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Abstract

One of the important claims that permeate the current view of information manage-
ment is that ontological demarcation of data and semantic information processing are
going to allow us to infuse “intelligence” into information systems. Separately, it is
claimed that software agents, combined with ontologies will be the foundation of Web
4.0. In our work we are developing an agent-team-based resource management and
brokering infrastructure for computational grids. The proposed meta-level middle-
ware is to utilize both software agents and ontologies. In this context, the aim of this
chapter is twofold. First, we present an overview of found efforts to develop ontolo-
gies to be used in grid and agent-grid computing. Second, we analyze which one of
them, if any, should be the base ontology for the system under development.

Keywords: software agents, grid, resource brokering and management, ontology, se-
mantic information processing.
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7.1 Introduction e D)

Computational grids are considered one of more promising approaches to the devel-
opment of a global computational infrastructure. Unfortunately, while a continuous
stream of research funding is flowing into grids, their uptake is not meeting expecta-
tions of their proponents. One of possible reasons is the learning curve of a potential
user, who tries to find out how to use the grid. In [1] it has been claimed that utiliza-
tion of software agents may help the grid reach its potential. The metaphor here is that
while the grid will provide the resources (data and computational power—the brawn),
software agents will supply the system with “intelligence” (the brain). Obviously,
this claim is somewhat controversial (e.g. because software agents have a number of
staunch critics and/or those who claim that there is no such thing as a software agent,
except for marketing [2]). Separately, according to Hendler [3], software agents go
hand-in hand with ontologies and semantic data processing. Furthermore, in [4] one
can find an argument that software agents and ontologies are going to be the founda-
tion of Web 4.0. Obviously, these claims also need to be taken with a grain of salt, but
the question arises, are the proponents or the critics of agents and ontologies right? It
is our belief that the proof of the pudding is in the eating. One cannot validate either
of these claims without an all out effort to make them work. This is the context of our
current work. Assuming that software agents are one of the keystones for the develop-
ment of the Grid and that ontologies and semantic data processing matches well with
utilization of software agents we proceed the developing a meta-level agent-based grid
resource management and brokering infrastructure.

In the proposed approach (the Agents in Grids; AiG project) software agents work in
teams, which allows us to establish service level agreements (SLA) and assure quality
of service. Each team is represented by an LMaster agent (its manager). The LMaster
is supported by an LMirror agent, which helps facilitate long-term stability of the
team (by mirroring all of the vital team data). Users negotiate with LMasters terms
of job execution (the SLA), or team joining. Information about all existing teams,
their work and job offers is stored in, and provided by, the Client Information Center
infrastructure (represented by the CIC agent). It is assumed that all information in the
system will be ontologically demarcated and semantically processed. A summary of
the results obtained thus far can be found in [5-8], while the current version of the
code is available at [9].

It should be noted that, initially, after a brief overview of grid ontologies, we have
decided to develop and use a very simple one [8, 10]. For instance, the description of a
grid node utilized only three of its possible features: (1) CPU specification, (2) avail-
able memory, and (3) available disk space. However, since our project has reached
its initial goals, it becomes necessary to infuse the proposed system with a robust/-
complete grid ontology. Therefore, in this chapter we provide an overview of existing
efforts in the area of grid ontologies. Furthermore, we evaluate them from the per-
spective of their possible utilization as a core ontology of our system. Let us start our
overview from resource descriptions found in core grid projects.
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7.2 Traditional grid resource descriptions 4) é’ s

7.2.1 Virtuoal grid description language

The virtual grid description language (vgDL; [11,12]) is a language for describing
grid resources and querying grid information services. It was developed as a part of
the VGrADS (Virtual Grid Application Development Software) Project [13]. The
project itself is a result of collaboration between several American universities and is
aimed at creating software systems and frameworks to simplify development of grid
applications. VGrADS works together with several research projects and scientific ap-
plications to acquire practical use cases, but its deliverables have not (thus far) gained
significant adoption.

The vgDL is built on the concept of virtual grids—a set of abstractions expressing
the structure of the grid application. These abstractions are used to enable discovery
of grid resources satisfying the specific criteria without the need to use concrete and
overly detailed constraints. From the outset, the vgDL was designed to keep the in-
significant details out of the way of the grid user. Let us stress that the vgDL does
not serve as a schema for describing resources—it is rather a language to describe
requirements and constraints that the user imposes on grid resources (the Virtual grid)
to complete its task. In this aspect the vgDL is closer to the UNICORE AJO model
than to the GLUE schema (see subsequent Sections).

On the most basic level, the requirements for a single resource in the vgDL are
specified by a series of simple attribute value constraints. However, what makes vgDL
powerful is the notion of resource aggregators:

e LooseBagOf—a set of heterogeneous resources connected in a loose way (e.g.
with ’poor’ connectivity),

e TightBagOf—a set of heterogeneous resources connected in a tight way (‘good’
connectivity),

e ClusterOf—a set of homogenous resources connected tightly.

These aggregators specify also the minimum and the maximum number of nodes in
the set and the constraints put on the nodes. Furthermore, they can be nested to form
hierarchies of nodes.

Another key concept of the vgDL is support for specifying the network connection
type between nodes and aggregates. This is achieved through the use of four network
connectivity operators: (i) close, (b) far, (c) lowBW, and (d) highBW that describe
latency and bandwidth.

These features provide users with a way to easily specify even complex needs for
computing and storage nodes; taking into account the physical and geographical ar-
chitecture of the required environment.

