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Abstract. The aim of this chapter is to provide an overview of security issues facing 
mobile agent systems, and discuss ways of managing them. We explore the state of the 
art, to assess if it is mature enough for use in real-life security-critical applications like 
extraction of sensitive information, contract signing or broadly understood e-commerce. 

1. Introduction to Mobile Agents 

There exists number of scenarios where software agents are considered to hold promise for 
the future of computing. One of them is the vision of software agents utilized in the context 
of development and implementation of large complex systems [1]. Here, the benefits are 
grounded in basic principles of software engineering (i.e. decomposition, abstraction and 
organization) and include faster creation, easier maintenance, scalability, and an overall 
ease of deployment of complex distributed systems. Separately, agent approach is expected 
to play a crucial role when dealing with information overload [2]. Here intelligent software 
agents are to learn user preferences and act upon them in finding all and only such 
information that a given user is going to be interested in. Finally, software agents are also 
very often mentioned in the context of e-commerce, where they are to play a very important 
role in support of automatic price negotiations and purchase automation (see for instance 
[3] and references collected there). While there is no universally agreed upon definition of 
what a software agent is (in particular, there is no formal definition), most of existing ones 
are in some way similar to that put forward by Jennings [4]. There, agents are 
conceptualized as software artifacts that exhibit certain properties, such as: 

• autonomy – they act without the need of constant human supervision, 
• sociability – ability to interact with other agents or humans if necessary,  
• reactivity – ability to react to changes in the environment , 
• proactivity – taking initiative, when appropriate, in order to reach objectives. 
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This definition of software agents (as well as others) is very broad, and encompasses 
such programs as the animated paperclip in Word, many computer viruses, bots in first-
person shooter games, auction agents in online auction sites, or search engines’ web 
spiders. More interesting are so-called strong agents that, according to Jennings [5], have 
additional properties, such as: veracity, benevolence and rationality (however, the list of 
properties used to define software agents is much broader and definitely lacks consensus 
[6]). Finally, mobility – understood as agent ability to move from one computer to another, 
is believed to be particularly useful as it allows users to be offline (with their computer 
turned off) while their agents work on their behalf on other computers. It also serves to 
decrease network load – bandwidth-intensive tasks can be performed locally [7]. Moreover, 
agent mobility allows for load balancing and resource management in a grid-type 
environment, where agents are means of carrying across the network, and finding the best 
place to execute, computationally intensive tasks [8]. In this chapter, we focus on mobile 
agents, understood as agents conforming to Jennings' general definition, i.e. possessing 
autonomy, sociability, reactivity, proactivity, combined with mobility as an additional 
feature. 

From the top-level perspective, mobile agent technology can be conceptualized as a 
highly distributed system which consists of two types of elements:  

• mobile agents – programs that have the above mentioned properties and that, to 
fulfill their objectives, are equipped with a set of behaviors, which allow them to 
interact with the environment (including other agents) by exchanging messages or 
by acting within a local system (its own, or another); 

• mobile agent platforms – middleware which: 
a) provide runtime environment (interpreter) for agent programs, 
b) allow agents to travel and communicate securely, 
c) offer various services. 

Most common modern agent frameworks, such as JADE, FIPA OS or Grasshopper are 
implemented in Java. Such systems consist of an agent platform implementation and a 
programming interface, which: 

• supports Agent Communication Language – ACL, 
• enforces agents as containers for behaviors – while programmers only define 

behaviors. 
Before proceeding further, let us address the question of usefulness of agent mobility, 

which is still being discussed with some researchers claiming that client-server type 
approach is more useful. While we have argued that at least in some scenarios there is a 
definite place for agent mobility ([7], [9]) settling this discussion is out of scope of this 
chapter. Therefore we assume that mobility is a useful property of software agents and 
therefore the question of security of mobile agents has to be addressed. Unfortunately, as 
this chapter shows, mobility is extremely challenging from the security standpoint. It may 
therefore be suggested that security of mobile agents may be one of important factors that 
prevents their actual use in real-life applications (for a discussion of issues involving agent 
system development, see [10]). 



2. Security Requirements for Mobile Agent Systems 

To discuss security requirements for mobile agents systems, let us take a closer look at a 
few possible applications of this technology (they are presented here as generic examples of 
context in which one can find mobile agents in the literature). 

