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An agent system for managing uncertainty in the integration

of spatio-environmental data

F. E. Petry, M. A. Cobb, M. Paprzycki, D. Al

Abstract Recent applications 1n environmental systems
have necessitated the integration of data from multiple,
heterogeneous sources. The integration process involves
challenges related to issues of uncertainty and imprecision
associated with both the data and the process itself. While
the handling of uncertainty in geographical information
systems {GIS) has been a focal point of research in recent
years, the additional challenges of dealing with multiple
data sources and types, as well as specific fields of analysis,
lead to much more complex situations. In this paper, we
present a framework for the use of fuzzy mobile agents to
address these additional challenges from the standpoint of
large-scale environmental systems.

Keywords Fuzzy databases, Information retrieval,
Large-scale systems, Geography

1
Introduction

A requirement of large-scale environmental systems is that
a wide variety of data sources must be integrated, in-
cluding especially data of geospatial format. For example, a
study of water pollution from industrial and agricultural
sources in a major river basin such as the Mississippi
River involves information of tremendous diversity. This
can include spatial hydrological and ecosystem descrip-
tions, long term rain/snow fall, meteorological records,
land use spatial coverage maps, elc.

A major problem with geospatial data, such as men-
tioned above, is the variety of uncertainty and imprecision
that is associated with this form of data. The need to
handle imprecise and uncertain information concerning
spatial data has been widely recognized in recent years {4),
particularly in the field of geographical information sys-
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tems (GIS). GIS is a rather general term for a number of
approaches to the management of cartographic and spatial
. formation. At the heart of a GIS is a spatial database. The
spatial information generally describes both the location
and shape of geographic features in terms of points, lines
and areas. The full use of many sources of spatio-temporal
data is essential for comprehensive modeling of large-scale
environmental problems.

A number of researchers in the GIS and spatial database
area have explored models of spatial data using fuzzy set
approaches. This can be seen, for example, in the recent
edited book on the modeling of geographic objects with
indeterminate boundaries [4] and the volume of Fuzzy Sets
and Systems on the topic of uncertainty in GIS and spatial
data {10]. Clearly, in order to address the integration of the
various spatial data sources for large-scale environmental
systems, approaches such as these must be considered.

Some early work by geographical scientists in the 1970s
utilized fuzzy sets in topics such as behavioral geography
and geographical decision-making [20, 28, 35]. However,
the first consistent approach to the use of fuzzy set theory
as it could be applied in GIS was developed by Robinson
[38-40]. More recently, there have been a number of efforts
utilizing fuzzy sets for spatial databases including: cap-
turing spatial relationships (9, 10], querying spatial infor-
mation {33, 49], and object-oriented modeling [11, 21, 34).

There are a number of specific spatial data topics that
are relevant to environmental systems, including soils,
tand form classification, ecosystems, etc., for which un-
certainty models have been developed. Issues of vagueness
and inexactness in soil classification have been investi-
gated by researchers [26, 32] and especially by Burrough
(3, 5]. Uncertainties related to vegetation science de-
scription have been reported in {12, 19, 37]. The classifi-
cation of landforms and land cover has also been the
subject of considerable research (6, 15, 47]. Mackay and
Robinson have developed an approach of combining the
sub-models of larger, integrated ecosystem models by
using fuzzy logic to combine conflicting results {31].

In a more general sense, the management of uncertainty
for spatial information in environmental modeling [30]
and decision support systems [29, 42] has also been
extensively considered. Integrated assessment models of
global climate change {36] have acknowledged the issue of
handling uncertainty in such models at several levels [48]).
Recently Yazici and Petry {53] have developed an
approach to cultural theory using fuzzy logic that can be
utilized for integrated assessment to provide quantitative
representation of the social implications of decision



making in such large-scale environmental management
systems.

A major obstacle in large-scale environmental modeling
systems is obtaining the required data from a large num-
ber of varied and distributed sources. We are developing
an agent-based system to integrate such distributed het-
erogeneous environmental data, and are particularly con-
cerned with the management of uncertainty and quality of
data merger. This paper describes research developing
autonomous updating methodologies to provide for the
collection and integration of geospatial data from multiple
sources, including web-based repositories, into a single
database system for subsequent access and retrieval. In-
telligent mobile agents are used as the primary mechanism
for data identification and collection, integration (includ-
ing conflation) and quality monitoring.

