
Automated Travel Planning

Piotr Nagrodkiewicz1, Marcin Paprzycki2

1 Warsaw University of Technology, Department of Mathematics and Information Science,
Plac Politechniki 1, 00-661 Warsaw, Poland

nagroda100@wp.pl
2 Computer Science Institute, SWPS, Chodakowska 19/31, 03-815 Warszawa, Poland

mpaprzycki@swps.edu.pl

Abstract. This paper summarizes the current state of art in the domain of
automated travel planning. Requirements for planning systems are identified
taking into account both functionality and personalization aspects of such
systems. A new algorithm that allows planning routes between any two
locations and utilizes various means of transportation is discussed.

1 Introduction

One of the areas served by information technology is the travel domain. Within this
domain, much effort is being paid to the problem of integrating Internet available
information. For instance, finding transportation between travel origin and destination
is to be combined with locating suitable hotels, restaurants, etc. To achieve this goal
information already available on the Internet must be integrated into a homogenous
system that allows its exploitation. In this paper we address only one of aspects of
developing an integrated Travel Support System – preparation of travel plans that
combine multiple means of transportation. For the up-to-date description of a
complete system, see [7].

Currently, within the Internet, there exist a number of systems that provide access
to timetables and/or allow performing queries for routes between two given locations.
However, in most cases such systems are limited to only one specific mean of
transportation (airplane, train, bus etc.). A person who plans a trip involving an
airplane and a train must manually search within multiple systems to find connections
that together constitute a sensible travel plan. Within such a system proposed
connection must satisfy user-defined and interrelation-based constraints. Separately,
there exists software that supports traveling by combining GPS technology and digital
maps. This software is capable of searching for the shortest routes and can help while
traveling [19]. Unfortunately, this software is of value only for “individual” travels
that utilize means of transportation such as cars, motorcycles etc. In other words,
while it may be fun to watch on a GPS based display how the train is moving across
France; such a system will not help us find connection with another train or a bus that
we have to catch in Dijon. Obviously, combining travel from a “generic” origin to a
“generic” destination (defined e.g. as a city name or a zip code) becomes more

complicated when it involves particular targets like a detailed home address or a
hotel. In this case the complete trip may involve one or more bus connections from
home to the airport, flight to a specific destination, a train to the center of the city and
a tram to the hotel. This is exactly the type of travel scenario that we are interested in.

In the paper we proceed as follows. In the next section we summarize information
about most important travel planning systems. We follow with a description of our
proposed approach (in Sections 3-7). In Section 8 we discuss some open research
issues that have to be addressed for the proposed system to become truly robust.

2 Travel Planning

2.1 Current Research Projects

While there exists a number of travel planning projects [1, 2, 3, 5, 8, 9, 10, 11, 15, 16,
21, 23], two of them are of particular interest in the context of this paper. Both are a
part of research conducted by Craig Knoblock and his collaborators at the University
of Southern California. These projects are: Heracles and Theseus [21, 23]. Heracles is
a framework designed to support creation of information agents that provide means of
gathering and integration of data for a particular domain. An example of applying this
framework (described at project’s web pages) is a system called Travel Assistant that
supports planning of business trips [11]. Provided with the origin and the destination
of the travel, it is able to recommend best suiting means of transportation (taxi,
private car or airplane). If the airplane is chosen, system advises whether it is cheaper
to go to the airport by a private car and to pay for parking (for the time of being away
on the trip) or to take the taxi. As an addition, Travel Assistant presents the weather
forecast for the time of arriving at the destination and selects the closest hotel to the
destination airport. Travel Assistant is able to optimize plan of travel against time or
price. The Theseus project, on the other hand, allows mining information from
sources available on the Internet – WWW pages in particular. It is also capable of
monitoring over time the state of a task and it detects and reacts to changes. Theseus
is based on flow charts, so it can execute queries in parallel and can also predict
queries it will receive in the close future so it can start execution of them in advance
increasing the speed of the whole system [2, 3]. Mining of information is achieved
through wrappers dedicated to each source of information.