2.1. Typical Scenarios 

2.1.1. Airfare Agent 

It is often claimed that in the future mobile agents will be utilized to search the Internet for 
“the best offer,” e.g. best available price of an airline ticket. In this case, we can easily 
imagine that we configure an agent and provide it with, at least a minimal necessary subset 
of the following travel defining data (but also possibly with other requirements): 

• departure and destination points, 
• date, maximum time of travel, 
• class, 
• list of preferred airlines, 
• price threshold, 
• credit card number, or electronic currency, 
• digital signature key. 

An agent constructed in such a way will be sent to visit airline web-sites (where the 
web-site does not necessarily mean only publicly available WWW sites, but may also 
include proprietary sites created to specifically handle such agents) and collect offers. We 
can also envision that since we provide our agent with information contained in the last 
three bullets above, we can authorize it to choose the best option, book the flight, and make 
the actual purchase. Furthermore, our agent may be able not only to collect posted prices, 
but also engage in price negotiations [11], [12]. 

2.1.2. Price Negotiators 

More generally, mobile agents may act as price negotiators in a virtual e-market. They may 
move to the hosts and, acting on behalf of their users, engage in price negotiations (e.g. by 
participating in auctions) to win best prices and/or contract conditions [3]. In the case of 
auctions, to deliver the best possible results to their users, agents will have to use 
sophisticated strategies and will have to be precisely parameterized. Note that in some 
forms of price negotiations agents representing e-store will also have to use complicated 
negotiations strategies and their success will depend on them. 

2.1.3. Network Management Agents 

Finally, let us move away form e-commerce applications and consider agents working in a 
different field: monitoring and managing computer networks on behalf of network 
administrators. Assignments of such agents may include: 

• installing, upgrading software on network devices and computers, 



• monitoring network traffic, seeking illegal user activities and possible security 
holes, 

• fighting worms and Trojan horses. 
It is obvious that in each of the above listed scenarios, security of information stored 

“inside” of an agent is crucial to the system in which they operate. If the adversary knows, 
for instance:  

• what is the threshold price – then he may modify his offer accordingly,  
• what strategy is used by a given agent – then it may modify its own strategy and 

outwit it, or 
• what technique is used to spot illegal users and their activities – then it may be 

able to modify its behavior in such a way that the guarding-agent will not be able 
to catch it.  

Furthermore, security of the platform is also important as agents may try to subvert it in a 
variety of ways, similarly to what is currently done by computer viruses. Let us now look in 
more details into variety of threats that are possible in the context of mobile agent systems. 

2.2. Classification of Threats 

2.2.1. Platform-to-platform 

Providing a secure transmission channel between platforms is the foundation of every solid 
mobile agent system. Properties of such channel should be as follows: 

• privacy – agent migration (data and/or code) or messages exchanged by agents 
located on different platforms should remain secret; this need is obvious, since the 
mobile agent can carry e.g. a credit card number or a secret negotiation algorithm; 

• data integrity – a traveling agent should be protected against malicious alterations 
of its data; for example somebody could try to erase some platforms from the path 
that is stored inside of the agent and that it is expected to follow; 

• authentication – the source platform, the destination platform and agent’s owner 
should be authenticated. 

Obviously, the problem of secure communication in networks is well known, has been 
studied on its own right, resulting in many effective solutions.  

2.2.2. Agent-to-platform 

Let us consider the above presented air-fare agent scenario to indicate few possible threats 
to the security of the host (platform). An agent (sent by a competing airline, for instance) 
can spy on the host’s databases, or disable services (e.g. performing a denial of service 
attack). In other words, it might act as a Trojan horse. To achieve this, agent may pretend to 
be legitimate, i.e. sent by a customer or, more seriously, to be a part of agent system of the 
given airline itself. Moreover, a benevolent agent may be corrupted by a third party, 
(captured en route in the case when the communication channel was not secure – see 
above) to act as a malevolent one and attempt to attack the platform. 



2.2.3. Platform-to-agent 

It is not only the agency that has to include safeguards against hostile agents; agents 
themselves are exposed to attacks by a hostile platform as well. For example, if the agency 
belongs to an airline, it might try to brainwash air-fare agents so that they forget all 
competing (presumably better) offers. Separately, if an agent is empowered to immediately 
accept an offer that is “good enough,” the platform might try to disassemble it to find its 
threshold value and immediately make an acceptable offer. In general, the more the agent is 
authorized to do (while representing its owner), the greater the risk that at least one agency 
on its route will try to subvert it. For instance, we could have authorized the agent to make 
actual payments or to digitally sign contracts. In order to do that, the agent must carry with 
it a secret-token, such as the signing key, the credit card number, or even digital currency. It 
is not difficult to see that stealing one of these may be disastrous to the agent’s owner, and 
very lucrative to the thief. Therefore, the main goals in protecting agents against threats 
posed by rogue platforms are as follows: 

• Privacy of computation – which means that an agent is able to carry out 
computations without: 

o the host understanding what the agent is doing – computing with 
encrypted function (CEF),  

o the host being able to obtain agent secret data – computing with 
encrypted data (CED). 