2

Spatial data integration approaches

Autonomous updating subsumes several research issues
that must be resolved for a successful system implemen-
tation. Among these are integration of heterogeneous
geospatial data types, resolution of multiple representa-
tions {conflation) and data validation. On the issues of
data integration and conflation, we first define several of
the most frequently used terms and their interrelation-
ships within the general scope of GIS interoperability.
These terms - interoperability, integration, conflation and
fusion - are often used to convey very different ideas, or
alternatively, used so loosely as to be somewhat inter-
changeable, Therefore, clarification of the use of these
terms here will be beneficial. Table 1 shows the 3-tier
hierarchy illustrating our use of these terms.

At the lowest level of the hierarchy is the concept of
data integration. In keeping with the most widespread
use of this term, e.g. [16], our use of data integration is
intended to convey the idea of some process whereby
incompatibilities among varying spatial data formats is
resolved, allowing the various data types to be simulta-
neously analyzed/displayed/processed by a GIS. Data
integration is therefore regarded as a low-level transfor-
mation procedure that requires no semantic knowledge
of the various data. Integration of data types can be
considered within the context of a single GIS, for
example, the integration of vector and raster data for
display purposes, or as part of a distributed system. The
problem with integration techniques is that they tend to
be ad hoc, resolving only specific formats for a particular
application. Qur goal for this approach is to develop a
more general, robust integration methodology that is
valid for the majority of existing geospatial data formats.

The use of intelligent agents that incorporate fuzzy
logic gives the ability to apply semantic knowledge to
integration algorithms, enabling, for example, automatic
schema extensions.

Conflation is a higher-level concept than integration,
because it implies a deeper (semantic and “intelligent™)
knowledge about the data. Conflation results in a state of
agreement among various data sources in which a single,
“best” view of multiple data representations for similar
data types is presented to the user. Thus, conflation logi-
cally can occur only if integration as defined earlier has
already been resolved. Two basic approaches to conflation
exist - a statistical-based approach {41)] and a knowledge/
rule-based approach [7]. Statistical techniques work well
for regular data, such as road networks, while a rule-based
approach is more profitable for irregular or less uniform
data. While a few commercial GIS products employ a
conflation component, it is still a highly manual task with
little automatic support. Previously, [7, 8, 17, 18] we have
developed knowledge-based conflation algorithms along
with an object-oriented conflation model. This work is
extended by incorporating these previously-developed
concepts into a conflation agent, which will be able to act
autonomously and intelligently to conflate data with
multiple representations.

Beyond conflation, which is viewed as an issue only
among similar types of geographic information, e.g,,
vector with vector, the concept of data fusion is the more
generic idea of combining widely varying forms of data,
e.g., multimedia, in a system that can effectively organize
the information in a way that is of benefit to the user. This
concept of the “omni-informational” GIS is discussed in
[45],

Finally, “interoperability” is viewed as the ultimate goal,
encompassing all aspects of representation and semantic
integration and providing a truly seamless view of geo-
graphic data in all its many forms. A UCGIS white paper
(available at http://www.ucgis.org/) notes several long-
term goals related to interoperability, including machine-
interpreted semantics of geographic data, improved
semantic representation for the data, language support
for communication of geographic information and the
development of canonical data models of geographic
information.

Currently there are no available capabilities for
automatically and intelligently: (1) determining available
network-based digital geospatial data resources, (2) inte-
grating the various geospatial data formats into a single
database schema, (3) validating data quality, and (4)
conflating multiple representations. Because the nature of
the problem of integration and interoperability is naturally

Table 1. Hierachy and
examples of terminology

2.1.1.1 Hierarchy of terms

2.1.1.2 Examples

1. Fusion

2, flati
Interoperability Conflation

3. Interchange

Image + Text + Video + Vector +
Raster + - -

Bridge representation 1 + Bridge
representation 2 — “Best” bridge
representation

Proprietary vector format
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distributed, mobile agent technology is a prime candidate
for implementing a solution. Agents can loosely be defined
as any software object operating on the behalf of a person
or business entity. Agents may be permanently fixed on a
given host (stationary agents), or they may be capable of
moving from host system to host system (mobile agents)
in order to perform a given task or series of tasks. The
autonomous, and perhaps even disconnected, nature of
agents enables operation to a designated task or series of
tasks. The following section addresses the ways in which
our use of agents will resolve the problems above related to
spatial data integration.

