
Mobile Agent Security1

Łukasz NITSCHKEa, Marcin PAPRZYCKIb, Michał RENc

a) Adam Mickiewicz University of Poznań, Poland
b) Warsaw School of Social Psychology, Warsaw, Poland

c) Adam Mickiewicz University of Poznań, Poland, and Institute for Infocomm Research,
Singapore

Abstract. The aim of this chapter is to provide an overview of security issues facing
mobile agent systems, and discuss ways of managing them. We explore the state of the
art, to assess if it is mature enough for use in real-life security-critical applications like
extraction of sensitive information, contract signing or broadly understood e-commerce.

1. Introduction to Mobile Agents

There exists number of scenarios where software agents are considered to hold promise for
the future of computing. One of them is the vision of software agents utilized in the context
of development and implementation of large complex systems [1]. Here, the benefits are
grounded in basic principles of software engineering (i.e. decomposition, abstraction and
organization) and include faster creation, easier maintenance, scalability, and an overall
ease of deployment of complex distributed systems. Separately, agent approach is expected
to play a crucial role when dealing with information overload [2]. Here intelligent software
agents are to learn user preferences and act upon them in finding all and only such
information that a given user is going to be interested in. Finally, software agents are also
very often mentioned in the context of e-commerce, where they are to play a very important
role in support of automatic price negotiations and purchase automation (see for instance
[3] and references collected there). While there is no universally agreed upon definition of
what a software agent is (in particular, there is no formal definition), most of existing ones
are in some way similar to that put forward by Jennings [4]. There, agents are
conceptualized as software artifacts that exhibit certain properties, such as:

• autonomy – they act without the need of constant human supervision,
• sociability – ability to interact with other agents or humans if necessary,
• reactivity – ability to react to changes in the environment ,
• proactivity – taking initiative, when appropriate, in order to reach objectives.

1 Research reported in this chapter was supported by the KBN grant 0 T00A 003 23

This definition of software agents (as well as others) is very broad, and encompasses
such programs as the animated paperclip in Word, many computer viruses, bots in first-
person shooter games, auction agents in online auction sites, or search engines’ web
spiders. More interesting are so-called strong agents that, according to Jennings [5], have
additional properties, such as: veracity, benevolence and rationality (however, the list of
properties used to define software agents is much broader and definitely lacks consensus
[6]). Finally, mobility – understood as agent ability to move from one computer to another,
is believed to be particularly useful as it allows users to be offline (with their computer
turned off) while their agents work on their behalf on other computers. It also serves to
decrease network load – bandwidth-intensive tasks can be performed locally [7]. Moreover,
agent mobility allows for load balancing and resource management in a grid-type
environment, where agents are means of carrying across the network, and finding the best
place to execute, computationally intensive tasks [8]. In this chapter, we focus on mobile
agents, understood as agents conforming to Jennings' general definition, i.e. possessing
autonomy, sociability, reactivity, proactivity, combined with mobility as an additional
feature.

From the top-level perspective, mobile agent technology can be conceptualized as a
highly distributed system which consists of two types of elements:

• mobile agents – programs that have the above mentioned properties and that, to
fulfill their objectives, are equipped with a set of behaviors, which allow them to
interact with the environment (including other agents) by exchanging messages or
by acting within a local system (its own, or another);

• mobile agent platforms – middleware which:
a) provide runtime environment (interpreter) for agent programs,
b) allow agents to travel and communicate securely,
c) offer various services.

Most common modern agent frameworks, such as JADE, FIPA OS or Grasshopper are
implemented in Java. Such systems consist of an agent platform implementation and a
programming interface, which:

• supports Agent Communication Language – ACL,
• enforces agents as containers for behaviors – while programmers only define

behaviors.
Before proceeding further, let us address the question of usefulness of agent mobility,

which is still being discussed with some researchers claiming that client-server type
approach is more useful. While we have argued that at least in some scenarios there is a
definite place for agent mobility ([7], [9]) settling this discussion is out of scope of this
chapter. Therefore we assume that mobility is a useful property of software agents and
therefore the question of security of mobile agents has to be addressed. Unfortunately, as
this chapter shows, mobility is extremely challenging from the security standpoint. It may
therefore be suggested that security of mobile agents may be one of important factors that
prevents their actual use in real-life applications (for a discussion of issues involving agent
system development, see [10]).

2. Security Requirements for Mobile Agent Systems

To discuss security requirements for mobile agents systems, let us take a closer look at a
few possible applications of this technology (they are presented here as generic examples of
context in which one can find mobile agents in the literature).