Disadvantages of this approach, with regard to its usefulness in the AiG project are:

e Focus on describing requirements and constraints, while missing the description
of the resource itself—no specification of how the information about resources
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should be stored. \Uy I
e Lack of specification of a standard set of attributes and their values, and/or their : 4
mapping to existing grid Information Services.
e vgDL does not explicitly handle the description of requirements regarding in-
stalled software or libraries—examples of how this may be implemented use
values of custom attributes.
e vgDL is not adopted in core grid projects and was verified only in experimental
conditions.

Bearing this list in mind, we decided not to investigate the vgDL project further.

7.2.2 Condor 1) Lif

The Condor grid middleware [14—17] is a high-throughput computing system, provi
ing users with an environment for transparent execution of jobs on multiple, geograph-
ically distributed machines. It can run non-interactive jobs on any node under control
of the system without the need to modify the source code. The user simply submits a
job, and Condor handles matching the job to available machine(s) and executing it. If
a node becomes unavailable, Condor can automatically backup the execution state of
the job and migrate it to another machine satisfying its requirements. Condor supports
single-process and parallel applications written using different MPI implementations.
Furthermore, jobs submitted to Condor can be ordered to enable sequential execution
of dependent tasks.

All entities within Condor are described using the same abstract language — Clas-
sified Advertisement (ClassAd; [18, 19])—that can serve both as a means of describ-
ing elements of the system and as a query language. ClassAd has been designed to
enable efficient and extensible matchmaking of resources to requirements. Providers
of resources can offer them to the system by submitting ads describing their capa-
bilities and constraints regarding jobs they can run. The same language is used by
consumers of resources for describing their needs, requirements and preferences with
regard to hosts their job should be run on, as well as for describing the job itself. Clas-
sAd is a functional language built around the concept of an expression evaluated by
the engine. The core expression type in ClassAd is the record expression, which is
basically a set of name-value pairs, with the value being either a simple literal or a
complex expression, including nested records.

Matchmaking of ClassAd job-machine pairs is done based on the definition of an
attribute called requirements. The value of this attribute can be an arbitrary expression
that is evaluated in the environment of the other record expression. Therefore if a job
is to be matched to a machine, the job’s Requirements must evaluate to true against the
machine’s description record, and the machine’s requirements in the job’s description
record.

The Condor manual [20] provides a list of machine description attributes along with
their valid values. This list is very extensive and contains attributes sufficient for most
common usages of the system. The built-in attribute set does not, however, allow the
job to have requirements concerning specific libraries or software installed or running
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on the host machine. In such scenarios, machines satisfying these requirements would
need to create and advertise this information as custom attributes. Furthermore, Con-
dor cannot perform advanced matching by following rules defining the relations be-
tween certain attribute values such as a hierarchy of operating system types and their
concrete versions (e.g. all Linux kernel version share the same value of the OpSys
attribute).

Looking into usability of the ClassAd language in our project, we conclude that the
set of attributes describing a machine could certainly be included in the needed on-
tology. On the other hand, the ClassAd language seems too proprietary and restricted
in defining ontological metadata of system resources and relationships between ele-
ments used to describe them. Therefore we cannot consider it as a strong candidate to
be used in our system.

7.2.3 UNICORE

The motivation for creating another popular grid middleware—UNICORE (Uniform
Interface to Computing Resources [21]—was completely different to that of Condor.
Condor was primarily designed to take advantage of desktop computers and small
machines idle processor time and to enable executing jobs in a dynamic environment.
UNICORE'’s aim, on the other hand, was to provide (originally German) supercom-
puter users with uniform access to various resources (scattered around the country)
and to make job scheduling easier and infrastructure independent. In its core version
the user would actually select a single target on which the job should execute. In con-
trast to the Condor, UNICORE on its own does not provide resource brokering, job
checkpointing or migration.

Jobs in UNICORE are described at the user tier of the system using Abstract Job
Objects (AJO)—a collection of Java classes that contain all information needed by the
UNICORE target tier to prepare a native batch for execution. Therefore, UNICORE
does not provide a “language” for describing jobs—it relies on plain Java objects that
are serialized and sent to the UNICORE server. Furthermore, users that do not want to
use the provided GUI for job submission can use the UNICORE client API to create a
job description programmatically. Resource descriptions are stored in the Incarnation
Database (IDB) which contains information needed to transform the abstract job to
a task ready for execution on a specific grid resource. One of the serious drawbacks
of the IDB was that it contained only static information—software and hardware re-
sources. UNICORE did not provide resource monitoring capabilities and therefore
did not support dynamic grid utilization.

Unfortunately for our project, UNICORE does not really define a resource ontology.
Its main focus is on describing jobs that need to be executed and on how to translate
these descriptions in a specific environment where the execution is to take place. Some
of the deficiencies of the original UNICORE were fixed along with the changes in the
schemas of the AJO and the IDB in UNICORE version 6, thanks to the UniGrids
project, but this topic will be considered separately in section 7.3.4.
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7.2.4 Globus Toolkit

The Globus Toolkit [22] is a set of libraries and programs designed to support creating
distributed applications. It addresses such problems as resource access, resource man-
agement, service discovery, security, data transfer and migration, efc. The core of the
Globus Toolkit is not so much of a complete system for executing computation jobs
(as was the case with Condor or UNICORE) but rather a foundation on which more
specialized services are built. Over the years, Globus Toolkit evolved rather notice-
ably and in the fourth version its core functionality and interfaces are primarily based
Web Services.