3

Agent-based system approach

Source data for comprehensive environmental systems are
likely to include vector feature data, image data, terrain
data and possibly other 3D or 4D (temporal) data. To ac-
count for these widely-varying forms of complex spatial
data, an object-oriented (OO) approach to design and im-
plementation issues is taken. The use of an OO paradigm is
beneficial in several ways relative to implementation issues:
(1) an QO approach is the generally accepted one for han-
dling complex data; (2) web-based technologies, including
Java and communication protocols such as CORBA, are
object-oriented, and (3) the encapsulation properties of an
00 approach are compatible with the self-contained nature
of mobile agents. Specialized agent classes are used for
performing continuous, automatic updates to the database,
conflating the integrated data, and monitoring the quality
of data added to the database. Following is a general
description of the use of agents in this methodology.

3.1

Updating and integration

Updating of a database is a topic that must be considered
with respect to two key items, automatic updates and
conflation. The utilization of intelligent mobile agents by
extending and providing them with memory capability is
one avenue that can help resolve these issues. Intelligent
mobile agents can make decisions based on similar con-
ditions encountered in the past and the corrective actions
that were taken.

Mobile agents offer several unique advantages over their
stationary counterparts [25). First, the ability to move to the
source of activity, i.e. a database server, reduces the addi-
tional network overhead involved in remote communica-
tion. For instance, by executing a series of database queries
locally, intermediate results are not required to be trans-
mitted to the remote system; rather, transmission is delayed
until the final query has been executed, thus reducing
overall execution time and bandwidth. In conjunction with
mobility is the ability to easily deploy software to a remote
site. This merely involves instructing the agent to move to
the remote site and begin execution. In this manner, a
server’s functionality may easily and unobtrusively be
extended. Another advantage is the autonomous nature of

agents. Once an agent has moved off of the client machine
to another host, the client machine may safely shut down.
Upon restarting, the client machine needs merely to
re-establish contact to the mobile agent to regain control.

Alternatively, the agent may be programmed to periodically
attempt to return to its originating site.

Agents can be used to update the database (by con-
stantly searching for new and/or updated information in
previously identified repositories) and to systematically
check for any discrepancy in the data collected from dif-
ferent sources. Upon detection of potential data sources,
the agent analyzes the validity of the data and its use in
filling a need for the database. Regarding performance
considerations, it is extremely likely that various compo-
nents of the database system will not be used with the
same intensity at all times. Thus, the mobile agents will be
running constantly, utilizing all available “free cycles” on
all available computers to perform their tasks. In this
manner, the proposed system should be capable of
achieving almost 100% resource utilization.

An integration agent is used to merge new data into the
existing database schema. The primary responsibility of an
integration agent is to analyze the data format, and decide
the best manner of incorporating the new data into the
main database repository. This obviously entails issues
of both data interchange and conflation components of
interoperability discussed earlier.

3.2

Conflation and agent management

Conflation is the area of cartography that involves the
combining of two or more data sources representing the
same geographical location into a single representation of
the area. Traditionally, this has been done manually;
however, efforts begun in the 1980s have led to automated
techniques suitable for certain types of digital spatial data.
Recent efforts have enhanced the original statistical tech-
niques used with a rule-based reasoning system capable of
more sophisticated feature-matching and feature decon-
fliction (removing conflicting data) capabilities. Data
conflicts from multi-source data are inevitable, and this
presents a challenge for users who must sort out the
various representations without any help from the system.
Ideally, multiple representations should be detected and
resolved without the user’s being aware that conflicts exist.
For this purpose, conflation in our methodology is based
on agents that continuously or cyclically check for con-
flation issues as updates to the database are performed.
The integration of a confiation component for the source
data is a vital step in ensuring that only the best quality
data are available for user access.

Conflation of data necessarily implies a component of
uncertainty. That is, how do we know that the new datais a
representation of something that already exists in the
database? And, given that the previous issue is resolved,
how do we determine which representation is “better”?
The issue of data quality as it applies to web-based data
sources must be evaluated on the basis of available in-
formation to aid in the conflation process. A rule-based
system for reasoning under uncertainty has been utilized
for resolving these issues [7].

