
Agents Assembly: Domain Specific Language for
Agent Simulations

Przemys law Ho lda1[0000−0001−5425−7440], Kajetan
Rachwa l1[0000−0003−1524−7877], Jan Sawicki1[0000−0002−8930−7564], Maria

Ganzha1[0000−0001−7714−4844], and Marcin Paprzycki2[0000−0002−8069−2152]

1 Faculty of Mathematics and Information Science, Warsaw University of Technology,
Warsaw, Poland {przemyslaw.holda,kajetan.rachwal}.stud@pw.edu.pl
2 Systems Research Institute Polish Academy of Sciences, Warsaw, Poland

Abstract. Researchers studying group behavior, social dynamics, or
epidemiology lack an easy-to-use tool to run large-scale simulations. This
contribution introduces a domain specific language (Agents Assembly;
AASM) and a toolset for creating and running scalable simulations, using
containerized environment. The proposed language supports describing
abstract concepts, such as agent, message, and behavior. Its structure,
resembling assembly mnemonics, is simple to understand. The language
is supported by a code generation module with a graphical user interface,
which allows defining simulations using instruction blocks. The AASM
code is translated to Python and runs in a distributed containerized
ecosystem, utilizing a slightly modified SPADE agent framework. The
developed toolset includes also data storage and live visualization.

Keywords: Domain specific language · Multi-agent simulations · Scal-
able computing.

1 Introduction

Multi-agent simulations have been used in multiple fields, ranging from support-
ing electoral campaigns [3] to analyzing the spread of viruses in a population [1].
However, creating such simulations requires both domain knowledge and pro-
gramming skills (to code the simulation). It may hinder the potential use of sim-
ulations, as two different skills are required. Moreover, the development of large-
scale agent-based simulations requires knowledge of the agent-based paradigm
and tools, which are not common skills. For all practical purposes, only the
Repast (for High Performance Computing 3) is a mature tool capable of run-
ning large-scale agent simulations. However, earlier experiences with Repast [2]
showed that its use is not simple. To address this problem, a domain specific
language (DSL) called Agents Assembly (AASM) was developed. It allows users
without advanced programming skills to define the structure and behavior of a
multi-agent system. The proposed language is complemented with a Runtime En-
vironment, which facilitates running and analyzing simulations formulated using

3 https://repast.github.io

https://repast.github.io


2 P. Ho lda, K. Rachwa l, et al.

AASM. Moreover, since AAMS is executed on top of containerized instances of
the Smart Python Agent Development Environment (SPADE) 4 agent platform,
large-scale simulations can be realized.

2 Main purpose

The starting point of this contribution was the authors’ own experience in us-
ing a general-purpose programming language (Python) and an agent framework
(SPADE) to create agent-based simulations. Upon reflection, it became apparent
that the process may be difficult for researchers without an extensive computer
science background. Hence, the idea of developing an environment that delivers
“the same capabilities” as SPADE but without the need for in-depth knowl-
edge of programming came to be. As a result, more researchers from all fields
should be able to use multi-agent-based simulations. In this context, the follow-
ing objectives were identified by analyzing the process of developing large-scale
agent-based simulations.

1. To allow users to define simulations using simple logic, arithmetic, and con-
cepts of the simulation domain (e.g., agent, behavior).

2. To create a user-friendly environment in which a simulation may be prepared,
run, and analyzed.

3. To ensure that large-scale simulations (consisting of thousands of agents)
can be executed in an architecture that is simple to set up.

To satisfy these objectives, the proposed ecosystem consists of: (1) domain
specific language (AASM), (2) runtime that translates it to Python and runs on
a (slightly modified) SPADE platform, (3) possibility to run multiple SPADE
instances, in separate dockerized containers, on networked computers, (4) user-
friendly front-end, (5) data storage (for result persistence and further analysis),
and (6) live visualization.

3 Demonstration

The authors will now describe the Agents Assembly DSL and its ecosystem. The
main features of the proposed approach will be presented using two simulations
during the live demonstration.

3.1 Agents Assembly – key concepts

Agents Assembly has been developed based on analysis of literature and own
experiences gathered when developing agent-based simulations. The language
structure is divided into agents, messages, and a network, which creates a skele-
ton, upon which a multi-agent simulation will be realized.