This would allow the agent to carry secret values (signing key, e-money, credit 
card number) in an encrypted form but still involve them in necessary 
computations. 

• Integrity of computation – gives a guarantee that the execution flow of agent code 
was not manipulated from outside of the agent. 

• Privacy and integrity of data – assurance that data carried by the mobile agent has 
not been tampered with; this also applies to the agent’s itinerary, which should be 
seen as part of the data. 

• Resistance to copy and replay. Software agents have an inherent flaw – they can 
be easily copied and re-played. In this way one can simulate agent’s environment 
changing it in controlled manner, trying to reverse engineer it, or at least find 
crucial parts of its functionalities e.g. determine the agent’s price threshold. 

2.2.4. Agent-to-agent 

It can be argued that for all practical purposes an agent platform acts as an intermediary 
between interacting agents. Therefore, the problem of performing agent-to-agent attacks is 
actually a special case of agent-to-platform security. The following agent-to-agent attacks 
are possible: 

• impersonation – agents pretending to be: other agents or agents of a certain owner, 
• denial of service – agents preventing other agents from doing their job, 
• spying – agents trying to steal secrets carried by other agents (embodied in their 

functions, or stored within data that they carry). 



Separately, there exists also a group of illegal agent activities which cannot be 
controlled by the execution environment, like lying. Nonetheless, these have more to do 
with a broad question of trust, rather than strictly understood security (see below). 

3. Cryptographic Goals and Tools for Mobile Agents 

Security of every distributed system relies nowadays on some cryptographic techniques. 
Mobile agent systems are no exception, as security requirements of these systems overlap 
with main goals of cryptography. A standard list of cryptographic goals stated by [13] is as 
follows: 

• confidentiality – keeping information secret from all but those who are authorized 
to see it, 

• authentication – corroboration of the identity of an entity, 
• integrity – ensuring information has not been altered by unauthorized or unknown 

means. 
To achieve these goals cryptography provides us with many useful tools including: 

• hashing functions – a computationally efficient functions that map strings of 
arbitrary bit length to some fixed length hash-values; hash functions are hard to 
invert and built in such a way that it is extremely difficult to find two different 
strings which yield the same hash-value; 

• Message Authentication Code (MAC) mechanism – a set of hashing functions 
indexed by values from the set K – H={hk: k∈K}; here each k∈K can be used to 
produce an authentication value of message m: hk(m) (MAC-value), which can be 
verified only by someone who knows k; 

• symmetric and asymmetric encryption systems – consist of two types of 
transformations: E – encrypting and D – decrypting; every transformation is 
determined by a value called “the key;” in symmetric encryption systems keys for 
the inverse transformations (D(E(m))=m) are the same or trivially easy to compute, 
as opposed to asymmetric encryption where the keys are different and the 
decryption key is hard to compute from the value of the encryption key – in this 
case we speak of public (encryption) and private (decryption) keys; 

• digital signature schemes – similar to asymmetric encryption, involve two types of 
keys and two types of transformations: S – signing transformations determined by 
private keys and V – verifying transformations determined by public keys; Ss(m) – 
signature under message m created using key private s, can be verified by a public 
function (determined by a public key v) Vv which simply “says” whether the 
signature is valid or not. 

While a number of methods is available to support cryptographic needs, their 
successful application to mobile agent systems is not easy. In the next sections we look in 
more detail into issues involved in cases described above. Note however, that the problem 
of secure communication described as platform-to-platform is exactly the same as the 
problem of providing security of any network communication (the fact that we are dealing 
with agent-to agent communication, or that we have agent migrating from one host to 



another – which is also a case of communication security – does not make any difference). 
Since the case of network communication security is well known and there exist its many 
effective solutions we will omit it here and concentrate on the remaining problems that are 
specific to agent environments. 

4. Mobile Agent Platform Security 

Almost every PC user is aware of the fact that one should not run executable mail 
attachments for they may install a Trojan horse or spyware. In case of agents the situation is 
similar – to use an anthropomorphic description: an agent platform cannot be sure of 
agents’ intentions. In the case of a rogue agent, it may even pretend to be legitimate, i.e. 
sent by a well-known customer or, more seriously, pretend to be a part of the local agent 
system itself. Moreover, a benevolent agent may be corrupted by a third party en-route to 
the server and, upon arrival, attempt to disrupt its operation. 