The database agent protects the data stored in the
database management system by automatically monitoring
and managing its databases and applications as an inte-
gral part of the organization’s computing environment.



t agents can monitor the performance of key
g2, management system (DBMS) resources and, if
o able thresholds are exceeded, send alerts to a
monitor. The system monitor can then correlate
wigh with other system, network, and application
e ation to determine the cause of a problem, and
"!{om‘,rhe problem and/or notify the database adminis-
P ¢. This ability t@ anticipate problems before they
ralor. T ormance helps to ensure the reliability and
ﬂdpa:tbﬂlty of mission-critical applicatiﬂn:s._'ljhe database
¢ engages 1D overall management activities, including

vating agents for updating, integration and conflation
when this 18 deemed necessary or desirable.

[n summary, We believe that the'ideal situation is a
Jatabase management system that is self-adapting. More

ecisely, to address the above-described processes, we

design a system framework in which:

a) data are collected and integrated constantly by the
mobile agents and constantly is being worked on by the
internal automatic conflation agents, and

b) monitoring systems will search for old data and request
that new data will be searched for if the specified data
becomes older than a given limit.

This system of agents enables the automatic updating
and management of large databases with a degree of
efficiency and accuracy that is not possible with the use

of existing techniques.

4

Agent design

This framework incorporates teams of cooperative intel-
ligent agents, all of which are capable of mobility, to
provide automatic, even offline, updating of geospatial
information through conflation of data collected from
various source databases. Optimally, all agents are targeted
at a specific functionality and kept as lightweight as pos-
sible, thus enhancing agent mobility. Each specific dat-
abase format has a specially designed agent to access the
repository and collect and convey data in a common,
neutral format. This affords a tremendous advance in the
key goal of seamless interoperability among the various
geospatial data formats. A certain amount of overhead will
be incurred in providing the required uncertainty rea-
soning; however, by leveraging object-oriented technology;
most of the common features can be abstracted into an-
cestor classes and preloaded onto each gateway node. To
promote a wider range of uses, all agents are configurable,

allowing the end users to optimize on performance versus
advanced feature resolution.

4,1

Fuzzy components in spatial agents

1{1 the context of large, environmental problems we con-
sider two important aspects of the design of our spatial
agents that can utilize fuzzy components. It is clear in this
problem domain that we must be able to: (1) locate the
needed spatial data, and (2) be able to integrate the data
that has been located. Each of these tasks can be ap-

proached by a separate fuzzy component that is part of the
fuzzy agent design,

The first component is a fuzzy search or fuzzy querying
component and as we have discussed, the nature of spatial
data and its complexity dictates that our search must
utilize fuzzy matching techniques. The approach we utilize
in this component of our fuzzy agent is based on the
searching techniques that have been used successfully by
the researchers in fuzzy information retrieval [1]. In par-
ticular we have modeled our query formulation on that of
Bordogna and Pasi [2]. They provide an approach to an
extended Boolean query model by using linguistic query
weights. This lets a query utilize linguistic variables and
the term “important” as linguistic hedges treated as query
weights. The evaluation of the relevance of some given
data to the query is based on the evaluation of the function

auimpurtant: [01 l] — [U* 1] 1

representing the importance of an attribute value in a
spatial object that might be retrieved.

The development of a consistent ontology is always a
problem for both the matching and integration of spatial
data [14]. Certain governmental agencies have developed
controlled representation and terminology for the large
sets of spatial data they have available. One example is the
development of the Vector Product Format (VPF) prod-
ucts by the National Mapping and Imagery Agency [13].
We have developed an approach to the matching of spatial
data for conflation in VPF format [7] that can be gener-
alized and used in our fuzzy agent design. Thus, we con-
sider the representation of the spatial features to have the
general form of attribute-value pairs from the defined
classes of VPE attributes for the specific features allowed,
such as bridges, lakes, railroads, etc.