2.2 Hierarchical Task Networks

When speaking about planning it is difficult not to mention Hierarchical Task
Networks [12, 13]. Here, the idea how to solve the travel problem is to divide getting
from place A to place B into two or more tasks of getting from A to B through some
intermediate locations. For instance, let us consider a person that wants to get from
his or her home to work. This task might be decomposed into smaller subtasks:
getting from home to the bus stop, getting from that bus stop to the bus stop next to

the work and finally from the last bus stop to the place of work. This is a very simple
example, however often a very complicated net of (sub)tasks could be obtained.
Generally, decomposition is achieved by applying one of the predefined operators
which involve conditions that specify precisely when they can be applied.

3 Planning Algorithm – the Idea

When planning a trip one must take into account a lot of information to achieve the
desired goal. Since the space of possible solutions is extremely large, algorithm that is
to be used to solve this problem has to proceed in such a way to maximally reduce the
search space. We can start from an observation how people act when planning a trip.
First, they try to find a ‘general’ route to the destination and once this “step” is
completed they search for connections that satisfy the route that they have established.
The proposed algorithm works in a similar manner. In the first step, it finds out
divisions of the travel into stages (where each of them has a defined both the starting
and end locations and a mean of transportation between these two locations.) In the
second step, for each division algorithm searches for possible chains of real
connections that implement it is performed. (Let us clarify, that when we talk about
real connections we mean connections that involve real means of transportation, e.g. a
train or a bus; however, currently the system Is not connected with any real-world
travel resources; instead, a simulated world of travel has been created to test the
proposed algorithm.) Resulting proposals are presented to the user. Algorithm is
executed once and finds as many proposals as possible (at this stage no optimization
is performed). Choosing the cheapest offer (or the fastest way) will be achieved by
sorting all proposals against the desired criteria. Finding out all solutions will take
more time then a dedicated search to optimize a single criterion, but will be generally
faster then performing multiple searches to satisfy multiple requests that the user will
very likely issue. Let us now describe the proposed algorithm in more detail.

4 Planning Algorithm – Step I

4.1 Conditions of Dividing the Trip into Stages

As described above, the task of the first step of the algorithm is to prepare a set of
divisions (into stages) of the complete travel. We require that each stage must have
defined (1) both start and end locations, and (2) mean of transportation used between
these two locations. What is more, we require that all stages must end where the next
stage in the division begins. For the first stage in the division we require that it starts
as close as possible to the actual beginning of the travel and for the last stage in the
division to end as close as possible to the actual end of travel (in both cases we call
distances between these locations: unplanned distances).

4.2 Generation of Divisions

Let us now describe how divisions of a travel into stages are generated. Here, we
utilize the idea of each travel having one main stage, for example, a flight or a travel
by a train, and apply the Hierarchical Task Networks approach. We create a division
by finding out the main part first, and solving two subtasks recursively (from start of
the stage to the start of the main part; and from the end of main part to the end of the
stage). By doing so, we eventually obtain a complete set of divisions. We construct
more then one division, because there are many possibilities to choose the main stage
(it is described in detail below). Recursive division ends at some level when the main
part covers the whole distance being divided or when there is no possibility of further
division. Having solved both subtasks it is possible to construct divisions for the
given level – it is achieved by merging each of the divisions for the first subtask, the
main stage and each of the divisions of the second subtask. Merging is possible only
if (1) all stages satisfy conditions described before (geographic continuity of stages)
and (2) the sum of unplanned distances on both ends of the result chain of stages is
not greater then the distance between the start and end locations of the part being
divided (since the division would increase the overall distance the plan is needed for).