There is a range of options available to safeguard hosts against such attacks, from 
simple to sophisticated [14], [15]: 

• Sandboxing is one of the oldest methods of limiting resources available to mobile 
code, dating back to Java 1.0 and its Applet technology. Applets are small 
programs downloaded and executed by web browsers on a very limited Java 
Virtual Machine (sandbox), therefore preventing access to vital system resources. 
By default applets: 

o have no access to file system, 
o cannot communicate via network except with the originating host, 
o cannot start programs on the client side, 
o are not allowed to load libraries. 
Applets are a very nice technology as long as the application is limited – like 

an interactive online map – but in a number of instances, for example when code 
needs access to the file system (e.g. online virus scanner) simple sandboxing 
proves to be too inflexible. 
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Figure 1 Sandboxing 

• Code signing provides a method of distinguishing trusted and untrusted code using 
the mechanism of digital signatures. Trusted code can be granted access to critical 
system resources. Code signing was implemented, for instance, in Microsoft 
ActiveX and Java 1.1.  
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Figure 2 Code signing 

• Access control – takes code signing one step further, by allowing the owner of the 
executing platform to precisely define security policies. Instead of dividing code 
into broad categories of “trusted” and “untrusted”, code is associated with the 
identity of its owner and granted appropriate, individual access privileges. Access 
control was first implemented in Java 1.2. It allowed granting privileges to code 
signed by a certain identity. The security policy was described in special 



configuration files – access control list files. One could specify detailed 
permission for a given originator, like: 

o read/write/delete/execute permissions to a file or a subtree of a 
filesystem; 

o connect/accept/listen permissions to host, domain, ip address, port; 
o permissions to read environmental variables. 
Java 2 introduced a new access control technology – Java Authentication and 

Authorization Services (JAAS). JAAS, finally, allowed Java Access Controller to 
grant privileges based on “who is running the code” (instead of “from whom the 
code is originating”). Unfortunately, all access control techniques impose a 
significant runtime overhead. 

Separately, note that Java 2 security architecture does not fully protect against 
denial of service attacks as an agent is able to exploit platform’s resources. This 
problem was solved in the Aroma Virtual Machine (AVM). AVM is a Java 
bytecode interpreter, which has built-in specific resource limitations mechanisms. 
One can specify for instance: 

o agent’s disk/network quota and transfer rates, 
o allowed CPU usage. 

Aroma became foundation of NOMADS mobile agent system [16], thus providing 
it with exactly the same amount of platform security as that available within the 
AVM itself.  
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Figure 3 Access control 

• Proof-carrying code – is claimed to be able to avoid expensive runtime checks, by 
performing code checking only once, before execution. In this method, code 
carries a proof of its good behavior. So far, this approach has not been 
implemented in practice and remains a purely theoretical one. 



One can also imagine that instead of attacking the platform directly, agents try to attack 
other agents residing in it. For example, an agent may try to disable, destroy, or subvert 
agents of other customers, as well as agents that are a part of the agency infrastructure itself, 
e.g. the negotiation host [3]. However, protection against such threats is really just another 
aspect of platform security, as the agency has to protect all agents executing within it from 
one another the same way as it protects any other resource. Therefore, problems stated in 
sections 2.2.3 and 2.2.4 share the same solution. 

Summarizing, it can be claimed that, while possibly generating substantial 
computational overhead, it is possible to protect agency against incoming rogue agents. The 
Aroma Virtual Machine and the NOMADS agent systems, while not reaching popularity of 
other agent platforms, have been a fully implemented and working proof-of-concept of this 
fact. It can be thus stated that the problem of securing the platform and agents from 
malicious agents can be considered solved, as the existing practical solutions are effective 
and any security breaches can only be caused by oversight, not fundamental flaws. 

 Let us now address the question of mobile agent security. We will focus on three 
aspects of this problem: privacy of computation, integrity of computation, and privacy and 
integrity of data (see: section 2.2.3, above) describing practical as well as theoretical 
solutions. 