2.1. Typical Scenarios

2.1.1. Airfare Agent

It is often claimed that in the future mobile agents will be utilized to search the Internet for
“the best offer,” e.g. best available price of an airline ticket. In this case, we can easily
imagine that we configure an agent and provide it with, at least a minimal necessary subset
of the following travel defining data (but also possibly with other requirements):

• departure and destination points,
• date, maximum time of travel,
• class,
• list of preferred airlines,
• price threshold,
• credit card number, or electronic currency,
• digital signature key.

An agent constructed in such a way will be sent to visit airline web-sites (where the
web-site does not necessarily mean only publicly available WWW sites, but may also
include proprietary sites created to specifically handle such agents) and collect offers. We
can also envision that since we provide our agent with information contained in the last
three bullets above, we can authorize it to choose the best option, book the flight, and make
the actual purchase. Furthermore, our agent may be able not only to collect posted prices,
but also engage in price negotiations [11], [12].

2.1.2. Price Negotiators

More generally, mobile agents may act as price negotiators in a virtual e-market. They may
move to the hosts and, acting on behalf of their users, engage in price negotiations (e.g. by
participating in auctions) to win best prices and/or contract conditions [3]. In the case of
auctions, to deliver the best possible results to their users, agents will have to use
sophisticated strategies and will have to be precisely parameterized. Note that in some
forms of price negotiations agents representing e-store will also have to use complicated
negotiations strategies and their success will depend on them.

2.1.3. Network Management Agents

Finally, let us move away form e-commerce applications and consider agents working in a
different field: monitoring and managing computer networks on behalf of network
administrators. Assignments of such agents may include:

• installing, upgrading software on network devices and computers,

• monitoring network traffic, seeking illegal user activities and possible security
holes,

• fighting worms and Trojan horses.
It is obvious that in each of the above listed scenarios, security of information stored

“inside” of an agent is crucial to the system in which they operate. If the adversary knows,
for instance:

• what is the threshold price – then he may modify his offer accordingly,
• what strategy is used by a given agent – then it may modify its own strategy and

outwit it, or
• what technique is used to spot illegal users and their activities – then it may be

able to modify its behavior in such a way that the guarding-agent will not be able
to catch it.

Furthermore, security of the platform is also important as agents may try to subvert it in a
variety of ways, similarly to what is currently done by computer viruses. Let us now look in
more details into variety of threats that are possible in the context of mobile agent systems.

2.2. Classification of Threats

2.2.1. Platform-to-platform

Providing a secure transmission channel between platforms is the foundation of every solid
mobile agent system. Properties of such channel should be as follows:

• privacy – agent migration (data and/or code) or messages exchanged by agents
located on different platforms should remain secret; this need is obvious, since the
mobile agent can carry e.g. a credit card number or a secret negotiation algorithm;

• data integrity – a traveling agent should be protected against malicious alterations
of its data; for example somebody could try to erase some platforms from the path
that is stored inside of the agent and that it is expected to follow;

• authentication – the source platform, the destination platform and agent’s owner
should be authenticated.

Obviously, the problem of secure communication in networks is well known, has been
studied on its own right, resulting in many effective solutions.

2.2.2. Agent-to-platform

Let us consider the above presented air-fare agent scenario to indicate few possible threats
to the security of the host (platform). An agent (sent by a competing airline, for instance)
can spy on the host’s databases, or disable services (e.g. performing a denial of service
attack). In other words, it might act as a Trojan horse. To achieve this, agent may pretend to
be legitimate, i.e. sent by a customer or, more seriously, to be a part of agent system of the
given airline itself. Moreover, a benevolent agent may be corrupted by a third party,
(captured en route in the case when the communication channel was not secure – see
above) to act as a malevolent one and attempt to attack the platform.

2.2.3. Platform-to-agent

It is not only the agency that has to include safeguards against hostile agents; agents
themselves are exposed to attacks by a hostile platform as well. For example, if the agency
belongs to an airline, it might try to brainwash air-fare agents so that they forget all
competing (presumably better) offers. Separately, if an agent is empowered to immediately
accept an offer that is “good enough,” the platform might try to disassemble it to find its
threshold value and immediately make an acceptable offer. In general, the more the agent is
authorized to do (while representing its owner), the greater the risk that at least one agency
on its route will try to subvert it. For instance, we could have authorized the agent to make
actual payments or to digitally sign contracts. In order to do that, the agent must carry with
it a secret-token, such as the signing key, the credit card number, or even digital currency. It
is not difficult to see that stealing one of these may be disastrous to the agent’s owner, and
very lucrative to the thief. Therefore, the main goals in protecting agents against threats
posed by rogue platforms are as follows:

• Privacy of computation – which means that an agent is able to carry out
computations without:

o the host understanding what the agent is doing – computing with
encrypted function (CEF),

o the host being able to obtain agent secret data – computing with
encrypted data (CED).