4.1.1

Fuzzy matching

The matching technique developed is able to accommo-
date cases where values for corresponding attributes differ,
as well as cases where the attribute sets themselves ditfer.
For implementation, each feature is considered as a set of
attribute-value patrs:

((au, Vi), (ﬂIZ: Vi) .-« (@1n, Vin))

((ﬂzu Vll)s (ﬂzzu sz)a cey (ﬂzm, Vzm))

From this representation, a degree of matching similarity
is determined. A’different approach is used for different
attribute value domains. For numeric domains, 4 mem-
bership matching function is used, while a similarity table
is used for linguistic domains. Qur approach to linguistic
attribute matching is to establish a similarity value 5 {in
the range [0, 1]) for each pair of elements of the domain.
This value is determined from the semantics of the domain
and the linguistic terms. The characteristics of the
similarity function s are:

sa(x,y) = say,x) symmetric
sa(x,y) =1 reflexive

for all values x, y € domain of attribute A. For well-defined
values of the domain {e.g. not “unknown” or “other”)
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where x is a well-defined value.

As an example, we consider the Railroad feature’s at-
iribute RRA (Railroad Power Source), which is restricted
to the values allowed in VPF (0 - Unknown, 1 - Electrified
irack, 3 - Overhead electrified, 4 - Non-electrified, 999 -
Other). The similarity table for RRA is shown in Table 2.
Since linguistic similarity is symmetric, we need only show
the lower triangular values in the table. Note that since 1,
3. and 4 are well-defined linguistic terms they are shown
with the reflexive value of 1 on the diagonal, e.g.
seral(3,3) = 1. However, since 0 and 999 are non-specific
categorical values for this particular domain, their diago-
nal values were determined to be less than 1, reflecting the
potential lack of exact matching for such linguistic terms.

Because most features have more than one attribute, we
must also consider semantic interrelationships among the
attributes in determining matching features. These are
represented as rules in an expert system that return
associated weights. These weights are used to either add
credence to the hypothesis of matching features, or to
weaken it. As an example, consider the Railroad attributes
LTN (Number of tracks) and RRC (Railroad category).
The rule for the relationship between the two attributes
is expressed as:

[F((RRL.Itn = 3 and RR2.ltn = 2) and
(RR1l.rrc = 16 and RR2.rrc = 16))
THEN w, — 1.0

Witn 0'51

where RR1 represents the first Railroad object and RR2
represents the second. This rule illustrates a conflict in the
values of the length attribute of the two features. We see
from this example that the resulting weight for LTN is
weakened, giving it less influence than that of RRA in the
combined matching score.

A composite matching score is then computed from the
combination of the expert system weights and the simi-
larity table values. This score is given as:

N
MS,’J = (Z[SfMAk(Ff, Fj) X ESWA,[]) /N

k=1

where A, = kth attribute in both F; and F;, where
0 < k < N, N = number of attributes that describe both F,

and F;, ESW,, = weight associated with A; computed by
the expert system.

4.1.2

Fuzzy integration

Once relevant spatial data has been located, we are faced
with the problem of appropriately integrating it into the

Table 2. Similarity table for attribute RRA

RRA 0 1 3 4 999
0 0.2

1 0.2 1

3 0.2 0.6 1

4 0.2 0.1 0.] 1

999 0.2 0.2 0.2 0.2 0.2

overall primary data. We take here a data fusion approach
that has been developed by Yager and Petry in a somewhat
broader context {52]. For data integration or fusion one
must evaluate whether the currently available spatial data
is adequate for the particular problem or application at
hand. If the available primary information is satisfactory
then we can avoid the costly operations of having to both
find and merge additional information. In case of doubt
about the credibility of our primary information, or if
there is some inconsistency, we can try to resolve these
problems by possibly using the supplementary informa-
tion that might be located.

A general approach to the fusion of information can be
based upon the use of fuzzy modeling technology [51].
Within this approach one can express rules guiding the
fusion process in a natural language-like manner and then
use this knowledge to obtain a formal model for imple-
menting the fusion. Qur focus here is on the application of
this methodology to the problem of fusing our primary
information with supplementary information about
related objects that we have searched for and located.