5. Mobile Agent Security 

5.1. Privacy of Computation 

5.1.1.  Theoretical Solutions 

5.1.1.1. Function Encryption 
Computation of security critical function f in hostile environment may be done in an 
encrypted form. A natural way of encrypting a function is using composition with another 
invertible function g [17], [18]. Decryption is achieved by using g-1: g-1 o g o f. There exists 
a class of functions which can be composed and inverted efficiently, namely rational 
functions (quotients of two polynomials). Moreover, the problem of finding rational 
function f when given only the composition g o f is believed to be hard.  
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Figure 4 Function encryption 

Authors of [17], [18] propose special digital signature scheme for mobile agents based 
on the idea of function encryption - undetachable digital signatures (UDS). This type of 
signature mechanism consists of: 

• s – signing transformation, 
• v – verifying transformation,  
• r – description of the requirements for messages which can be signed using s, 
• f – function witch message m with requirements r (f(m) = m||r), 
• fsigned := s o f. 

UDS-enabled agent is equipped with f, fsigned which allow him to create a signature 
(f(m), fsigned(m)) under m. The signature is verified using v transformation as well as by 
confronting requirements r with m. Such scheme was presented in [19] and is based on 
RSA public encryption algorithm. Although agents can perform this special type of 
signatures, it should be noted that thus far function encryption cannot be applied, among 
others, to securing negotiation algorithms. 

5.1.1.2. Homomorphic Rings  
Privacy of computation can also be realized by employing two homomorphic rings R1, R2 
[17], [18]. In order to ensure security we need a homomorphism E:R1 → R2 which has the 
property of an encryption transformation. It means that E is hard to invert without 
knowledge of some secret information. E by definition should preserve ring operations (E(x 
+ y) = E(x) + E(y), E(x * y) = E(x) * E(y)), which would imply that all calculations in R2 
can be done on encrypted data. In practice it is hard to find such operation-preserving E. 
Therefore, we take an encryption function E, such that there exist efficient programs: 

 
• PLUS – takes E(x), E(y) and outputs E(x+y), 
• MULT – takes E(x), E(y) and outputs E(x*y). 



 
Having these two basic operations we can securely compute every program P, which 

involves computing some polynomial Σai1...isX1
i1…Xs

is. 
 
1. Agent owner:  

a) encrypts all input parameters: E(x1), E(x2),…, E(xn), 
b) sends the parameters along with: P, PLUS, MULT to the agent platform. 

2. Agent platform: 
a) encrypts all coefficients ai1..is in P, 
b) substitutes every +, * operation in P with PLUS, MULT calls respectively, 
c) executes P on encrypted parameters, 
d) sends the result to the agent owner, 

3. Agent owner: 
a) decrypts P(x1,x2,…xn). 

 
It was shown that the procedure MULT may be replaced by MIX-MULT, but it requires 

a slightly different scheme than the one mentioned above. MIX-MULT calculates E(x * y) 
based on E(x), y. The following may serve as an example such system: 

• E: Zp-1 → Zp, E(x) = gx mod p, g is a generator of Zp; p-1 has small prime factors 
so that E(x) is can be inverted by somebody knowing g; 

• PLUS(E(x),E(y)) =E(x),E(y); 
• MIX-MULT(E(x),y)=E(x)y. 
An inherent disadvantage of this method is that it can only be applied to computing 

polynomials, while many practical security functions do not belong to this group. As a 
result, the contemporary knowledge on homomorphic rings does not solve the problem of 
providing privacy of computation. 

5.1.1.3. Boolean Circuits 
Every efficiently computable function on any number of input parameters f(x1, x2, …,xn) can 
be represented as a Boolean circuit. There exist protocols that enable evaluation of such 
circuits in a distributed way, while keeping every participant unaware of all the inputs 
except for the ones belonging to him [20], [21]. The result may be either shared by all 
participants or every party may obtain only part of output. The heart of all such protocols is 
a concept of garbled circuits introduced by Yao [22]. The following diagram shows a 
sketch of a garbled circuit idea in a two-parameter case [23]. 
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Figure 5 Garbled circuit evaluation 

Let GC be a garbled circuit C. Distributed evaluation of such encrypted circuit C(x,y) 
requires the following steps: 
1. A creates and sends the garbled circuit C: 

a) Encrypts C by assigning to signals {0,1} on every wire wi in C a couple of 
unique keys ki

0, ki
1. Boolean functions performed by gates in C are substituted 

by a garbled computation table which maps input wires’ keys to output wires’ 
key(s). 

b) Creates Input 1,2 translation tables as the mapping of circuit input wires to 
corresponding keys chosen in a. 

c) Creates Output 1,2 translation tables as the mapping of circuit output wires to 
corresponding keys chosen in a. 

d) Sends  
1. keys representing bits of A’s input x1, 
2. Input 2 translation table, 
3. garbled computation table, 
4. Output 2 translation table. 