This would allow the agent to carry secret values (signing key, e-money, credit
card number) in an encrypted form but still involve them in necessary
computations.

• Integrity of computation – gives a guarantee that the execution flow of agent code
was not manipulated from outside of the agent.

• Privacy and integrity of data – assurance that data carried by the mobile agent has
not been tampered with; this also applies to the agent’s itinerary, which should be
seen as part of the data.

• Resistance to copy and replay. Software agents have an inherent flaw – they can
be easily copied and re-played. In this way one can simulate agent’s environment
changing it in controlled manner, trying to reverse engineer it, or at least find
crucial parts of its functionalities e.g. determine the agent’s price threshold.

2.2.4. Agent-to-agent

It can be argued that for all practical purposes an agent platform acts as an intermediary
between interacting agents. Therefore, the problem of performing agent-to-agent attacks is
actually a special case of agent-to-platform security. The following agent-to-agent attacks
are possible:

• impersonation – agents pretending to be: other agents or agents of a certain owner,
• denial of service – agents preventing other agents from doing their job,
• spying – agents trying to steal secrets carried by other agents (embodied in their

functions, or stored within data that they carry).

Separately, there exists also a group of illegal agent activities which cannot be
controlled by the execution environment, like lying. Nonetheless, these have more to do
with a broad question of trust, rather than strictly understood security (see below).

3. Cryptographic Goals and Tools for Mobile Agents

Security of every distributed system relies nowadays on some cryptographic techniques.
Mobile agent systems are no exception, as security requirements of these systems overlap
with main goals of cryptography. A standard list of cryptographic goals stated by [13] is as
follows:

• confidentiality – keeping information secret from all but those who are authorized
to see it,

• authentication – corroboration of the identity of an entity,
• integrity – ensuring information has not been altered by unauthorized or unknown

means.
To achieve these goals cryptography provides us with many useful tools including:

• hashing functions – a computationally efficient functions that map strings of
arbitrary bit length to some fixed length hash-values; hash functions are hard to
invert and built in such a way that it is extremely difficult to find two different
strings which yield the same hash-value;

• Message Authentication Code (MAC) mechanism – a set of hashing functions
indexed by values from the set K – H={hk: k∈K}; here each k∈K can be used to
produce an authentication value of message m: hk(m) (MAC-value), which can be
verified only by someone who knows k;

• symmetric and asymmetric encryption systems – consist of two types of
transformations: E – encrypting and D – decrypting; every transformation is
determined by a value called “the key;” in symmetric encryption systems keys for
the inverse transformations (D(E(m))=m) are the same or trivially easy to compute,
as opposed to asymmetric encryption where the keys are different and the
decryption key is hard to compute from the value of the encryption key – in this
case we speak of public (encryption) and private (decryption) keys;

• digital signature schemes – similar to asymmetric encryption, involve two types of
keys and two types of transformations: S – signing transformations determined by
private keys and V – verifying transformations determined by public keys; Ss(m) –
signature under message m created using key private s, can be verified by a public
function (determined by a public key v) Vv which simply “says” whether the
signature is valid or not.

While a number of methods is available to support cryptographic needs, their
successful application to mobile agent systems is not easy. In the next sections we look in
more detail into issues involved in cases described above. Note however, that the problem
of secure communication described as platform-to-platform is exactly the same as the
problem of providing security of any network communication (the fact that we are dealing
with agent-to agent communication, or that we have agent migrating from one host to

another – which is also a case of communication security – does not make any difference).
Since the case of network communication security is well known and there exist its many
effective solutions we will omit it here and concentrate on the remaining problems that are
specific to agent environments.

4. Mobile Agent Platform Security

Almost every PC user is aware of the fact that one should not run executable mail
attachments for they may install a Trojan horse or spyware. In case of agents the situation is
similar – to use an anthropomorphic description: an agent platform cannot be sure of
agents’ intentions. In the case of a rogue agent, it may even pretend to be legitimate, i.e.
sent by a well-known customer or, more seriously, pretend to be a part of the local agent
system itself. Moreover, a benevolent agent may be corrupted by a third party en-route to
the server and, upon arrival, attempt to disrupt its operation.

There is a range of options available to safeguard hosts against such attacks, from
simple to sophisticated [14], [15]:

• Sandboxing is one of the oldest methods of limiting resources available to mobile
code, dating back to Java 1.0 and its Applet technology. Applets are small
programs downloaded and executed by web browsers on a very limited Java
Virtual Machine (sandbox), therefore preventing access to vital system resources.
By default applets:

o have no access to file system,
o cannot communicate via network except with the originating host,
o cannot start programs on the client side,
o are not allowed to load libraries.
Applets are a very nice technology as long as the application is limited – like

an interactive online map – but in a number of instances, for example when code
needs access to the file system (e.g. online virus scanner) simple sandboxing
proves to be too inflexible.