We will assume our primary information is associated
with some spatial objects and that their attribute value’s
uncertainty can be represented by a possibility distribu-
tion. Specifically, let V be a variable corresponding to an
attribute value of some object taking its value in the set
X = {x1,...,x,} where our concern is the determination
of the value of V. Using the notation of Zadeh’s theory of
approximate reasoning [55] we can express knowledge
about the value of a variable V as

Vis A,

where A is a constraining value. For example if we are
considering the mixing of industrial pollutant outflow in
river systems, a critical variable is the depth of rivers and
streams. So we may have an expression for the Mississipp1
River basin such as:
Depth of the Ohio River at St. Louis is about 40 feet.
A statement of this type influences our belief about the
possibility of an element in the domain X being the actual
value of V. Recalling that many types of linguistic infor-
mation can be represented as fuzzy subsets, a formaliza-
tion of the association of linguistic constraints with
variables can be implemented using fuzzy subsets {56].
Let A be a linguistic expression describing a constraint
on V and associate with it a fuzzy subset A of X. So the
knowledge that V is constrained by A, V is A, affects the
possible value for V and induces a possibility distribution
IT on X such that [1(x) = A(x) indicates the possibility
that x is the value of V.

For example, recall the statement: Depth is about 40
feet. Here the vaiue “about 40 feet” could be represented as

in Fig. 1.
So the induced possibility 1s:
0 x < 30, x >50
B (x —30)/8 30 <x <38
H{x) =4 4 38 < x <42
1—(x-50)/8 42 <x <50

One measure of the uncertainty associated with a possi-
bility distribution introduced by Yager [50] is the



30 38 40 42 50
Fig. 1. Fuzzy Subset “about forty”

specificity of the distribution. Let IT be a possibility dis-
tribution defined over the set X = {xi,...,%,}. The mea-

sure of specificity associated with I1, Sp(I1) is defined as

Sp(TT) = M(x) — (n = 1) S TI(x)

=1J#q

where x, is the element in X with the largest membership
grade, It can easily be seen that Sp(IT) e {0, 1].

Restricting ourselves to the case of a normal possibility
distribution, at least one element has possibility one. If we
let x, have possibility one, then

Sp(M) =1 (n— 1)~ iﬂ(xj)
=2

Thus in this case where x, is fully possible, any increase in
possibility associated with the other elements resuits in a
decrease in Sp(IT), a decrease in certainty, This is, again, in
accord with our intuition of the measure of specificity as a
measure of certainty, for by increasing the possibility of
some element we have increased our uncertainty. We

can observe that if IT and 1’ are two normal possibility
distributions such that IT (x;) < IT" {x;) for all x;, then
Sp(IT) = Sp{IT’).

Now, assume additionally that we have found supple-
mentary data that can also be represented in the form of a
possibility distribution Il; on X associated with the value
of V = x. Our goal is now to fuse these two pieces of
information to obtain information specifically about the
variable V. Our fused information should induce a
constraint on the possible values V can assume; therefore
we want our fused information to also be in terms of a
possibility distribution over V.

The secondary information should be considered only
when the primary information is not “good enough,” that
is, not of sufficient quality, confiicting, not credible or too
imprecise. This sets up a kind of priority between the two
types of knowledge. This observed relationship between
the two types of information can be captured with the
following two simple rules:

Ri: If the quality of the primary information is “good”
then use it.

R2: If the quality of the primary information is not “good”
then use the secondary information.

with the aid of fuzzy systems modeling methodology
[51], this knowledge about when to use the two types of
information can be used to obtain a formal fusion rule. In
order to use the fuzzy systems modeling method we must

express our knowledge base, R1 and R2, in the form of
fuzzy if-then rules. Let the variable Q stand for the quality
of the primary information and use the specificity of the
distribution, Sp(I1) to measure it. Since the specificity of a
possibility distribution takes its value in the unit interval
then the linguistic term “Good” can be represented as a
fuzzy subset on the unit interval. Many choices exist for
the selection of G satisfying usual conditions. Generally the
actual selection of G will be subjective and context de-
pendent. Each selection of G will result in a different in-
stantiation of the fusion rule. One very natural and neutral
choice for G we will use for illustration in the following is a
simple linear form, G(r) = r.

Next, consider the consequent portion of the rules. Let
[T, indicate the possibility distribution resulting from our
fusion process. Then our fusion model is expressible as the
two fuzzy if-then rules:

if Qis G then Is(x) = II(x),
If Qis G then Iy(x) = Is(x) .