Considering the resource discovery and management, along with new versions of
Globus Toolkit came also a new version of Globus’s implementation of the grid Infor-
mation Service—the Meta Directory Service. Globus Toolkit 1 used MDS-1 which
relied on a single LDAP server which held information about all resources in the sys-
tem. Resources would sign up into the server and then periodically send updates of
their state. Users would utilize a single server to query the state of a given resource as
well as to find nodes satisfying specific requirements. This solution’s main problem
was poor scalability—LDAP was optimized for a number of queries but not for fre-
quent updates, which occurred when resources sent information about their load. In
MDS-2 [23] the central server’s role was limited to responding to discovery queries,
while finding information about a specific resource was moved to the resource itself.
Here, grid resources started carrying their own LDAP servers (GRIS) that contained
information about their state. The server (GIIS) responded to discovery queries by
sending information requests to all resources and only then updating its internal cache
of resource descriptions.

The information about resources contained in the LDAP databases was structured
following the schema defined in [24]. Specifically, it was organized around a small set
of elementary classes and a much wider collection of auxiliary classes that inherited
the base MDS class and corresponded to concrete resource instances, e.g. the CPU,
memory or file system. Properties of these resources were described using LDAP at-
tributes. In the following snippet a description of memory resource is shown (example
from [24]).

dn: Mds—Device—~Group—name=memory ,
objectclass: MdsMemoryRamTotal
objectclass: MdsMemoryVmTotal
objectclass: MdsDeviceGroup

Mds—Device—Group—name: memory ! D D v c
Mds—validfrom: 200110030128.12Z ‘ @ IE
Mds—validto: 200110030128.12Z . l] v
Mds—keepto: 200110030128.12Z S :
Mds—Memory—Ram—Total —sizeMB: 751 -
Mds—Memory—Ram—Total —freeMB : 642

Mds—-Memory—Vm-Total —sizeMB : 1600

Mds—Memory—Vm-Total —freeMB: 1592
Mds—Memory—Ram—sizeMB : 751
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Mds—Memory—Ram—freeMB : 642 e
Mds—Memory—Vm-sizeMB : 1600 Sl
Mds—Memory—Vm-freeMB : 1592

Along with the introduction of GT3, the Information Services’ LDAP databases
were abandoned in favor of XML based information repositories. Moreover, the de-
scription schemas also underwent major redevelopment—the custom Globus solution
was replaced by a more generic and interoperable GLUE schema, described next.

7.2.5 GLUE

GLUE (Grid Laboratory for a Uniform Environment) is a project started in April 2002
as a joint effort between the U.S.-based iVDGL and the European DataTAG teams.
Its main purpose has been to bring interoperability between the U.S. and European
physics grid projects, through a uniform schema specifying description of grid re-
sources needed for implementation of grid Information Services, resource discovery
and brokering systems. The first version of GLUE was released in October 2002 and
contained definitions of a grid computing element and storage service. Since then,
subsequent documents (1.1, 1.2, 1.3) have expanded the number of supported use
cases, merged and unified notions of computing and storage element into a single
schema, as well as included additional concepts, e.g. those related to administration
of resources. Since October 2006, the GLUE project has joined the Open Grid Forum
and its efforts, focused on finishing version 2.0 of the schema, are continued within
the GLUE Working Group ( [25]).

The schema was published as a description of the conceptual model of a structure
of grid resources, complemented by UML Class Diagrams and tabular descriptions of
defined entities and their relationships. Notions of the schema are independent of the
technology used to enforce the schema and of data model languages. For the schema
to be usable it needs to be mapped to concrete implementations. Such realizations
exist for grid resource descriptions modeled in XML (XSD Schema), LDAP and SQL
(data base structure) for both 1.3 and 2.0 versions of GLUE. Version 1.3 for XML was
natively supported by the Globus Toolkit 3 and a mapping to Condor ClassAds also
exists. The following summary of the schema is based on version 2.0.

The GLUE schema is built around a set of abstract entities that define the basic re-
lationships between elements of the system. Users of the system are organized using
a notion of a Domain—a set of actors. The Domain can be given access to services
through the Access Policy entities. There are entities derived from the Domain: User
Domain, which reflects a Virtual Organization able to access services; and Admin Do-
main with primary goal of hosting services. Both User Domain and Admin Domain
can be organized in a hierarchical structure. Services are always accessible as one
or several Endpoints and the Access Policies actually define rules of accessing End-
points. A Service is composed of Managers—entities managing sets of Resources—
and Shares—targets for sets of resources exposed through Endpoints. A User Domain
submits an Activity using an Endpoint. The Activity is run on a Share into which the
User Domain is mapped by the appropriate Mapping Policy.
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The schema specifies implementation of defined abstract entities—the Computing™';
Service and the Storage Service. Because of the current interest of the AiG project
we will omit the Storage Service and focus on the grid computing resource descrip-
tion. The Computing Service reifies the abstract concepts of the generic Service in the
following way:

1. The concrete implementation of the Manager is the Computing Manager, which
in the simplest case is just the operating system controlling a single node. In
the typical case this might be a batch system (Local Resource Management
System). In a more complex scenario, this could also be a meta level middleware
such as the Condor.

2. The Computing Activity is an OGSA compliant description of a job submitted
to the Computing Service through one of its Computing Endpoints.