Sandbox

Java Virtual Machine

Valuable resources

remote codelocal code

Figure 1 Sandboxing

• Code signing provides a method of distinguishing trusted and untrusted code using
the mechanism of digital signatures. Trusted code can be granted access to critical
system resources. Code signing was implemented, for instance, in Microsoft
ActiveX and Java 1.1.

Sandbox

Java Virtual Machine

Valuable resources

remote codelocal code

trusted

Figure 2 Code signing

• Access control – takes code signing one step further, by allowing the owner of the
executing platform to precisely define security policies. Instead of dividing code
into broad categories of “trusted” and “untrusted”, code is associated with the
identity of its owner and granted appropriate, individual access privileges. Access
control was first implemented in Java 1.2. It allowed granting privileges to code
signed by a certain identity. The security policy was described in special

configuration files – access control list files. One could specify detailed
permission for a given originator, like:

o read/write/delete/execute permissions to a file or a subtree of a
filesystem;

o connect/accept/listen permissions to host, domain, ip address, port;
o permissions to read environmental variables.
Java 2 introduced a new access control technology – Java Authentication and

Authorization Services (JAAS). JAAS, finally, allowed Java Access Controller to
grant privileges based on “who is running the code” (instead of “from whom the
code is originating”). Unfortunately, all access control techniques impose a
significant runtime overhead.

Separately, note that Java 2 security architecture does not fully protect against
denial of service attacks as an agent is able to exploit platform’s resources. This
problem was solved in the Aroma Virtual Machine (AVM). AVM is a Java
bytecode interpreter, which has built-in specific resource limitations mechanisms.
One can specify for instance:

o agent’s disk/network quota and transfer rates,
o allowed CPU usage.

Aroma became foundation of NOMADS mobile agent system [16], thus providing
it with exactly the same amount of platform security as that available within the
AVM itself.

Sandbox

Java Virtual Machine

Valuable resources

local or remote code(signed or not)

access control list

Figure 3 Access control

• Proof-carrying code – is claimed to be able to avoid expensive runtime checks, by
performing code checking only once, before execution. In this method, code
carries a proof of its good behavior. So far, this approach has not been
implemented in practice and remains a purely theoretical one.

One can also imagine that instead of attacking the platform directly, agents try to attack
other agents residing in it. For example, an agent may try to disable, destroy, or subvert
agents of other customers, as well as agents that are a part of the agency infrastructure itself,
e.g. the negotiation host [3]. However, protection against such threats is really just another
aspect of platform security, as the agency has to protect all agents executing within it from
one another the same way as it protects any other resource. Therefore, problems stated in
sections 2.2.3 and 2.2.4 share the same solution.

Summarizing, it can be claimed that, while possibly generating substantial
computational overhead, it is possible to protect agency against incoming rogue agents. The
Aroma Virtual Machine and the NOMADS agent systems, while not reaching popularity of
other agent platforms, have been a fully implemented and working proof-of-concept of this
fact. It can be thus stated that the problem of securing the platform and agents from
malicious agents can be considered solved, as the existing practical solutions are effective
and any security breaches can only be caused by oversight, not fundamental flaws.

 Let us now address the question of mobile agent security. We will focus on three
aspects of this problem: privacy of computation, integrity of computation, and privacy and
integrity of data (see: section 2.2.3, above) describing practical as well as theoretical
solutions.

5. Mobile Agent Security

5.1. Privacy of Computation

5.1.1. Theoretical Solutions

5.1.1.1. Function Encryption
Computation of security critical function f in hostile environment may be done in an
encrypted form. A natural way of encrypting a function is using composition with another
invertible function g [17], [18]. Decryption is achieved by using g-1: g-1 o g o f. There exists
a class of functions which can be composed and inverted efficiently, namely rational
functions (quotients of two polynomials). Moreover, the problem of finding rational
function f when given only the composition g o f is believed to be hard.

Agent owner Agent platform

f fg fg

f(x)g

x

f(x)gf(x)
g-1

g

Figure 4 Function encryption

Authors of [17], [18] propose special digital signature scheme for mobile agents based
on the idea of function encryption - undetachable digital signatures (UDS). This type of
signature mechanism consists of:

• s – signing transformation,
• v – verifying transformation,
• r – description of the requirements for messages which can be signed using s,
• f – function witch message m with requirements r (f(m) = m||r),
• fsigned := s o f.

UDS-enabled agent is equipped with f, fsigned which allow him to create a signature
(f(m), fsigned(m)) under m. The signature is verified using v transformation as well as by
confronting requirements r with m. Such scheme was presented in [19] and is based on
RSA public encryption algorithm. Although agents can perform this special type of
signatures, it should be noted that thus far function encryption cannot be applied, among
others, to securing negotiation algorithms.