5. B computes garbled circuit and obtains y2: 



e) Translates x2 bits to respective keys. 
f) Executes garbled circuit using: garbled computation table, A’s input keys, and 

his input keys. 
g) Translates his output bits to output 2 (y2). 
h) Sends A’s garbled circuit output. 

6. A: 
i) Translates output keys to y1. 

 
It is worth noting that garbled circuit masks actual signals on internal wires (has a black 
box property) and in consequence does not reveal any information about the input x1. We 
can say that garbled circuit executed by B has x1 hardwired. 

Author of [24] attempts to apply the garbled circuit technique to mobile agents – as a 
safe way of evaluating security sensitive functions. Nonetheless, it has to be stressed that in 
[24] it was assumed that garbled circuits have to be created manually, so the crucial 
problem of creating automated garbled circuit compilers is not solved. Obviously, if 
garbled circuits cannot be created automatically then their usage in real-life situations will 
never materialize. Another issue is an obvious inefficiency of computing software as 
compared to hardware Boolean circuits. 

5.1.2. Practical Solutions – Code Obfuscation 

The most popular programming language for mobile agents is Java. Java source code is 
compiled into an intermediate code – bytecode. Bytecode is OS/machine independent, 
which gives it enormous portability and explains Java’s popularity. However, bytecode can 
be easily decompiled and reverse engineered, unless code obfuscators are used. These tools 
scramble the bytecode making it difficult to analyze by employing the following techniques 
[25], [26]: 

• layout obfuscation: 
o renaming identifiers (methods, variables, constants, types lose their 

original names), 
o removing debug information (code execution cannot be inspected in 

debug mode); 
• control obfuscation: 

o altering execution flow by adding artificial branches, using conditional 
statements,  

o separating operations that belong together and mixing with other 
operations, 

o inserting redundant, meaningless code, 
o cloning methods – preparing different versions of a single method by 

applying various obfuscating techniques, 
o replacing method calls with inline code; 

• data obfuscation: 
o splitting, merging and reordering arrays, 
o merging scalar variables, 
o converting static data to procedures, 



o converting local variables to global. 
A serious weakness of this method is the fact that it does not provide provable security; 

in fact, there is a constant “arms race” between obfuscators and disassemblers, and 
although it seems that so far the general-purpose disassemblers are outclassed by 
obfuscators, the situation may change radically as soon as specialized, deobfuscating 
disassemblers appear. Overall, it is clear that from an information-theoretic point of view, 
obfuscation does not add to security at all – its only function is to slow down the analysis 
of the algorithm. 

5.2. Integrity of Computation – Theoretical Solutions 

Known attempts to provide integrity of computation are based on holographic proofs and 
computationally sound proofs (CS-proofs) [27]. Here the trace of the execution shows not 
only the results, but also how they were obtained. Essentially, the preparation of such a 
proof consists of translating the claim (which must be formal, and self-contained) into an 
error-correcting form, and translating the proof. Any proof system (an algorithm that 
verifies a proof) can be reduced into a so-called domino problem, which is a graph-coloring 
problem. After that is done, verification takes the form of statistical checking of that 
coloring. The checking is very fast (in fact, it is polylogarithmic – faster then reading the 
proof), but has the probability of error of at most 50%. By repeating the checking, the 
probability of error can be arbitrarily reduced. 

So far, these solutions remain theoretical. The main difficulty is the necessity of using 
formal logical systems. Even the simplest statements can become very complex when 
stated in a formal and self-contained way. In addition, the gain in speed over traditional 
proofs is only apparent when the proofs are large [28]. 

5.2.1. Privacy and Integrity of Data – Practical Solutions 

An elegant solution which provides privacy and integrity of data was presented in [27] in 
the form of PRACs (Partial Results Authentication Codes). Every agent before leaving its 
home platform is supplied with a vector of keys. Every single key is used to create a MAC 
of the information gathered or computed on a certain server, and optionally to encrypt the 
data. The key is forgotten afterwards, preventing subsequent servers on the agent’s path 
from tampering with gathered information. PRACs are used to preserve the integrity of 
dynamic data. Static, unchangeable data (i.e. agent’s identity or itinerary), may be simply 
protected by a digital signature of the agent’s owner. An attacker intending to change the 
agent’s path without changing its identity would have to break the digital signature scheme. 
These two ideas of securing static and dynamic data were successfully implemented in 
Semoa agent platform [29]. 