4.3 Selecting Accepted Paths

When all divisions are ready it is possible to remove some of them. First of all, it may
turn out, that some divisions are identical (this is a result of recursion and many
possibilities at each level of it). Secondly, we remove all divisions that imply much
longer distance then the rest of them. This is done by the means of statistics. Each
division implies a distance at least as long as the sum of lines joining ends of each
stage (since the straight lines are the shortest possible routes). Divisions with the
implied distance, for example, two times longer then the average one might be
removed as very often they are of lesser quality (they may be zigzagged).
Furthermore, divisions that start and/or end not exactly where the travel does
(unplanned distances) should be removed if there are divisions that start and/or end
exactly where the travel does (ones without unplanned distances). We assume here
that it is better for a user, if possible, to obtain only plans that start and end where he
or she wanted to. This assumption may need to be relaxed though, if we take into
account discount airlines that fly to somewhat remote places. If plans do not start or
end exactly where the travel does (for example, if there are no stations known to the
system in the area), it would be an improvement to remove these divisions that have
unplanned distances much longer then the other ones, once again this is achieved by
the means of statistics. Whenever removing possible paths it is assumed that the
removal is performed only if some arbitrary number of them will be left (e.g. 10) so
we never reduce the number of possibilities too far – a relatively wide variety of
proposals is guaranteed to be ready for the processing in the second step of our
planning algorithm.

4.4 Establishing Travel Details

Let us now describe how the main stages are found. At first, proper means of
transportation are chosen using dedicated rules. These rules may decide that it is, for
example, too long to go by walk, just enough to take a taxi or too close to fly (but in
some other situation flying might be just fine, if there is an obstacle in the way that
makes other possibilities impossible.) Generally, the rules decide which means of
transportation would work in the given situation and they should tend to exclude the
means of transportation that would not produce any possibilities in the second stage of
the planning algorithm that is described later. Subsequently, for each of the chosen
means of transportation the start and end of the stage are set. If the mean of
transportation has no stations (like walk or taxi) the stage covers the whole distance.
If there are stations, at both ends we search for N stations laying the closest to the start
(or end). Once they are identified, the main stages are created between every possible
pair of start-end stations (under condition that such pair is not against rules used to
choose proper means of transportation; before rules where applied to a different pair
of locations – it may turn out that one of the chosen closest stations lays on another
island, for example, and hence is not a wise choice any more.)

Rules applied to select specific mean of transportation may be based purely on
distance between the two given locations – different means of transportation are better
for different distances. However, if some extra information is added to the coordinates
of those two locations, more sophisticated rules may be constructed. For instance,
information on continent and an island/continental part on which the given location
lays, may allow bringing better rules in – normally an airplane would not be used on
short distances, unless there is an obstacle in the way (such as a sea). Such extended
information may be gathered automatically for most stations and towns [20].

Use of rules causes the system to search for connections that lead in a rather direct
way to the target location. This is generally a recommended behavior, however
sometimes it might be undesirable. There might be only one complex solution that
leads in a curve-like way to the target or there might be a very attractive price offer
requiring such a route. Unfortunately, the planning system will not find it, as it will
not even consider it. However, the presented algorithm allows receiving feedback that
may be used to mediate such problems – it allows extending the list of stations
searched for a given mean of transportation in the first step of algorithm by some
additional pairs of stations. These new stations are marked to be coupled only with
each other, not with any other station. Such additional pairs of stations allow making
the algorithm to consider some cases it would have normally not investigated. In this
way, for instance, we address the problem of discount airlines flying from Frankfurt
Hahn rather than Frankfurt’s main airport.

5 Planning Algorithm – Step II

In the first step of the planning algorithm divisions of travel into stages have been
prepared. In the second step these divisions are being realized by real connections.

5.1 Implementation of Divisions

Stages of a single division are completed one by one. We start from the beginning of
the trip and conditions at the end of each stage specify entry conditions for the next
stage. For instance, arrival time at the station establishes set of possible trains. Of
course, the first stage requires a special treatment, since there are no connections
leading to it. Therefore some number of connections (e.g. 5) leaving from the start
location is chosen as initial search connections (each with different next station in its
schedule; and for each of them the earliest one is chosen). Then the search is
performed until the connection arriving at the end location of the stage is found.
Search is performed by simulating travel and checking possible changes at each
visited station. Not all changes are checked as that would lead to browsing of far too
many possibilities to perform the search in the acceptable time. Once again a set of
dedicated rules is used to discard some of the potential changes to reduce the time
spent on browsing of the search space. Rules are deciding whether a particular change
should be ignored or not. They can do so taking into account various aspects: (1)
These rules may easily discard connections that definitively do not lead in the right
direction. (2) They may also enforce keeping of direct connections (so no unnecessary
search is performed if a connection leading to the destination is found.) (3) Another
rule may state that it is not wise to change to the connection that have the same route
but is a later one, since this gains nothing. (4) It is also pointless to change to a local
train if the current location is very far away from the target destination. Other rules
may be devised as well. It is obvious that the more sophisticated rules will be, the
faster the search will be performed (as they will eliminate a larger number of spurious
connections).