5.1.1.2. Homomorphic Rings
Privacy of computation can also be realized by employing two homomorphic rings R1, R2
[17], [18]. In order to ensure security we need a homomorphism E:R1 → R2 which has the
property of an encryption transformation. It means that E is hard to invert without
knowledge of some secret information. E by definition should preserve ring operations (E(x
+ y) = E(x) + E(y), E(x * y) = E(x) * E(y)), which would imply that all calculations in R2
can be done on encrypted data. In practice it is hard to find such operation-preserving E.
Therefore, we take an encryption function E, such that there exist efficient programs:

• PLUS – takes E(x), E(y) and outputs E(x+y),
• MULT – takes E(x), E(y) and outputs E(x*y).

Having these two basic operations we can securely compute every program P, which

involves computing some polynomial Σai1...isX1
i1…Xs

is.

1. Agent owner:

a) encrypts all input parameters: E(x1), E(x2),…, E(xn),
b) sends the parameters along with: P, PLUS, MULT to the agent platform.

2. Agent platform:
a) encrypts all coefficients ai1..is in P,
b) substitutes every +, * operation in P with PLUS, MULT calls respectively,
c) executes P on encrypted parameters,
d) sends the result to the agent owner,

3. Agent owner:
a) decrypts P(x1,x2,…xn).

It was shown that the procedure MULT may be replaced by MIX-MULT, but it requires

a slightly different scheme than the one mentioned above. MIX-MULT calculates E(x * y)
based on E(x), y. The following may serve as an example such system:

• E: Zp-1 → Zp, E(x) = gx mod p, g is a generator of Zp; p-1 has small prime factors
so that E(x) is can be inverted by somebody knowing g;

• PLUS(E(x),E(y)) =E(x),E(y);
• MIX-MULT(E(x),y)=E(x)y.
An inherent disadvantage of this method is that it can only be applied to computing

polynomials, while many practical security functions do not belong to this group. As a
result, the contemporary knowledge on homomorphic rings does not solve the problem of
providing privacy of computation.

5.1.1.3. Boolean Circuits
Every efficiently computable function on any number of input parameters f(x1, x2, …,xn) can
be represented as a Boolean circuit. There exist protocols that enable evaluation of such
circuits in a distributed way, while keeping every participant unaware of all the inputs
except for the ones belonging to him [20], [21]. The result may be either shared by all
participants or every party may obtain only part of output. The heart of all such protocols is
a concept of garbled circuits introduced by Yao [22]. The following diagram shows a
sketch of a garbled circuit idea in a two-parameter case [23].

Garbled

Input 1
cleartext

Input 2
cleartext

Input 1
translation table

Input 2
translation table

circuit

Output 1
translation table

Output 1
translation table

Input 1
cleartext

Input 1
cleartext

Figure 5 Garbled circuit evaluation

Let GC be a garbled circuit C. Distributed evaluation of such encrypted circuit C(x,y)
requires the following steps:
1. A creates and sends the garbled circuit C:

a) Encrypts C by assigning to signals {0,1} on every wire wi in C a couple of
unique keys ki

0, ki
1. Boolean functions performed by gates in C are substituted

by a garbled computation table which maps input wires’ keys to output wires’
key(s).

b) Creates Input 1,2 translation tables as the mapping of circuit input wires to
corresponding keys chosen in a.

c) Creates Output 1,2 translation tables as the mapping of circuit output wires to
corresponding keys chosen in a.

d) Sends
1. keys representing bits of A’s input x1,
2. Input 2 translation table,
3. garbled computation table,
4. Output 2 translation table.

5. B computes garbled circuit and obtains y2:

e) Translates x2 bits to respective keys.
f) Executes garbled circuit using: garbled computation table, A’s input keys, and

his input keys.
g) Translates his output bits to output 2 (y2).
h) Sends A’s garbled circuit output.

6. A:
i) Translates output keys to y1.

It is worth noting that garbled circuit masks actual signals on internal wires (has a black
box property) and in consequence does not reveal any information about the input x1. We
can say that garbled circuit executed by B has x1 hardwired.

Author of [24] attempts to apply the garbled circuit technique to mobile agents – as a
safe way of evaluating security sensitive functions. Nonetheless, it has to be stressed that in
[24] it was assumed that garbled circuits have to be created manually, so the crucial
problem of creating automated garbled circuit compilers is not solved. Obviously, if
garbled circuits cannot be created automatically then their usage in real-life situations will
never materialize. Another issue is an obvious inefficiency of computing software as
compared to hardware Boolean circuits.