3. The Computing Manager manages a set of Execution Environments that depict
physical or virtual computational resources of the Grid. The Execution En-
vironment description is the element that contains the hardware, software and
network characteristics of the resource. The Execution Environment contains
data properties such as (for a complete description including types of proper-
ties, see [26]):

e type of the platform the machine runs on,

e number of physical CPUs in an instance of the Execution Environment
(one physical CPU per socket),

e number of logical CPUs (i.e. the number of CPUs seen by the OS) in an
instance,

e detailed CPU information, such as the name of the vendor of the CPU, the
model, version and clock speed,

e amount of physical (RAM) and virtual (RAM + swap) memory,

¢ information about the operating system such as family, name and version,

¢ type of the network connection between the instances composing the Exe-
cution Environment.

Apart from the system specification, GLUE also specifies a way of describing
available software. This is achieved through the use of Application Environment
entities and their relationships with the Execution Environment. In the XSD
snippet below, we have shown a fragment of the XML Schema describing this
part of the specification of the Execution Environment [27]. We can see that
the ExecutionEnvironment_t type is inheriting the Resource_t type. It consists
of a number of optional (minOccurs=*“0") properties describing the platform,
number of instances of the environment, number and details of instances’ CPUs,
memory, details of the operating system and network connectivity. The type
definition ends with a list of relations to other types (the Associations element)
such as the Computing Share, Application Environment and Computing Activity.
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<complexType name="ExecutionEnvironment_t”> o - @ﬁt

<complexContent>
<extension base="glue:Resource_t”>
<sequence>
<element name="Platform” type="glue:Platform_t”/>
<element name="VirtualMachine”
type="boolean” minOccurs="0"/>
<element name="Totallnstances”
type="unsignedInt” minOccurs="0"/>
<element name="UsedInstances”
type="unsignedInt” minOccurs="0"/>
<element name="UnavailableInstances”
type="unsignedInt” minOccurs="0"/>
<element name="PhysicalCPUs”
type="unsignedInt” minOccurs="0"/>
<element name="LogicalCPUs”
type="unsignedInt” minOccurs="0"/>
<element name="CPUMultiplicity”
type="glue:CPUMultiplicity_t” minOccurs="0"/>
<element name="CPUVendor”
type="string” minOccurs="0"/>
<element name="CPUModel”
type="string” minOccurs="0"/>
<element name="CPUVersion”
type="string” minOccurs="0"/>
<element name="CPUClockSpeed”
type="unsignedInt” minOccurs="0"/>
<element name="CPUTimeScalingFactor”
type="float” minOccurs="0"/>
<element name="WallTimeScalingFactor”
type="float” minOccurs="0"/>
<element name="MainMemorySize”
type="unsignedLong” minOccurs="0"/>
<element name="VirtualMemorySize”
type="unsignedLong” minOccurs="0"/>
<element name="OSFamily”
type="glue:OSFamily.t” minOccurs="0"/>
<element name="0OSName”
type="glue:OSName_t” minOccurs="0"/>
<element name="0OSVersion”
type="string” minOccurs="0"/>
<element name="ConnectivityIn”
type="boolean” minOccurs="0"/>
<element name="ConnectivityOut”
type="boolean” minOccurs="0"/>
<element name="NetworkInfo”
type="glue:NetworkInfo_t” minOccurs="0"/>



126 Parallel, Distributed and Grid Computing for Eng@

<element name="Extensions” '(/

type="glue:Extensions_t” minOccurs="0"/>
<element name="Benchmark” type="glue:Benchmark_t
minOccurs="0" maxOccurs="unbounded” />
<element name="Associations” minOccurs="0">
<complexType>
<sequence>
<element name="ComputingShareLocallD”
type="string” minOccurs="0"
maxOccurs="unbounded” />
<element name="ApplicationEnvironmentLocallD”
type="string” minOccurs="0"
maxOccurs="unbounded” />
<element name="ComputingActivityID”
type="glue:ID_t” minOccurs="0"
maxOccurs="unbounded” />
</sequence>
</complexType>
</element>
</sequence>
</extension>
</complexContent>
</complexType>
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With regard to the AiG project, GLUE is interesting and helpful in at least a few
ways. One aspect is the approach to the role of the grid resource description—it is pri-
marily the input to the resource directory and brokering services. Another important
advantage of the GLUE schema is its wide adoption among grid projects and native
usage in the Globus Toolkit 4. This comes together with the maturity of the schema
and its covering of a large number of real world-use cases. A natural way of utilizing
the schema would be reusing definition of the Computing Service element. In this case
a huge advantage of GLUE is its well-defined, object model as well as the ability to
model not only physical specifications of the resources, but also available applications
and libraries. One clear disadvantage of reusing the GLUE schema is lack of any
ontological (e.g. RDF/OWL [28, 29]) realization. Thus, it would be necessary to cre-
ate one from scratch. Another is the fact that while GLUE is compatible with many
grid middlewares it still does not support UNICORE’s approach. Therefore, within
the context of the AiG project, we are likely to use the GLUE schema as reference,
especially in the area of description of the physical and virtual computing resources.

7.3 Semantic grid description and grid interoperabil-
ity

Thus far we were have looked into grid resource descriptions found among traditional
grid efforts (which have never aimed at utilization of ontologies). Out of them we have
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found that only the GLUE schema could be utilized as the foundation of an ontology
needed in the AiG project. However, this would mean starting from scratch and cre-
ating an ontology using an ontology language (e.g. OWL) from existing XML based
descriptions. Therefore, we will now focus our attention on efforts that already utilize
ontological demarcation. Interestingly, many such projects originate from efforts to
support greater heterogeneity among grid resources both in terms of attribute value
domains and grid middleware interoperability (see, [30] for more details).