4 https://github.com/javipalanca/spade

https://github.com/javipalanca/spade


Agents Assembly: Domain Specific Language for Agent Simulations 3

The agent instruction defines agents. The AASM allows declaring the struc-
ture and the initial state of agents using a carefully selected set of parameters.
Parameters may be numbers, enums, lists of connections, numbers, or messages.
Enums and numbers may be initialized using set values or random values drawn
from the specified distribution. Inside the agent scope behaviors are defined
with the behav keyword. An agent’s behavior is a sequence of actions per-
formed by the agent when certain conditions are met. The language supports
running behaviors during agent setup, after a specified delay, periodically, and
upon receiving a message from another agent.

The definition of an action starts with the action keyword. Two types of
actions are supported: modifying the internal state and sending messages to
other agents. The body of an action includes a list of instructions to be executed.
AASM includes more than thirty instructions, such as mathematical operations,
control statements, and array procedures. Their style was heavily inspired by
the design of the assembly mnemonics.

Listing 1.1: Autonomous car AASM listing

agent autonomous car
prm current speed , f l o a t , d i s t , uniform , 0 , 120
behav speed communication , c y c l i c , 15

ac t i on in fo rm cars , send msg , s p e e d a l e r t , inform
s e t send . speed , cu r r en t speed
send connect i ons

eac t i on
ebehav

eagent

The code in Listing 1.1 defines the blueprint for the agent autonomous car,
which has one parameter and one behavior. Parameter current speed is a
floating-point number, initially drawn from the uniform distribution. The agent’s
behavior (speed communication) runs cyclically. Inside it, there is an action
inform cars, used to send messages of a specific type (speed alert inform de-
fined in Listing 1.2). The first instruction sets the message parameter speed with
the value of current speed. Finally, the message is sent to the list connections
that represent the recipient agents. The initial content of the list connections

depends on the agent network definition (see Listing 1.3).

AASM supports defining messages, using the message instruction. They
are identified by their name and an ACL performative (as specified in the
FIPA00037J Standard) 5. Messages contain numerical parameters.

Listing 1.2: Speed alert

message s p e e d a l e r t , inform
prm speed , f l o a t

emessage

5 http://www.fipa.org/specs/fipa00037/SC00037J.html

http://www.fipa.org/specs/fipa00037/SC00037J.html


4 P. Ho lda, K. Rachwa l, et al.

Code snippet in Listing 1.2 declares a message speed alert with the perfor-
mative inform and a parameter speed.

The graph keyword is used to describe the graph structure of the agent
network. In its scope, the connections of each agent are defined.

Listing 1.3: Agent network

graph s t a t i s t i c a l
de fg autonomous car , 300 , d i s t exp , 0 . 1

egraph

The code in Listing 1.3 defines a network of type statistical. This name
refers to the fact that the size of each agent’s initial connection list is drawn from
a statistical distribution while the connections are assigned randomly. Here, for
agents of type autonomous car, the numbers are drawn from the exponential
distribution, with λ = 0.1. The network’s size totals 300, and autonomous car

instances constitute the complete simulation environment.

To facilitate the use of the AASM, a translator capable of validating an
AASM program, and generating a run-time code, was developed. Specifically, a
target-agnostic intermediate representation is created first. Next, it is translated
to Python code, for the SPADE agent framework. Interestingly, the Python code
generated from the snippets above is approximately six times longer than the
AASM code. Note that the translation, using the intermediate representation,
delivering code for other agent platform(s) can be instantiated.

The language structure is, by design, simple and block-like. It allows for
easy generation of code with graphical user interface (GUI) modules. A custom
AASM code generator can be seen in Figure 1.

Fig. 1: GUI code generator Fig. 2: Simulation visualization



Agents Assembly: Domain Specific Language for Agent Simulations 5

3.2 Implementing AASM ecosystem

The AASM ecosystem consists of three main components: the Interface, the Sim-
ulation Run Environment (SRE), and the Communication Server. Each compo-
nent corresponds to a Docker 6 Swarm stack, running multiple microservices.
Through the Interface, a user may define a simulation using the GUI code gen-
erator, run it and analyze it using management and visualization modules. The
Interface interacts with SRE mainly through HTTP requests (although Bolt Pro-
tocol 7 connection with the database is possible). When a user creates an AASM
simulation, SRE translates it, generates the network structure, and distributes
agents between Agent Containers. Agent Containers are dockerized microser-
vice processes that run the translated code using the SPADE agent platform.
Each container holds the number of simulation agents assigned by the Simula-
tion Load Balancer (one of the microservices in the SRE stack). Agents send
their states to the database through Kafka 8, which ensures that the database
does not get overloaded by write requests. Agents send messages through the
Communication Server, an instance (or a cluster, as they may be freely scaled)
of Tigase XMPP Servers 9. The containerized approach allows an easy increase
in the computational resources used by the simulation.