We have to acknowledge that not all means of transportation do have stations and
hence they have no timetables (e.g. taxi). As a result, when stage with such a mean of
transportation is encountered we need to reserve a minimal required time for that
stage, so that the start time for the next stage can be established. An exact duration of
that stage will be known precisely when connections for the next stage will be found –
it may turn out then, that there will be more time for the stage then previously
reserved. It is crucial to always reserve ample amount of time for such stages,
otherwise it may turn out that the whole plan will not be executable.

6 Planning Algorithm – Architecture

In Figure 1 we present architecture of the proposed planning system. Red arrows
indicate a typical flow of information in the system: at first, for given locations,
divisions of travel into stages are generated, subsequently these divisions are
implemented with the real connections and eventually all the resulting proposals are
being sorted according to expected user satisfaction (personalization).

Fig. 1. Architecture of a travel planning system.

Each of system’s modules might be encapsulated by a separate agent. These agents
might be divided into groups that can operate on different computers, if there is such a
need, for instance, for performance reasons. These groups are: agents working on
travel divisions, agents finding connections and agents judging the prepared travel
proposals. These groups should not be split as agents belonging to them exchange
large amount of information (thus possibly generating a lot of network traffic).

6.1 Travel Division and Finding Connections

Divisions of travel into stages are generated with utilization of information provided
by the following modules: geographic module (extended location information and
finding of stations situated close to the given location), means of transportation
selection module (a rule based system that provides list of appropriate means of
transportation) and expert knowledge module (responsible for providing feedback to
the first step of the algorithm, as described above). The test implementation of the
planning system utilizes JESS (Java Expert System Shell) as the rule system [22].
This allows the dynamic edition of rules without making any changes to the
remaining code of the system and thus experimenting with different sets of rules.
Prepared divisions of travel into stages are passed to the connection finder module for
realization using the real connections.

Realization of each proposed path is achieved with help of the following modules:
timetables module (provides connections passing through the given station; it might
also manage a database of such connections), tasks management module (decides in
what order changes are investigated) and changes discarding rules module (a rule-
based system deciding whether to ignore the given change, also JESS-based).
Realizations of all paths constitute proposals of travel routes prepared for the user.
They are passed to the judging module and sorted so that the best of them (according
to system’s knowledge of user preferences) are going to be presented first.

6.2 Proposals Judgment Module

This is the last of main modules of the planning system. Its task is to judge already
prepared proposals and sort them based on likelihood of being attractive to the user.
Judging proposals might be done by using case-based logic. Each travel proposal is
described as a single case containing its most important characteristics [14, 18] – the
more of them, the better. Cases, in turn, are stored in the Case Retrieval Net that
allows fast retrieving cases similar to the given one. Furthermore, each case does not
have to have the same descriptors as the other ones (e.g. one case can contain more
visited stations while another case may contain details of a flight while yet another
one may involved details f travel by a train); the net will still work perfectly. With
each case there is also associated a decision made by the user on the proposal it
describes: it can be either acceptance (the user has chosen this proposal as his or her
final plan) or the direct statement that a proposal is unacceptable (user has indicated
that the given proposal is totally unacceptable to him or her). Each proposal being
judged is transformed into a case, which in turn is compared against cases already
stored in the net. Most similar case from the net is chosen. User may influence the
process of computing of similarity between cases by defining the importance levels of
each descriptor – this gives him or her opportunity to tune the mechanism, so it will
take into account only criteria important to the user (with proper weights). Similarity
of the most similar case to the judged one is taken as the judgment value (with a
negative sign, if the decision associated with the most similar case was a rejection). In
this way each of the proposals is judged and then all of them sorted based on that
judgment. Subsequently, user browsing the list of proposals may reject some of them
or choose one of them as a plan to be executed. In both cases an additional case is
created and stored in the net along with the decisions made about it – this will extend
the knowledge gathered in the net, hence over time the judging mechanism is able to
learn preferences of the user – even such that would be very difficult to learn
otherwise, like that in some regions user prefers trains and in other buses.