This model is an example of a TSK type fuzzy model
(54], and using the reasoning mechanism of fuzzy

systems modeling we can obtain an analytic formulation
for Ti; (x}:

[ (x) = G(Sp(IT)TI(x) + (1 = G(Sp(IT))T(x))

1f we choose as our definition “Gogod information,”

G(r) = r we finally get the following fusion rule we have
been able to easily use:

[ (x) = (Sp(T)TI(x) + (1 — (Sp(TI)IL(x))

4.2

Agent classes

The basic agent framework design incorporates the use of
four distinct classes of agents. These are the updating
agent (UA), the integration agent (IA), the conflation agent
(CA), and the manager agent (MA). The actual number of
instances of agents of each class is not limited, and de-
termination of optimal numbers of each for a given system
configuration should be derived as part of the performance
enhancements after implementation. The various agents
work both in isolation and in cooperative efforts with
other agents, Members of the UA class are responsible for
actually traversing the network in search for geospatial
data relevant to given constraints. These agents are com-
parable to the «Jatabots/infobots” employed by web-based
search engines. Much work has been done in the realm of
configuring agents to selectively filter vast amounts of
information based on selected parameters, and many ex-
isting implementations perform adequately for this pur-
pose [27]. The design of the UA class essentially consists ot
refining general-purpose databots to selectively seek out
geospatial information based on, for example, domain
names or keywords. A close example of an existing system
is the GeoSpecific Search Engine at http://search.geo-
comm.com/. An increasing level of intetligence can be
added to the UAs, such that, initially, a static list of sites 1s
provided (as for the previously identified search engine);
then, as the agents learn about geospatial data properties,

|J--
A
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they are “turned loose” to identify potential sites on their
own.

After the UAs have identified and retrieved a new set of
data, the IAs begin work. These agents are responsible for
intelligently analyzing the format of the new data and
integrating it into the existing object-oriented database
schema. Three possibilities exist for the integration
procedure: (1) the format of the data exactly matches the
qualifications of an existing class in the database schema,
(2) the data is in a format that can easily be converted to
that of an existing class, or (3) the data is in a new, cur-
rently incompatible format. For the first two possibilities,
the data is fairly easily integrated into the existing database
by using the current schema. The third possibility repre-
sents a situation that must be more thoroughly analyzed.
In this case, the IA must decide whether to expand the
database schema to include the new format, or to reject the
data. The schema can be automatically (programmatically)
expanded by the 1A if, for example, the new data is
perceived to be of tremendous value (perhaps the only-
available data for a particular area of interest (AOI), or if
the IA anticipates (perhaps after conferring with the UA)
that a substantial amount of data of the same format is
expected to be included in the future. This can be partic-
ularly difficult for spatial data involving, for example,
fuzzy boundaries in which the class matching is not exact.
We are currently classifying spatial data uncertainties to
be able to extend the schema integration agents.

The CAs incorporate a body of knowledge pertaining to
conflation, including information about data quality pa-
rameters and topological and geometric analysis capabil-
ities such as those described in {7]. Invocation of CAs can
take place in two ways, The first occurs when a user
requests data from the database for a particular area-of-
interest (AOI). The query manager may request the CAs
to identify any possible matching features and to resolve
the conflicts before presenting query results to the user.
In this process, we adapt the previously developed fuzzy
matching approach to the agent environment. Another
possibility is that the user requests updated information
for an AOL In this case, the UAs must be dispatched and
conflation performed “on the fly.”

The following scenario illustrates this incidence of
intelligent updating and the resulting conflation process.
This type of updating is performed when a determination
has been made that better (possibly meaning more cur-
rent, or more accurate) data is required for a given AOL
First, multiple intelligent mobile agents are simultaneously
dispatched to search through all of the potential source
maps to identify and collect data on candidate matching
features. Each agent is tailored to focus on a single feature
category, enabling a team of agents, one for each feature
type, to simultaneously analyze an individual AOI for a
single data source. Moreover, all potential data sources
may be analyzed by agent teams in parallel. Identified
features may be collected by the agents and returned to the
originating server, or optionally, the agents may remain on
the remote server and communicate with the originating
process via remote messaging.