5.1.2. Practical Solutions – Code Obfuscation

The most popular programming language for mobile agents is Java. Java source code is
compiled into an intermediate code – bytecode. Bytecode is OS/machine independent,
which gives it enormous portability and explains Java’s popularity. However, bytecode can
be easily decompiled and reverse engineered, unless code obfuscators are used. These tools
scramble the bytecode making it difficult to analyze by employing the following techniques
[25], [26]:

• layout obfuscation:
o renaming identifiers (methods, variables, constants, types lose their

original names),
o removing debug information (code execution cannot be inspected in

debug mode);
• control obfuscation:

o altering execution flow by adding artificial branches, using conditional
statements,

o separating operations that belong together and mixing with other
operations,

o inserting redundant, meaningless code,
o cloning methods – preparing different versions of a single method by

applying various obfuscating techniques,
o replacing method calls with inline code;

• data obfuscation:
o splitting, merging and reordering arrays,
o merging scalar variables,
o converting static data to procedures,

o converting local variables to global.
A serious weakness of this method is the fact that it does not provide provable security;

in fact, there is a constant “arms race” between obfuscators and disassemblers, and
although it seems that so far the general-purpose disassemblers are outclassed by
obfuscators, the situation may change radically as soon as specialized, deobfuscating
disassemblers appear. Overall, it is clear that from an information-theoretic point of view,
obfuscation does not add to security at all – its only function is to slow down the analysis
of the algorithm.

5.2. Integrity of Computation – Theoretical Solutions

Known attempts to provide integrity of computation are based on holographic proofs and
computationally sound proofs (CS-proofs) [27]. Here the trace of the execution shows not
only the results, but also how they were obtained. Essentially, the preparation of such a
proof consists of translating the claim (which must be formal, and self-contained) into an
error-correcting form, and translating the proof. Any proof system (an algorithm that
verifies a proof) can be reduced into a so-called domino problem, which is a graph-coloring
problem. After that is done, verification takes the form of statistical checking of that
coloring. The checking is very fast (in fact, it is polylogarithmic – faster then reading the
proof), but has the probability of error of at most 50%. By repeating the checking, the
probability of error can be arbitrarily reduced.

So far, these solutions remain theoretical. The main difficulty is the necessity of using
formal logical systems. Even the simplest statements can become very complex when
stated in a formal and self-contained way. In addition, the gain in speed over traditional
proofs is only apparent when the proofs are large [28].

5.2.1. Privacy and Integrity of Data – Practical Solutions

An elegant solution which provides privacy and integrity of data was presented in [27] in
the form of PRACs (Partial Results Authentication Codes). Every agent before leaving its
home platform is supplied with a vector of keys. Every single key is used to create a MAC
of the information gathered or computed on a certain server, and optionally to encrypt the
data. The key is forgotten afterwards, preventing subsequent servers on the agent’s path
from tampering with gathered information. PRACs are used to preserve the integrity of
dynamic data. Static, unchangeable data (i.e. agent’s identity or itinerary), may be simply
protected by a digital signature of the agent’s owner. An attacker intending to change the
agent’s path without changing its identity would have to break the digital signature scheme.
These two ideas of securing static and dynamic data were successfully implemented in
Semoa agent platform [29].

Another, similar solution is giving the agent a public key, while the owner retains the
private key. The agent may encrypt the information it collects with this public key, so that
it can not decrypt it later. This ensures that nobody is able to cheat the agent, and pretend to
be the home platform or the agent’s owner. Unfortunately, public key cryptography is not
as efficient as PRACs.

Home platform
Agent
k1, k2, k3

Platform P1
Agent
k2, k3

O1,MAC k1(O1)

Platform P2
Agent
k3

O1,MAC k1(O1)

Platform P3
Agent O1,MAC k1(O1)

O2,MAC k2(O2)O2,MAC k2(O2)

O3,MAC k3(O3)

Figure 6 PRAC codes

Overall, it can be assumed that privacy and integrity of data can be assured using
cryptographic techniques.

6. Trust-based Models

Let us now look from a completely different angle at the issue of agent system security. Let
us start form a simple observation that some problems of agent security could become
easier to solve if we make some reasonable assumptions about whom to trust, and to what
extent, instead of being “uniformly paranoid” (see also [30]). This approach tries to address,
among others, above mentioned questions of “lying agents” that try to gain advantage not
by direct attack, but by pretending to be legitimate while trying to disrupt the system by
various forms of malicious disruptive behavior (e.g. agents that in certain forms of auctions
cause the final price to be higher then the true valuation of the product [31]).