A screen-shot of the system as it has been implemented is presented in Fig. 2.
Instead of a GIS module (which was not available) we have implemented our own
“world editor” that was used to generate worlds characterized by features that the
proposed algorithm had to deal with (e.g. islands, and peninsulas introduce special
complexities to the system).

7 Planning Algorithm – Remaining Issues

The optimal solution. In both steps of the algorithm the rule-based systems are used to
reduce the search space as far as possible. They prune the search tree considerably,
however it may turn out that in some cases they prevent the algorithm from finding
the most optimal solutions. This is an unavoidable trade off, since deciding not to use
the rules would mean searching through the paramount number of possibilities what
would in turn made the planning process cumbersome, if not prevent it from running
at all in any sensible time.

Fig. 2. Screen-shot of the system as it is currently implemented

Planning with date of departure and date of arrival. As every trip planning system,
algorithm presented here allows user to issue travel queries that may be either given
date of departure or date on which he or she has to reach the destination location.
From the technical point of view, there are only small differences in the algorithm in
both cases – only time definitions of ‘next’ and ‘previous’ stations are being swapped.
In the case of planning to arrive at the given date, the planning takes place from the
end toward the beginning – stages of travel divisions are being implemented from the
last to the first.

Parallel Computing. It is worth mentioning that the proposed algorithm can be
easily parallelized. Even though applied rules greatly reduce the search space, it still
may turn out that there will be a massive number of possibilities to check. Hence this
feature might be important in a production environment. Possibilities of parallel
computation exist in both steps of algorithm. In the first one, subtask divisions at all
levels might be found in parallel as these are independent divisions. In the second step
each change might be investigated independently and thus in parallel.

8 Future Work

Let us now discuss directions that the existing algorithm (that has been
implemented – see Fig. 2 for the screen-shot of its current interface – and is available
from http://mpaprzycki.swps.edu.pl/mp/cvr/research/agent.html) can be extended.

Planning trips between multiple destinations. Presented algorithm allows planning
of a route between any two random points. However, sometimes it might not be
enough. For example, a person may be interested in visiting more the just two places.
In this case, the proposed algorithm could be used to find routes between any two of
these places. The problem is how to establish order of visiting these places (assuming
that it is up to the system to make such a suggestion). It is not a trivial task as it is a
case of the Traveling Salesman Problem (TSP). A simple solution is to ask the user in
what particular order he or she wants to visit all locations. The other one is to use one
of the approximation algorithms known for the TSP.

Problems of Uncertainty in Time Reservations. When describing the second step of
the planning algorithm it was mentioned that there is a need to reserve some time
when encountering stage(s) with no timetables (like a taxi) as it is not known how
long these stages could last. While the idea to reserve some time for these stages is
not so bad, the problem is that if the amount of time being reserved will turn out to be
too short, the whole plan will become impossible to complete. On the other hand,
reserving too much time would cause the plan to have unnecessary layovers. A simple
solution to this problems is to utilize a distance measure and establish a “benchmark
time” e.g. for a taxi use 15 minutes for 10 kilometers and then scale it linearly.
Unfortunately, this approach has some serious disadvantages. First of all, how to
establish the benchmark time (city or highway? day or night? etc.)? Second, when
scaling, how to be sure that the real distance between the start and end of the stage is
the same as the length of the straight line between these two locations? It might be
possible that between these two locations there is a river and the bridge is in some
distance. Finally, how to take into account the fact that every day on a given street
there is a traffic jam between 4pm and 6:30 pm? Better solution to that problem must
be devised.