During the experiments, the system was deployed on a cluster of 15 physical
computers, running 120 Agent Containers. It was also deployed on 5 virtual
machines, running 5 Agent Containers each. A single agent container is capable
of running multiple agents. Experimental results indicated a limit of around 1000
agents per container and a good (stable) performance at 100 agents (tested on
Intel Core i7-6700HQ @ 2.6GHz and 24GB DDR4 RAM). The exact number of
agents depends on agents’ complexity (number of operations per minute) and
the hardware.

In the system, the Interface may be accessed from any node in the dockerized
network. Its connection to a graph database (neo4j 10) grants live access to the
simulation data (values and aggregates of agent and message parameters). The
agents’ state is visualized directly through a dedicated module that presents
an interactive graph of data available in the database (depicted in Figure 2).
The visualization module also supports live plotting of data streams during
the simulation. Data can be requested directly through Cypher (neo4j’s query
language) queries or via GUI query creator providing a user-friendly alternative.

3.3 Demonstrations

During the demonstration, the attendees will be able to see running simulations
prepared in AASM. They will also have the possibility to modify the details of
the simulations through the code generating GUI, observing its simplicity.

6 https://docker.com
7 https://boltprotocol.org
8 https://kafka.apache.org
9 https://tigase.net

10 https://neo4j.com

https://docker.com
https://boltprotocol.org
https://kafka.apache.org
https://tigase.net
https://neo4j.com


6 P. Ho lda, K. Rachwa l, et al.

The presentation will be performed on 2 computers, starting with 2 agent
containers and scaling to 8. The simulations will be verified in terms of the
validity of the results and the system’s stability.

4 Concluding remarks

The purpose of the work was to ease the development of agent-based simulations.
In this context, a domain specific language, Agents Assembly, was proposed. The
design of Agents Assembly was based on the evaluation of actual user needs.
Thanks to translation to an intermediate code, it is possible to develop support
for other agent platforms and frameworks.

The system is being tried by a group of students at the Warsaw University
of Technology to develop a complex traffic simulation. Their initial feedback has
been positive. However, it was suggested that the number of available math-
ematical functions should be increased, which resulted in adding built-in sin,
cos, log, and pow instructions. Their experiences, collected at the end of the
semester, will be used to further improve the AASM ecosystem.

Separately, during experiments, it has been noticed that the system’s stability
can be affected in the case of vast numbers of connections. Specifically, during a
simulation (running on 15 networked workstations) with an agent network with
more than 399 million connections (large, dense, all-to-all graph), congestion in
the system has been identified. However, it should be stressed that even when
the communication bottleneck has been detected, the system did not crash.
Nevertheless, this problem requires addressing in future development.

The current version of the Agents Assembly ecosystem can be found at
https://agents-assembly.com. The web page gives access to an online version
of the translator, links all pertinent repositories, and the language documenta-
tion. Contributions to its further development are welcome and requested.

References

1. Castro, B.M., de Abreu de Melo, Y., Fernanda dos Santos, N., Luiz da Costa Bar-
cellos, A., Choren, R., Salles, R.M.: Multi-agent simulation model for the evaluation
of COVID-19 transmission. Computers in Biology and Medicine 136 (2021)

2. Ciecierski, J., Mai, V.B., S lupczyński, M., Zyskowski, W.: Multi-agent simu-
lation of the world found in the G. R. R. Martin’s novel ”Sandkings”. In:
Ganzha, M., Maciaszek, L., Paprzycki, M. (eds.) Position Papers of the 2015
Federated Conference on Computer Science and Information Systems. Annals of
Computer Science and Information Systems, vol. 6, pp. 249–256. PTI (2015).
https://doi.org/10.15439/2015F417, http://dx.doi.org/10.15439/2015F417

3. de Sola Pool, I., Abelson, R., Popkin, S.: Candidates, Issues and Strategies: A Com-
puter Simulation of the 1960 and 1964 Presidential Elections. M.I.T. paperback
series, Massachusetts Institute of Technology Press (1965)

https://agents-assembly.com
https://doi.org/10.15439/2015F417
http://dx.doi.org/10.15439/2015F417

	Agents Assembly: Domain Specific Language for Agent Simulations