6.1. Hardware-based Solutions

The most far-reaching assumption would be to trust the agent platform. However, even if
the company maintaining the agent platform is trustworthy, the software may be
compromised by an outside adversary. A partial solution to this danger is the use of
Hardware Security Modules (HSMs) [32]. A platform can have a secure hardware device
that cannot be tampered with, has a very restricted set of inputs and outputs, and is capable
of performing cryptographic operations. Such a device can then be involved in interactions
between the agent and the agency, ensuring for instance that they are performed only once.
HSMs also typically include secure clocks (so that e.g. transaction time can be recorded

accurately), hardware-based random number generators, and tamperproof key storage space.
They also offer very high cryptographic performance – up to two orders of magnitude
faster than software solutions. Unfortunately, HSMs are expensive (thousands of dollars
each), and their use implies trust in the maker of that HSM (which comes back to the old
riddle: who controls the controller? – who will assure that creators of such modules can be
trusted and did not leave secret backdoors in their modules, e.g. known to the government
agencies).

A much cheaper solution that is gaining popularity is Trusted Platform Module (TPM)
– a chip that can be included on a standard PC motherboard, and shares some similarities
with HSMs. However, for agent platforms, the most useful new ability is attestation of the
platform. [33] As soon as the computer boots, the TPM chip starts gathering platform
metrics, storing those metrics in the log, creating hashes of those metrics and storing the
hashes in the Platform Configuration Registers (PCRs). The PCRs can then be signed using
the TPMs Attestation Identity Key (AIK) at some point. This certifies that the computer is
running certain software, so that the remote user (or agent) can be sure that this is indeed
the case, and that the software has not been maliciously modified, since the Platform
Configuration Registers can not be arbitrarily set; they can only be reset or extended. The
agent can be constructed in such a way, that its secrets are “sealed” – only revealed on a
platform meeting certain requirements. While TPM does not completely solve the platform
trust problem, it could make cheating on part of the platform owner more difficult, and
encourage trust in agent platforms.

6.2. Cooperating agents

In most cases it makes sense to limit trust to platforms, no matter what assurances they
offer. There are a few interesting attempts to address the platform trust problems by making
the agents cooperate. This approach makes an assumption that not all servers are malicious
and not all of the corrupted ones want to collaborate with one another. It seems reasonable
in e.g. a network of competing companies. Therefore, it is vital that the cooperating agents
are scattered among the system nodes rather than located on the same server.

Roth in [34] proposes a scenario, in which agents work in pairs – let us call them agent
A and B. A visits a set of hosts H, while his partner moves to a server which belongs to a
rival of H. A walks the predefined path and passes the offers to B. Once A has collected all
the information they can choose the best offer; moreover, they can pay for it using e-money
shared by them using a secret sharing scheme – B can send his part of the e-coin.

Authors of [35] show that we can attempt to build self-supporting communities of
agents, so that every member of the community has at least two guards of its security – the
Shared Security Buddy Model. Somewhat similarly, in [36] a trust-based security model for
agent communities was presented. It was shown how it is possible to sustain long-term soft
security – defined as a situation where isolated cases of mischief are possible, but in a long-
term system will adapt its behavior and eliminate offending agents. While there exist a
number of application areas where soft-security can be sufficient (e.g. within a “closed”
organization, where soft security measures are supported by other inter-organizational
security measures; or when security is only of limited true concern – see next paragraph), it

is clear that this level of security is not enough in the case of e-commerce, or when dealing
with any type of sensitive information management in an open system. Observe that for a
cheat it is enough to score once – steal large sum of money and disappear. In this case, the
fact that he would have been eliminated over time from the system is not good enough for
these who lost their money, or whose sensitive information was compromised.

Certain real-world situations lend themselves naturally to creation of a network of
agents which, while not cooperating per se, are able to communicate, and would be more
resistant to corruption. Consider, for example a network of personal assistants, which all
keep track of CD’s that their owners like. In order to get a recommendation, one could have
his assistant question assistants of people who liked similar CD’s. Even if a fraction of
agents maliciously cheat (for example to promote a CD), the net effect would be mitigated
by the honest ones. Unfortunately, since creation of agents is “cheap,” such networks are
susceptible to corruption by masses of “special agents” acting in concert. Possible solutions
are: accepting new members only by invitation (which defeats the purpose of open
exchange of information), creating trust-networks or ensuring that a human spends time
before releasing next agent, by giving out a test that only a human can pass [37]. Such tests,
called CAPTCHAs, are based on unsolved problems in artificial intelligence – usually
image or speech recognition. Nevertheless, they will not deter a determined adversary –
they just increase the cost of introducing rogue agents. Note however, that for
recommender systems (even these involved in e-commerce), the fact that someone would
be convinced to buy a CD would not have “disastrous” consequences. This is precisely the
type of scenario, where approaches similar to these proposed in [36] would provide an
acceptable level of agent-system security.