7.3.1 The grid resource ontology of Pernas and Dantas

An example of work towards an ontology of grid resources is found in [31]. Here, the
authors’ goal was to create an ontological intermediate layer between the consumer of
grid services and grid resources. This was to enable easier and faster discovery of the
resources as well as to provide common vocabulary for different VOs. The proposed
ontology was implemented in the OWL Full language.

As far as we were able to determine, the project described in [31] has been completed
in 2005 and since then the ontology has not been developed further. Furthermore, the
developed ontology comprised merely 14 classes. This being the case it was actually
less complete than the one used thus far in the AiG project. These reasons lead us to
disregard this effort from our consideration.

7.3.2 The grid resource ontology of Vidal et al. P R @ . [F‘

The grid resource ontology described in [32] was created as an effort to support re=-
source brokering in a grid middleware system. Here the focus of the project was to
enhance resource matching processes. The proposed ontology was used by an addi-
tional intermediate layer between the client of the grid and the grid resource manager
to analyze constraints specified by the client and transform them using automatic rea-
soning to match more resources, not found using traditional attribute-based matching.
The ontology was based on the OWL DL language and consisted of three parts:

e grid based ontology—the foundation ontology consisting of basic concepts de-
scribing physical resources (Computer, Cluster, DiskSpace efc.) and software
(Problem, Domain, Algorithm, Application)

e platform ontology—an ontology extending the platform related concepts of the
Base Ontology with the hierarchy of CPU architecture and operating systems

e grid resource management ontology—a domain ontology specifying problems
and algorithms related to data mining.

An important aspect of this ontology and its usage is that it is not used as a complete
description of the resource or its constraints, but rather as a set of concepts useful for
describing attribute values and enabling reasoning about them. The result of such an
approach is that relations contained in the ontology describe the equality or compat-
ibility of concepts. For example in the Platform Ontology there is a property stating
that the Itanium processor class has architecture of type ProcessorArch64Bits. There
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is, however, no property stating that the Computer class is related to the Processor
class. The ontology on its own does not contain data properties such as the amount
of available memory or the speed of the processor. It also cannot be used to describe
jobs to be submitted to the Grid.

A complete set of ontology files can be downloaded from [33] but judging from
publications related to the project, the ontology itself has not been actively developed
since June 2007. Furthermore, the goal and purpose of this ontology seem to be differ-
ent to the needs of our project and therefore we have decided not to pursue it further.

733 GRIP E}) IF

The GRid Interoperability Project (GRIP) [34] was aimed at bringing about inter-
operability between UNICORE and Globus grid middlewares as well as providing
brokering capabilities for the UNICORE. It was a 2-year project running in 2002-04.
Its results included creating interoperability layers between UNICORE and Globus
Toolkit v2 and v3, an abstract ontology of the resource, and a common resource bro-
ker for both Globus and UNICORE resources. The project also laid foundations for
the adoption of the OGSA standards in UNICORE.

From the point of view of the aim of this chapter, the most interesting aspect of
GRIP is the matching and mapping phase of creating the Globus-UNICORE inter-
mediate layer. Since the process of creating a translator between the two has been
described in a rather detailed way in [34], below we highlight only the most important
points. The resource ontologies for both systems were extracted using the PCPack
tool [35] from the GLUE schema in case of Globus and from the AJO JavaDoc docu-
mentations for the UNICORE. While the PCPack does not natively support the OWL
language, it enabled us to easily, graphically customize and refine resulting ontolo-
gies. Afterwards the two ontologies were compared to try to match concepts contained
therein. The most important differences found in the process were those of the scope
of descriptions. UNICORE descriptions contained information about static hardware
and software capabilities of the resource. The GLUE schema, on the other hand, did
not specify software capabilities. However, apart from static hardware capabilities, it
described the dynamic information, e.g. the current load of the resource. This being
the case, only the intersection of these two “universes,” i.e. the static description of
hardware capabilities could have been mapped.

Unfortunately we were not able to find the complete PCPack ontologies used in
the course of the project, nor could we acquire the XML files used for mapping the
ontology terms. Therefore, we cannot present an example of how these would de-
scribe a sample resource or discuss details of the implementation. We can, however,
discuss results of two projects following this effort— the uniform interface to grid
services (UniGrids) and the Grid Ontology project.
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7.3.4 UniGrids, OGSA and the grid ontology

UniGrids (Uniform Interface to Grid Services) was a follow-up on the GRIP project.
Its main goal was to design and implement a grid middleware system compliant with
the Open Grid Service Architecture (OGSA) standards. It was to be based on the
UNICORE and the results of the GRIP project. However, as the project developed,
it was substantially modified—especially looking into the internal structure of the
proposed ontology.

In terms of resource descriptions and requests, the UniGrid project brought the adop-
tion of the XML to the description of the incarnation process. Prior to the UNICORE
6, the incarnation process was described using custom formatted text files, while in
version 6 they became XML-formatted and contained elements from the OGSA JSDL
namespace. These were used mostly to describe the resource capabilities descrip-
tion such as the operating system, number of nodes or CPUs per node. Furthermore,
the UniGrids project brought the specification of the grid Resource Ontology and the
more general grid Ontology [36]. The ontology was designed to form a basis for au-
tomatic matching of many different grid middlewares as well as an easy addition of
new systems.