Another, similar solution is giving the agent a public key, while the owner retains the 
private key. The agent may encrypt the information it collects with this public key, so that 
it can not decrypt it later. This ensures that nobody is able to cheat the agent, and pretend to 
be the home platform or the agent’s owner. Unfortunately, public key cryptography is not 
as efficient as PRACs.  
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Figure 6 PRAC codes 

Overall, it can be assumed that privacy and integrity of data can be assured using 
cryptographic techniques. 

6. Trust-based Models 

Let us now look from a completely different angle at the issue of agent system security. Let 
us start form a simple observation that some problems of agent security could become 
easier to solve if we make some reasonable assumptions about whom to trust, and to what 
extent, instead of being “uniformly paranoid” (see also [30]). This approach tries to address, 
among others, above mentioned questions of “lying agents” that try to gain advantage not 
by direct attack, but by pretending to be legitimate while trying to disrupt the system by 
various forms of malicious disruptive behavior (e.g. agents that in certain forms of auctions 
cause the final price to be higher then the true valuation of the product [31]). 

6.1. Hardware-based Solutions 

The most far-reaching assumption would be to trust the agent platform. However, even if 
the company maintaining the agent platform is trustworthy, the software may be 
compromised by an outside adversary. A partial solution to this danger is the use of 
Hardware Security Modules (HSMs) [32]. A platform can have a secure hardware device 
that cannot be tampered with, has a very restricted set of inputs and outputs, and is capable 
of performing cryptographic operations. Such a device can then be involved in interactions 
between the agent and the agency, ensuring for instance that they are performed only once. 
HSMs also typically include secure clocks (so that e.g. transaction time can be recorded 



accurately), hardware-based random number generators, and tamperproof key storage space. 
They also offer very high cryptographic performance – up to two orders of magnitude 
faster than software solutions. Unfortunately, HSMs are expensive (thousands of dollars 
each), and their use implies trust in the maker of that HSM (which comes back to the old 
riddle: who controls the controller? – who will assure that creators of such modules can be 
trusted and did not leave secret backdoors in their modules, e.g. known to the government 
agencies). 

A much cheaper solution that is gaining popularity is Trusted Platform Module (TPM) 
– a chip that can be included on a standard PC motherboard, and shares some similarities 
with HSMs. However, for agent platforms, the most useful new ability is attestation of the 
platform. [33] As soon as the computer boots, the TPM chip starts gathering platform 
metrics, storing those metrics in the log, creating hashes of those metrics and storing the 
hashes in the Platform Configuration Registers (PCRs). The PCRs can then be signed using 
the TPMs Attestation Identity Key (AIK) at some point. This certifies that the computer is 
running certain software, so that the remote user (or agent) can be sure that this is indeed 
the case, and that the software has not been maliciously modified, since the Platform 
Configuration Registers can not be arbitrarily set; they can only be reset or extended. The 
agent can be constructed in such a way, that its secrets are “sealed” – only revealed on a 
platform meeting certain requirements. While TPM does not completely solve the platform 
trust problem, it could make cheating on part of the platform owner more difficult, and 
encourage trust in agent platforms. 

6.2. Cooperating agents 

In most cases it makes sense to limit trust to platforms, no matter what assurances they 
offer. There are a few interesting attempts to address the platform trust problems by making 
the agents cooperate. This approach makes an assumption that not all servers are malicious 
and not all of the corrupted ones want to collaborate with one another. It seems reasonable 
in e.g. a network of competing companies. Therefore, it is vital that the cooperating agents 
are scattered among the system nodes rather than located on the same server. 

Roth in [34] proposes a scenario, in which agents work in pairs – let us call them agent 
A and B. A visits a set of hosts H, while his partner moves to a server which belongs to a 
rival of H. A walks the predefined path and passes the offers to B. Once A has collected all 
the information they can choose the best offer; moreover, they can pay for it using e-money 
shared by them using a secret sharing scheme – B can send his part of the e-coin. 

Authors of [35] show that we can attempt to build self-supporting communities of 
agents, so that every member of the community has at least two guards of its security – the 
Shared Security Buddy Model. Somewhat similarly, in [36] a trust-based security model for 
agent communities was presented. It was shown how it is possible to sustain long-term soft 
security – defined as a situation where isolated cases of mischief are possible, but in a long-
term system will adapt its behavior and eliminate offending agents. While there exist a 
number of application areas where soft-security can be sufficient (e.g. within a “closed” 
organization, where soft security measures are supported by other inter-organizational 
security measures; or when security is only of limited true concern – see next paragraph), it 



is clear that this level of security is not enough in the case of e-commerce, or when dealing 
with any type of sensitive information management in an open system. Observe that for a 
cheat it is enough to score once – steal large sum of money and disappear. In this case, the 
fact that he would have been eliminated over time from the system is not good enough for 
these who lost their money, or whose sensitive information was compromised. 