Using the collected information, the agents coordinate

through a single conflation manager agent developed for

the specific role of feature resolution, and containing fuzzy
components introduced in the preceding section. The
manager agent may be resident at one of the gateway
nodes, or may reside on an independent central node,
possibly even a client machine. This process may extend
over multiple iterations until a decision is obtained.
Possible outcomes include the following: data of sufficient
quality was obtained to justify the continuation of the
conflation process, a decision to abort the conflation due
to lack of quality data, or the necessity of human inter-
vention due to a neutral decision. It is our goal to keep the
Jatter to a minimum, if not eliminate this outcome entirely.
In any event, the result is the generation of map data equal
to or superior to any of the original map sources. Figure 2
shows our three-layer approach to system design, while
Fig. 3 shows a breakdown of the mediation layer, in which
our work is primarily concentrated.

[ntelligent mobile agent technology enables the possi-
bility of seamlessly extending current conflation technol-
ogies to include distributed parallel processing. This not
only efficiently utilizes existing resources, but also pro-
vides for autonomous, perhaps offline, operation.

To summarize the design thus far, the system contains:

updating agents that can be trained to locate reliable,
network-resident geospatial data sources,

integration agents that can intelligently analyze and
compare geospatial data formats and programmati-
cally extend the object-oriented database schema to
include new formats,

conflation agents that can detect multiple feature
representations and implement conflict resolution
strategies, and,

one or more manager agents that coordinate and fa-
cilitate collaborative efforts among the working agents.

The design for integration agents is based on previously-
discussed work in database schema integration, and the
conflation agent design draws largely from the rule-based
approach developed in [7].

4.3

Architecture

Issues of communication are always of great concern for
distributed systems, and even more so in those involving
mobile agents. Qur architecture employs a centralized, or
master database in which: (1) update requests are gener-
ated through a priority queuing scheme; (2) data analysis
and conflation agent teams are released when necessary;
and, (3) data changes are collected. The master database
coordinates its update activities through distributed data
repositories. Each repository contains a resident object
assembly agent for creating a CORBA object from local
database information, and a “spy” agent that logs relevant
database changes to a data buffer for sending to the master
database for analysis.

The master database furthermore contains region-
of-interest (ROI) agents that monitor changes to their
assigned geographical data regions. These regions can be
prioritized for the purpose of acquiring updated infor-
mation. For example, in the case of a catastrophic oil spill,
a ROI agent for the area in the immediate vicinity of the
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spill would be given a high priority such that information
is updated, e.g., every hour. A larger region surrounding
the spill might be given a slightly lower priority, such that
updates are made every twenty-four hours, and so forth.
The resident “spy” agents are responsible for sending
logged changes to the master database when the buffer

reaches capacity, if no priority requests are received before
that time.

Conflation is orchestrated in a distributed manner, with
the process being initiated through a request from the
master database. When agents arrive at a distributed data
site, pertinent queries are run and results posted to a local
“bulletin board.” Local conflation agents are then instan-
tiated, which send requests as appropriate to object-

creating and query agents. The final conflation results are
sent back to the master database.

5

Summary and future work

In this paper, we have presented a framework involving
the use of mobile agents with fuzzy matching and inte-
gration capabilities for the basis of a large-scale environ-

™~

Fig. 3. Mediation layer components

mental system. The complex environmental planning and
analysis requirements for such systems today involve
collection and integration of geographical data from
multiple, diverse sources. Although the use of fuzzy logic
is currently concentrated in the conflation agents and the
integration agents, there is certainly room for expansion in
the use of these techniques to other aspects of the system,
particularly the region-of-interest agents, to better enable
them to make priority updating decisions. This method-
ology based upon cooperative intelligent agents 1s pro-
posed as the future direction for autonomous, integrative
environmental databases.

We are currently implementing a prototype of the
described system framework. For testing purposes, a
refinement to the generalized agent framework presented
in this paper will be implemented on a single server, 1n-
tegrated with the Naval Research Laboratory’s Geospatial
Integrated Database (GIDB) [8]. Imitially, data sources will
be explicitly provided, and performance of the agents on
these test data sets will be monitored, and improvements
(re-design) made in response to observed performance.
Parameters targeted for collection include existence/
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location of data bottlenecks, optimal number of agents
for a particular hardware/software configuration, and
measures of resulting data currency.
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