The proposed ontology was built using the OWL language and was split into several
layers. The core layer (referenced in [36] as the foundational ontology) is a set of
classes forming the high-level, common view of grid elements, such as virtual orga-
nizations, abstract resources, security related entities, abstracts actions and tasks. On
top of the base ontology, the OGSA and the S-OGSA ontologies were defined. They
introduce concepts related to these standards as well as middleware specific ontologies
such as the Globus Ontology and the UNICORE ontology.

A very important part of the ontology are classes and object properties representing
the abstract grid job and the way it is translated to concrete processes for the target
machine. Approach presented in the ontology is very similar to the one from the
UNICORE—it is based on the concept of the Abstract_Job and the idea of its Incar-
nation to the local resource. An Abstract_Job can also contain multiple Actions so it
can be used to model workflows. Apart from jobs, the process of incarnation also cov-
ers concepts such as the file system Directories, the system Processes and user logins.
The ontology also contains a set of classes related to the quality of service and service
level agreements and their negotiation. This functionality is provided by means of
the QoS class and its subclasses: Advertised_QoS, Agreed_QoS, Observed_QoS and
Requested_QoS. The Quality of Service is defined on the level of single Actions and
Resource _Sets assigned to them and negotiated by the Broker. It should be noted that
while these classes are joined with relations to other concepts of the ontology, they
lack data properties describing the concrete terms of the agreement, such as for ex-
ample: start time, end time, and cost of running the Action on the ResourceSet. Note
that these concepts are used directly in our system when users negotiate jobs with
LMasters [8].

Looking into more details, resources are described using the Resource abstract en-
tity, which is inherited afterwards by more specific resource type entities: Disk, File,
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Network, Processing, Resource Collection (which basically is a set of resources) and
Software. Properties of the ontology provide means of describing resource structures
of arbitrary complexity combining computing and storage capabilities. Properties of
resources are specified by the Resource_Property entities which correspond to the
WSRF WS-ResourceProperties standard. To illustrate the approach, in Figure 7.1
we can see the resource hierarchy along with the way they are exposed to clients—
through the Service class.

pl:Resource

plisExposedByService”

\\\’ plSevice | | plNetwork

plProcessing plInsk

pl:Software

plExecution_Service

\prosesResmu cet

plResource Collection

Figure 7.1: The hierarchy of resource concepts in the grid ontology

The important thing to note is that the WS-ResourceProperties standard does not
define a set of properties that can be used for describing resources. Instead it defines
a meta-layer of these properties—it includes terminology, concepts and operations
needed to expose the definition of properties and their values; query and update the
property values. Therefore, the ontology itself does not provide concepts needed to
completely describe the physical characteristics and capabilities of the resource. As
noted above, it also does not provide us with the right set of concepts needed for job
contract negotiations. We find this to be a serious deficiency as it would require a
significant effort to extend what exists to the point of usefulness in our project. On
the other hand, we can see here a mature and complete set of concepts describing the
overall structure of the grid infrastructure as well as the classes related to abstract job
descriptions, which might provide us with very important ideas and insights.

7.3.5 Core grid ontology

Finally, let us describe the effort that seems to be the closest to our needs and that
is likely to be adopted in our project. The Core grid Ontology ( [37], [38]) is an
OWL demarcated, grid architecture independent, collection of concepts and relations
between them that could be extended to include middleware specific properties. In
this case, the authors did not create an ontology with any specific goal (e.g. ontology
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of a specific middleware) but instead wanted to provide a generic ontological grid
description for further extension and use by semantic grid applications.

Proposed ontology does not capture the whole universe of the Grid but was created
by examining various grid architectures and extracting core concepts common to all
of them. The result of this process is a layered model of the generic grid architecture,
containing, looking from the top to the bottom:

e grid VOs and applications—classes such as VO, GridUser, GridApplication and
Policy describing the configuration and application of the Grid,

o grid middlewares and services—grid middleware, components, libraries and
services enabling core grid functionality,

e Resources—classes describing resources, such as ComputingElement, Work-
erNode and various resource physical description concepts like CPU or Stor-
agelnterface.

Apart from the classes, the proposed ontology also defines relations between them,
using object and data properties. Thanks to these properties, it is possible to create
a complete structure of a multi-VO grid environment with interconnected elements.
The VO contains registered participants - either GridResouces or GridUsers and can
contain Sites. Each Site can have GridComponents such as ComputingComponent,
StorageComponent or ResourceBroker. The important class for computing jobs is the
ComputingElement—a subclass of ComputingComponent—which can have Queues
and WorkerNodes as well as installed software such as GridMiddleware and Operat-
ingSystem. The WorkerNode is the resource which runs the job, and which is likely to
contain a CPU. The vocabulary of concepts representing grid resources is also rather
extensive—we have shown it in Figure 7.2.

Figure 7.3 shows a diagram of the structure of the sample grid site—that of the
University of Cyprus Grid—based on the instances provided in the ontology OWL
file. We can see that the CY01-LCG?2 site has four GridComponents:

e uil0l.grid.ucy.ac.cy—an instance of the UI class
e sel0l.grid.ucy.ac.cy—a StorageElement

e rbl01.grid.ucy.ac.cy—a ResourceBroker

e cel0l.grid.ucy.ac.cy—a ComputingElement

The cel101.grid.ucy.ac.cy computing element, in turn, handles three WorkerNode in-

stances, the dteamQ Queue and runs two services: openpbs_ucy which is an instance

of the PBS job manager and maui_ce_ucy—an instance of the Maui job scheduler.
Worker nodes are described as shown in the following OWL snippet.