Certain real-world situations lend themselves naturally to creation of a network of 
agents which, while not cooperating per se, are able to communicate, and would be more 
resistant to corruption. Consider, for example a network of personal assistants, which all 
keep track of CD’s that their owners like. In order to get a recommendation, one could have 
his assistant question assistants of people who liked similar CD’s. Even if a fraction of 
agents maliciously cheat (for example to promote a CD), the net effect would be mitigated 
by the honest ones. Unfortunately, since creation of agents is “cheap,” such networks are 
susceptible to corruption by masses of “special agents” acting in concert. Possible solutions 
are: accepting new members only by invitation (which defeats the purpose of open 
exchange of information), creating trust-networks or ensuring that a human spends time 
before releasing next agent, by giving out a test that only a human can pass [37]. Such tests, 
called CAPTCHAs, are based on unsolved problems in artificial intelligence – usually 
image or speech recognition. Nevertheless, they will not deter a determined adversary – 
they just increase the cost of introducing rogue agents. Note however, that for 
recommender systems (even these involved in e-commerce), the fact that someone would 
be convinced to buy a CD would not have “disastrous” consequences. This is precisely the 
type of scenario, where approaches similar to these proposed in [36] would provide an 
acceptable level of agent-system security. 

 

 
Figure 7 Sample CAPTCHA 

6.3. Undercover agents 

Honesty of the platforms can be verified in the same way as corruption of organizations in 
the real world – by undercover agents. An agent may pretend to represent a customer, and 
search for the best air-fare price, but it might have been prepared to contain certain data, 
that should never change, if the agencies are honest. If the data does change, one can be 
sure that at least one agency on the agent’s path has acted malevolently. It is then easy to 
isolate the rogue agency by using more such agents with different paths.  



6.4. Clueless agents 

Finally, if no platform is to be trusted, it is possible to create agents that do not know their 
intended purpose [38]. An example would be an agent that performs a patent search by 
calculating hashes of strings, and trying to match them with a stored value. The owner of 
the agent prepares it beforehand by calculating: 

N := a random nonce 
K := H(description of the patent idea) 
M := EK(action to be performed upon finding the idea) 
O := H(N ⊕ description of the patent idea) 

The agent then searches through the database, hashing the strings it finds and testing if  
H(N ⊕ tested string) = O, and 
if yes, the agent executes DH(tested string)(M) 

Therefore, if a certain string is in the database, it will be found, but one cannot derive it 
from the agent beforehand, so the patent idea stays safe. Likewise, it is impossible to know 
what the agent will try to do once the string is found. Note that this approach may give rise 
to new type of hard to defeat viruses and worms, which will not reveal their payload until 
they infect a system with a certain domain name, or a certain item appears for sale on eBay. 
Unfortunately, clueless agents tend not to be very efficient, and not every problem can be 
solved by them. In particular, as agents operate blindly, they have to search through a very 
large number of possible solutions before stumbling upon the correct one. In this case it is 
exactly the cluelessnes that precludes use of any optimization. 

7. Concluding remarks 

In this chapter we have presented an overview of security issues involved in mobile agent 
systems. We have established that problems involved in agent communication and security 
of an agent platform can be considered as practically solved. Obviously, the same way as 
network communication is secure only until a more powerful hacking method is developed 
(which is then counteracted by a new security measure), sandboxing the platform will be 
effective until someone finds a hole in the virtual machine (that will later have to be 
patched). Nevertheless, we consider the agent platform and agent communication as 
relatively safe. Unfortunately, as our research shows, none of the existing methods can 
guarantee true agent security. Section 5 shows that only data carried and collected by 
mobile agents can be efficiently secured. It means that contemporary knowledge of agent 
protecting techniques restricts us to “window-shopping” type of mobile agents. Broad 
utilization of mobile software agents in realistic scenarios remains a question of future 
inventions. However, our research indicates also that when only soft security is required, 
and when response time to an existing threat is not crucial, communities of cooperating 
agents can eliminate bad agents from the system. We can thus say that it is possible to 
create weakly secure self-securing agent systems. 
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