger network, where more than 60 com-

Galley Proof 23/09/2005; 13:26 File: spr179.tex; BOKCTP/ p. 13

K. Chmiel et al. / Efficiency of JADE agent platform 13

0

10000

20000

30000

40000

50000

60000

70000

80000

90000

50 200 350 500 650 800 950
Number of CA s

T
im

e
(m

s)
1 2 3

4 5 6

7

Fig. 20. Geospatial Data conflation, 1–7 PC’s, increasing number of conflation agents.

puters were connected to a single 100 Mbytes/s switch,
we were often unable to complete experiments with
more than 200 agents. The error messages indicate that
the Java RMI was incapable of properly handling op-
erations in a highly congested network (local System
Administrator indicated similar problems with connec-
tivity even when running Seti@Home, which indicates
the level to which the network was congested). After
moving back to a smaller (and less utilized) laboratory,
we were able to complete tests described above with-
out any problems. Overall, this illustrates, again, that
as far as agent creation and mobility are concerned,
JADE scales very welland the only limitation come
form Java and the hardware on which JADE is run.

4. Concluding remarks

The aim of our work was to follow and expand the ex-
perimental research presented in [12] (where JADE 2.5
was used). Here, we have used the, most recent, JADE
3.1 and in addition to messaging performed experi-
ments focused on agent creation and migration. Our
main goal was to establish if JADE can be used to as
a tool supporting the research program put forward by
Nwana and Ndumu in [11]. In other words, to find out
if JADE can be used to develop and implement large
agent-based software systems.

Our tests indicate that JADE is a very efficient envi-
ronment limited only by the standard limitations of Java
programming language, which is interpreted and exe-

cuted in a Virtual Machine: processor speed, amount
of available memory and speed of network connection.
The environment itself does not introduce substantial
overhead. Executing JADE on a relatively antiquated
hardware (PC’s with Pentium II processors running at
120 MHz with 48 Mbytes of RAM and workstations
with UltraSparc III processors running at 300 MHz with
192 Mbytes of RAM) we were able to run experiments
with thousands of agents effectively migrating among
eight machines and communicating by exchanging tens
of thousands of ACL messages. Furthermore, improve-
ment of the “quality” of hardware resulted in immediate
increase in the number of agents and messages that the
system was able to accommodate (as well as a substan-
tial reduction of processing time). Finally, and even
more importantly, in all our experiments, any increase
in the number of agents and/or messages resulted in a
linear increase of processing time.

It has to be stressed that it does not really matter
here how realistic or unrealistic our experimental sce-
narios were. Even if one is to argue that they are com-
pletely artificial, they still show how efficient and scal-
able JADE is. Therefore, there exists no excuse for
agent researchers, but to start designing and implement-
ing large software systems, consisting of hundreds of
agents and study their behavior. We can do it already
today and there is no reason to stop with demonstrator
systems consisting of only a few agents. And we be-
lieve that this is very good news for the future of agent
research.

Galley Proof 23/09/2005; 13:26 File: spr179.tex; BOKCTP/ p. 14

14 K. Chmiel et al. / Efficiency of JADE agent platform

180000

160000

140000

120000

100000

80000

60000

40000

20000

0
50 100 150 200 250 300 350 500 600 800 1000 1300 1600 2000

Number of Conflation Agents

T
im

e
(m

s)

Fig. 21. Geospatial Data conflation, 8 PC’s, increasing number of conflation agents.

References

[1] J. Hendler,Is There an Intelligent Agent in Your Future? Na-
ture, http://www.nature.com, March 11th, 1999.

[2] M.L. Griss, My Agent Will Call Your Agent. . . But Will It
Respond? Technical Report, Hewlett Packard, 1999, http:
//www.hpl.hp.com/techreports/1999/HPL-1999-159.pdf.

[3] N.R. Jennings, An agent-based approach for building complex
software systems,Communications of the ACM44(4) (2001),
35–41.

[4] T. Berners-Lee, J. Hendler and O. Lassila,The Semantic
Web, Scientific American, May, 2001, http://www.sciam.com/
article.cfm?articleID=00048144-10D2-1C70-84A9809EC5
88EF21.

[5] P. Maes, Agents that Reduce Work and Information Overload,
Communications of the ACM37(7) (1994), 31–40.

[6] R. Deters,Scalability & Multi-Agent Systems, 2nd Interna-
tional Workshop Infrastructure for Agents, MAS and Scalable
MAS. 5th Int. conference on Autonomous Agents, May-June
2001.

[7] N. Wijngaards, M. van Steen and F. Brazier,On MAS Scala-
bility, Proc.2nd Int’l Workshop on Infrastructure for Agents,
MAS and Scalable MAS. May 2001.

[8] P.J. Turner and N.R. Jennings,Improving Scalability of Multi-
Agent Systems, Proc.1st Int’l Workshop Infrastructure for Scal-
able Multi-Agent Systems, June 2000.

[9] O.F. Rana and K. Stout,What is Scalability in Multi-Agent
Systems, Autonomous Agents 2000, June 2000, ACM Press.

[10] L.C. Lee, H.S. Nwana, D.T. Ndumu and P. De Wilde, The
stability, scalability and performance of multi-agent Systems,
BT Technology J.16(3) (July 1998), 94.

[11] H. Nwana and D. Ndumu, A perspective on software agents
research,The Knowledge Engineering Review14(2) (1999),
1–18.

[12] G. Vitaglione, F. Quarta and E. Cortese,Scalability and
Performance of JADE Message Transport System, pre-
sented at AAMAS Workshop on AgentCities, Bologna, 16th
July, 2002, http://sharon.cselt.it/projects/jade/papers/Final-
ScalPerfMessJADE.pdf.

[13] S. Rahimi, J. Bjursell, D. Ali, M. Cobb and M. Paprzycki,Pre-
liminary Performance Evaluation Geospatial Data Conflation
System, Proceedings of The IEEE International Agent Tech-
nology (IEEE-IAT 2003), Halifax, Canada, 2003, 550–553.

[14] JADE: http://sharon.cselt.it/projects/jade/.
[15] G. Caire,JADE Tutorial: JADE Programming for Beginners,

http://sharon.cselt.it/projects/jade/.
[16] Agent Communication Language Specification, http://www.

fipa.org/repository/aclspecs.html
[17] M. Wooldridge,An Introduction to MultiAgent Systems, John

Wiley & Sons, Chichester, UK, 2002.
[18] M. Paprzycki and A. Abraham,Agent Systems Today; Method-

ological Considerations, in: Proceedings of 2003 Interna-
tional Conference on Management of e-Commerce and e-
Government, Jangxi Science and Technology Press, Nan-
chang, China, 416–421.

[19] K. Chmiel, D. Tomiak, M. Gawinecki, P. Karczmarek, M.
Szymczak and M. Paprzycki,Testing the Efficiency of JADE
Agent Platform, Proceedings of ISPDC 2004, IEEE CS Press,
Los Angeles, 2004, 49–56.

[20] K. Chmiel, D. Czech and M. Paprzycki, Agent Technology in
Modelling E-Commerce Processes; Sample Implementation,
in: Multimedia and Network Information Systems, (Vol. 2),
C. Danilowicz, ed., Wrocław University of Technology Press,
2004, pp. 13–22.

[21] http://www.grasshopper.de.