<WorkerNode rdf:ID="wnl02. grid .ucy.ac.cy”>
<belongToVO>
<VO rdf:ID="Dteam”>
<hasName rdf:datatype=
“http: //www.w3.0rg/2001/XMLSchema#string ">
dteam
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Figure 7.2: The hierarchy of grid resource concepts in the Core Grid Ontology
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Figure 7.3: The structure of a sample grid site described using the Core grid On-
tology

</hasName>
</VO>
</belongToVO>
<hasID>
<IP rdf:ID="IP_.WN102_UCY ">
<hasName xml:lang="en”>194.42.17.237 </hasName>
</I1P>
</hasID>
<hasCPU>
<CPU rdf:ID="CPU__Intel”>
<availableNum
rdf:datatype="http: //www.w3.0rg/2001/XMLSchema#int >
2
</availableNum>
<hasModel xml:lang="en”>Xeon</hasModel>
<clockSpeed xml:lang="en”>2.8GHz</clockSpeed>
</CPU>
</hasCPU>
<hasName rdf:datatype="http: //www.w3.0rg/2001/XMLSchema#string”>
</hasName>
<InstalledSoftware>
<ICG rdf:ID="LCG2.6.0"/>
</InstalledSoftware>
<InstalledSoftware>
<Linux rdf:ID="Scientific_Linux_303">
<rdfs:comment
rdf:datatype="http: //www.w3.0rg/2001/XMLSchema#string”>
A linux OS.
</rdfs:comment>
</Linux>
</InstalledSoftware>
</ WorkerNode>
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As can be seen from the above description, relationships between classes are rela-
tively complete, although there are still some missing concepts; e.g. lack of properties
related to many of the gridResource subclasses such as the NetworkResource, Memory
or StorageResource. However, the collection of grid infrastructure related classes is
rather impressive—containing entities such as GridlnformationService, JobManager,
JobScheduler or WorkloadManagement.
A very helpful element of the ontology is the provided example set of instances of
the classes corresponding to authentic elements of a grid environment in the EGEE
project from which we have taken the examples shown in this section. NN ,

7.4 Agent—grid integration

Thus far we have looked into traditional grid resource descriptions and attempts at
developing a grid ontology. However, since our project is going to utilize both on-
tologies and software agents, let us now focus our attention on efforts to provide an
ontological basis to agent-grid integration efforts. Here we discuss two approaches
that we were able to identify.

7.4.1 The Agent Computational Grid

The first example is the Agent Computational Grid (ACG) project [39,40]. Motivation
for this effort was to propose an agent-based computing and service exchange envi-
ronment in which agents expose selected core features of the grid functionality; e.g.
member registration and service discovery. Proposed agents do not introduce signif-
icant cognitive features to the grid (are not an actual “brain”), but utilize capabilities
such as environment awareness and adaptability to improve the robustness of the grid
and enable grid functioning under highly dynamic conditions. Another concept of the
ACG is interoperability of grid members. It is suggested that the system should be
able to accept agents of different platforms as well as enable exposing legacy services.
Here, agent interoperability is accomplished on the basis of the Mobile Agent System
Interoperability Facility standard [41], while wrapping of legacy systems is based on
the integration of CORBA distributed objects technology. The ACG is designed around
two way CORBA integration—existing CORBA services can be exposed through an
agent based interface at the same time agents’ capabilities can be used as CORBA
services.

Services in the AGC are described by means of XML with a clearly defined DTD
schema. As specified in [40] the description contains the following fields:

e Name: This is an optional string that can be associated with a service

e Service Id: This is a required element that uniquely identifies the service. Each
service has a unique id

e Description: describes some features of this service

e Access: describes how to invoke and use a service The access method fields
provide the placeholder for any kinds of service invocation schema. A service
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description may contain multiple access method tags as there could be multiple
ways to invoke a service. The intent is for the agent to ultimately decide which
invocation mechanism to use. Some agents may want to use a interface of ser-
vices, some may decide to download a client-proxy code, another agent may
migrate to destination node, and access the services locally

e Interface: indicate agent can access service by a standard interface

e URL: gives location of services supplied by a legacy system

Agent platform: the agent platform on which the application was built

e Service type: informs the user of the type of service

e Properties: denotes a list of properties of the service.

Looking at the list of service description elements, it can be noted that the authors
concentrated mostly on the aspect of multi platform interoperability, while leaving
the issue of describing the execution environment and grid node resource capabilities
practically untouched. In fact the only place where one could introduce information
such as the physical specifications of the machine the service is hosted on, or the avail-
able system resources, or libraries, would be the Properties element. Unfortunately
for this element, the authors did not provide any list of valid child elements. Therefore,
even though the interoperability-focused approach to agent-grid integration proposed
within the ACG project seems interesting in many aspects, the grid resource descrip-

I

tion has proved to be insufficient to our needs. Furthermore, despite our best efforts,

g EY

we could not find traces of this project being extended past 2005. F’j T

f
R

74.2 AGIO

The Agent-Grid Integration project, described in [42—44], is build around concepts of
agent and service. In the proposed model, artificial or human agents are engaged in
exchange of services and, for shared access to resources, are composed into virtual
organizations. Integration between the agent and the grid worlds takes place on the
level of services, i.e. services interface agents’ capabilities using the concept of a
Cognitive Environment. This feature enables grid services to behave in a completely
stateful manner; not only for the duration of fulfilling a single request but also over the
course of several user conversations. Moreover, thanks to the Cognitive Environment
it would be possible to reason about the outcome of service calls and enrich results
returned to clients.