Planning without positions of stations. To join different means of transportation
there is a need to know if stations are close to each other (can we switch from the bus
to the train easily? do we need to change trains stations – like in Paris or Vienna?).
This is easy to determine only if geographic locations of stations are available.
Without explicit joints between stations used in subsequent stages it is hardly possible
to complete the plan. Assuming these joints could be somehow available, there still
would be an unavoidable increase in the number of possibilities to check while
searching, since only a smaller number of rules could be used. Of course, some simple
geographic information could be implicitly gathered – for instance, the continent. But
the name of island would still be a problem. Generally, geographic locations are
crucial for the first step of the algorithm. They also influence the second step, but in
theory it could work without them. Since geographic locations of all stations are not
easily available at the moment, some research should be undertaken to try to devise
some other means of finding out divisions of a travel into stages.

Increasing user interaction. Another interesting aspect of planning - connected to
travel personalization - is increasing users’ interactions with the system. This could be

http://mpaprzycki.swps.edu.pl/mp/cvr/research/agent.html

achieved either by letting them to modify the divisions prepared in the first step of the
algorithm or by allowing modification of prepared proposals. Modifications of the
first step of algorithm would allow user, for example, to have a route leading through
his favorite city (possibly to meet with friends). From algorithm’s point of view such
modifications would be transparent. The only problem is a need to develop an
intuitive graphical interface that would allow user performing such modifications.
Modifications to plans generated in the second step of the algorithm could allow user
to enforce use of some other connection, for example, if she decides the algorithm
gave her not enough (or too much) time for some stages due to the time reservations
or because she would like to have more time to have a stroll in the city. Modifications
made to the prepared plans would, however, require re-planning of some parts of the
route.

9 Concluding Remarks

In this paper current state of art concerning the automated planning of a travel has
been described and some of their weaknesses have been specified. In response we
have proposed an algorithm that allows preparing travel plans utilizing multiple
means of transportation. This algorithm is not limited by distances between locations
it is to plan the route for. Architecture of the solution allows easy modification and
replacing modules responsible for different aspects of travel planning. Use of Java
Expert System Shell allows modification and conducting experiments with any set of
rules used to choose appropriate means of transportation when dividing the travel into
stages, and to discard some solutions proposed when realizing these divisions with
real connections. The proposed algorithm has been implemented and readers are
invited to download it and experiment with. In the near future we plan to utilize it
within the context of a travel support system described in [7].

References

1. „An Agent-Based Architecture for Wireless Bus Travel Assistants”, Strahan, R.; Muldoon,
C.; O’Hare, G.M.P.; Bertolotto, M.; Collier, R.W. [on-line]. [access: 15 October 2004]
Available in World Wide Web: http://emc2.ucd.ie/publications/WIS03.pdf

2. Barish, Greg; Knoblock, Craig A., „Learning value predictors for the speculative execution
of information gathering plans” [on-line]. [access: 10 September 2004] Available in World
Wide Web: http://www.isi.edu/info-agents/papers/barish03-ijcai.pdf

3. Barish, Greg; Knoblock, Craig A., „Speculative execution for information gathering plans”
[on-line]. [access: 10 September 2004] Available in World Wide Web:
http://www.isi.edu/info-agents/papers/barish02-aips.pdf

4. Cheyer, Adam; Julia, Luc, „Multimodal Maps: An Agent-Based Approach” [on-line].
[access: 23 September 2004] Available in World Wide Web:
http://www.adam.cheyer.com/papers/lnai1374.pdf

5. Dillenburg, John F.; Wolfson, Ouri; Nelson, Peter C., „The Intelligent Travel Assistant” [on-
line]. [access: 12 September 2004] Available in World Wide Web:
http://www.cs.uic.edu/~wolfson/mobile_ps/ita02.pdf

6. „Getting from here to there: Interactive planning and agent execution for optimizing travel”,
Ambite, Jose Luis; Barish, Greg; Knoblock, Craig A.; Muslea, Maria; Oh, Jean; Minton,
Steven [on-line]. [access: 10 September 2004] Available in World Wide Web:
http://www.isi.edu/info-agents/papers/ambite02-iaai.pdf