In terms of formalization of the model, this effort has first been modeled using a spe-
cially created diagram language called the Agent-Grid Integration Language (AGIL);
described in [42]. The AGIL language enables a graphical representation of an agent-
grid integrated system along with the relationships between its elements. The next
step in the formalization of this concept was the Agent grid Integration Ontology as
presented in [44], which contains OWL demarcated ontologies of all AGIL concepts
as well as the SWRL ( [45]) rules enabling machine parsing of the descriptions and
automatic validation of model instances.

To summarize classes forming the ontology we will start with the concept of an
Agent. Agents, organized into VOs and identified by the X509 certificates, interact with

L
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each other and use or provide Services. An Agent providing a Service can dedicate its
CognitiveEnvironment to its clients. Services are included in ServiceContainers and
handled by a CAS (Community Authorization Service). As mentioned earlier, Ser-
vices interface agents’ Capabilities. The ServiceContainer reifies a set of Virtualize-
dResources which in turn can virtualize a number of Hosts, that can be composed of a
ComputingResource and a StorageResource. This ontology does not describe detailed
properties of the Resource classes, nor does it specify the software or libraries acces-
sible to the service clients. In the following XML snippet, we present a sample set of
instances forming a single service.

<Capability rdf:ID="ComputingCapability”>
<isInterfacedBy>
<ServiceContainer rdf:ID="ComputingServiceContainer™>
<interfaces rdf:resource="#ComputingCapability”/>
<includes>
<NormalService rdf:ID="ComputingService”>
<isIncludedIn rdf:resource="#ComputingServiceContainer”/>
<interfaces rdf:resource="#ComputingCapability”/>
<isHandledBy>
<CAS rdf:1D="ComputingCAS”>
<isIncludedIn rdf:resource="#ComputingServiceContainer”/>
<isHandledBy rdf:resource="#ComputingCAS” />
<handles rdf:resource="#ComputingService”/>
<handles>
<NormalService rdf:1D="SomeService”>
<isHandledBy rdf:resource="#ComputingCAS” />
<isIncludedIn rdf:resource="#ComputingServiceContainer”/>
</NormalService>
</handles>
<handles rdf:resource="#ComputingCAS” />
</CAS>
</isHandledBy>
<isProvidedBy rdf:resource="#ComputingAgent”/>
</NormalService>
</includes>
<includes rdf:resource="#SomeService” />
<includes rdf:resource="#ComputingCAS” />
<reifies>
<VirtualizedResource rdf:ID="VRComputingNode >
<virtualizes>
<SimpleHost rdf:ID="ComputingHost”>
<isComposedBy>
<StorageResource rdf:ID="StorageResource_1">
<composes rdf:resource="#ComputingHost” />
</StorageResource>
</isComposedBy>
<isComposedBy>
<ComputingResource rdf:ID="ComputingResource_1">
<composes rdf:resource="#ComputingHost” />
</ComputingResource>
</isComposedBy>
<isVirtualizedBy rdf:resource="#VRComputingNode” />
<holds>
<X509Host rdf:1D="X509Host.11">
<isHeldBy rdf:resource="#ComputingHost” />
</X509Host>
</holds>
</SimpleHost>
</virtualizes>
<isReifiedIn rdf:resource="#ComputingServiceContainer”/>
</VirtualizedResource>
</reifies>
</ServiceContainer>
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</isInterfacedBy>
<isInterfacedBy rdf:resource="#ComputingService”/>
</Capability>

Here, we can see the Computing Capability, which we assume enables the agent to
run some client-specified job, is interfaced by the ComputingService. The Comput-
ingService is included in the ComputingServiceContainer and handled by the Com-
putingCAS. The ComputingServiceContainer reifies the VRComputingNode Virtual-
izedResource that virtualizes a simple ComputingHost composed of the Computin-
gResource_I and the StorageResource_l.

The AGIO provides an excellent framework for modeling the structure of multi-
agent-based grid systems. It contains a very extensive set of concepts describing rela-
tionships between agents operating within the grid as well as an interesting approach
to enriching grid services with agents’ intelligence through the use of Cognitive En-
vironments. Unfortunately, it does not contain appropriate classes related to features
such as physical resource description, resource discovery and brokering, or resource
software requirements and/or capabilities. Therefore, while possibly a good candidate
for future work on modeling the “universe” of AiG system’s agents, it is not appropri-
ate for use as a resource description ontology. Furthermore, it has to be noted that the
AGIO project was actually an MS Thesis and currently is not pursued further.

7.5 Concluding remarks

The aim of this chapter was to summarize existing efforts at creating an ontology
of the Grid, and underlying agent-grid integration. At the same time, the presented
material was viewed from the perspective of the Agents in Grid project, which we are
working on. Our main question was: is there an ontology of the Grid that we could
adopt in our project?. Looking at the above list of attempts presented to directly define
grid ontology or the use of reverse engineering to extract one, we believe we should
reuse and extend the core grid ontology, which turns out to be the closest to our needs.
Extensions will be based first, on other efforts (or experiences drawn from them);
the GLUE project in particular, and the UniGrid. Second, we will have to introduce
concepts that are specific to our effort, e.g. economic concepts related to contract
negotiations and trust related concepts. We will report on our progress in subsequent
publications.
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