7. Gordon, M.; Paprzycki, M., „Designing Agent Based Travel Support System” [on-line].
[access: 25 September 2005] Available in World Wide Web:
http://www.cs.okstate.edu/~marcin/mp/cvr/research/ISPDC_2005.pdf

8. Dillenburg, John F.; Wolfson, Ouri; Nelson, Peter C., „The Intelligent Travel Assistant” [on-
line]. [access: 12 September 2004] Available in World Wide Web:
http://www.cs.uic.edu/~wolfson/mobile_ps/ita02.pdf

9. Kay, Michael G.; Jain, Ashish, „Issues in Agent-based Coordination of Public Logistics
Networks” [on-line]. [access: 24 September 2004] Available in World Wide Web:
http://www.ie.ncsu.edu/kay/pln/IETR02-01.pdf

10. Kumar, Praveen; Reddy, Dhanunjaya; Singh, Varun, "Intelligent transport system using
GIS" [on-line]. [access: 25 September 2004] Available in World Wide Web:
http://www.gisdevelopment.net/application/Utility/transport/pdf/164.pdf

11. „Mixed-initiative, multi-source information assistants”, Knoblock, Craig A.; Minton,
Steven ; Ambite, Jose Luis; Muslea, Maria; Oh, Jean; Frank, Martin [on-line]. [access: 10
September 2004] Available in World Wide Web: http://www.isi.edu/info-
agents/papers/knoblock01-www.pdf

12. Nau, Dana S., „Automated Planning: Theory and Practice”, chapter 11: „Hierarchical Task
Network Planning” [slides for lecture] [on-line]. [access: 1 November 2004] Available in
World Wide Web: http://www.cs.umd.edu/~nau/cmsc722/notes-fall-2004/chapter11.pdf

13. Nau, Dana S., „Ordered Task Decomposition: Theory and Practice” [slides] [on-line].
[access: 1 November 2004] Available in World Wide Web:
http://prometeo.ing.unibs.it/sschool/slides/nau/nau1.ppt

14. Peuret, Frederic, „Case-Based Travel Agent” [on-line]. [access: 28 August 2004] Available
in World Wide Web: http://www.cs.tcd.ie/publications/tech-reports/reports.99/TCD-CS-
1999-69.pdf

15. Stallard, David, "Talk'n'Travel: A Conversational System for Air Travel Planning" [on-
line]. [access: 29 August 2004] Available in World Wide Web:
http://acl.ldc.upenn.edu/A/A00/A00-1010.pdf

16. „Trip-planner: An Agent Framework for Collaborative Trip Planning", Homb, Andrew;
Mundhe, Manisha; Kimsen, Sonali; Sen, Sandip [on-line]. [access: 1 September 2004]
Available in World Wide Web:
http://www.cs.wright.edu/people/faculty/mcox/mii/papers/manisha.pdf

17. Tuchinda, Rattapoom; Knoblock, Craig A., „Agent Wizard: Building Information Agents
by Answering Questions” [on-line]. [access: 10 September 2004] Available in World Wide
Web: http://www.isi.edu/info-agents/papers/tuchinda04-iui.pdf

18. Waszkiewicz, Paweł; Cunningham, Padraig; Byrne, Ciara, „Case-based User Profiling in a
Personal Travel Assistant” [on-line]. [access: 29 August 2004] Available in World Wide
Web: http://www.cs.usask.ca/UM99/Proc/short/WaszkiewiczP.pdf

19. Automapa [on-line]. [access: 20 July 2005] Available in World Wide Web:
http://www.automapa.com.pl/

20. Getty Thesaurus of Geographic Names [on-line]. [access: 5 February 2005] Available in
World Wide Web: http://www.getty.edu/research/conducting_research/vocabularies/tgn/

21. Heracles: Constrain-based Integration [on-line]. [access: 10 September 2004] Available in
World Wide Web: http://www.isi.edu/info-agents/Heracles/

22. Java Expert System Shell [on-line]. [access: 5 September 2005] Available in World Wide
Web: http://herzberg.ca.sandia.gov/jess/

23. Theseus: Plan Execution [on-line]. [access: 10 September 2004] Available in World Wide
Web: http://www.isi.edu/info-agents/Theseus/