Figure 7 Sample CAPTCHA

6.3. Undercover agents

Honesty of the platforms can be verified in the same way as corruption of organizations in
the real world – by undercover agents. An agent may pretend to represent a customer, and
search for the best air-fare price, but it might have been prepared to contain certain data,
that should never change, if the agencies are honest. If the data does change, one can be
sure that at least one agency on the agent’s path has acted malevolently. It is then easy to
isolate the rogue agency by using more such agents with different paths.

6.4. Clueless agents

Finally, if no platform is to be trusted, it is possible to create agents that do not know their
intended purpose [38]. An example would be an agent that performs a patent search by
calculating hashes of strings, and trying to match them with a stored value. The owner of
the agent prepares it beforehand by calculating:

N := a random nonce
K := H(description of the patent idea)
M := EK(action to be performed upon finding the idea)
O := H(N ⊕ description of the patent idea)

The agent then searches through the database, hashing the strings it finds and testing if
H(N ⊕ tested string) = O, and
if yes, the agent executes DH(tested string)(M)

Therefore, if a certain string is in the database, it will be found, but one cannot derive it
from the agent beforehand, so the patent idea stays safe. Likewise, it is impossible to know
what the agent will try to do once the string is found. Note that this approach may give rise
to new type of hard to defeat viruses and worms, which will not reveal their payload until
they infect a system with a certain domain name, or a certain item appears for sale on eBay.
Unfortunately, clueless agents tend not to be very efficient, and not every problem can be
solved by them. In particular, as agents operate blindly, they have to search through a very
large number of possible solutions before stumbling upon the correct one. In this case it is
exactly the cluelessnes that precludes use of any optimization.

7. Concluding remarks

In this chapter we have presented an overview of security issues involved in mobile agent
systems. We have established that problems involved in agent communication and security
of an agent platform can be considered as practically solved. Obviously, the same way as
network communication is secure only until a more powerful hacking method is developed
(which is then counteracted by a new security measure), sandboxing the platform will be
effective until someone finds a hole in the virtual machine (that will later have to be
patched). Nevertheless, we consider the agent platform and agent communication as
relatively safe. Unfortunately, as our research shows, none of the existing methods can
guarantee true agent security. Section 5 shows that only data carried and collected by
mobile agents can be efficiently secured. It means that contemporary knowledge of agent
protecting techniques restricts us to “window-shopping” type of mobile agents. Broad
utilization of mobile software agents in realistic scenarios remains a question of future
inventions. However, our research indicates also that when only soft security is required,
and when response time to an existing threat is not crucial, communities of cooperating
agents can eliminate bad agents from the system. We can thus say that it is possible to
create weakly secure self-securing agent systems.

References

[1] Jennings N. R. (2001) An agent-based approach for building complex software systems, Communications of
the ACM, 44 (4), pp. 35-41

[2] Maes P. (1994) Agents that Reduce Work and Information Overload. Communications of the ACM, 37, 7,

pp. 31-40

[3] Ganzha M., Paprzycki M., Pîrvănescu A., Bădică C., Abraham A. (2004) JADE-based Multi-agent E-

commerce Environment: Initial Implementation, Analele Universităţii din Timişoara, Seria Matematică-
Informatică, Vol. XLII, 79-100

[4] Jennings N. R., Wooldridge M. (1998) Applications Of Intelligent Agents, Springer-Verlag NY, Agent

technology: foundations, applications, and markets, pp. 3-28

[5] Jennings N. R., Wooldridge M. (1995) Intelligent Agents: Theory and Practice. The Knowledge

Engineering Review, pp. 115–152

[6] Galant V., Tyburcy J. (2001) Intelligentny Agent Programowy, Prace Naukowe AE Wrocław, Nr 891, pp.

46 – 57, in Polish.

[7] Bădică C., Ganzha M., Paprzycki M. (2005) Mobile Agents in a Multi-Agent E-Commerce System. In:

Proceedings of the SYNASC 2005 Conference (to appear)

[8] Di Martino B., Rana O.F.(2003) Grid Performance and Resource Management using Mobile Agents, in:

Getov, V. et. al. (eds.) Performance Analysis and Grid Computing, Kluwer, 2003

[9] Bădică C., Ganzha M., Paprzycki M. (2005) UML Models of Agents in a Multi-Agent E-Commerce System

In: Proceedings of the ICEBE 2005 Conference, IEEE Press, Los Alamitos, CA, 56-61

[10] Paprzycki M., Abraham, A. (2003) Agent Systems Today: Methodological Considerations, Proceedings of

the 2003 International Conference on Management of e-Commerce and e-Government, Jangxi Science and
Technology Press, Nanchang, China, pp. 416-421

[11] Bădică C., Bădită A., Ganzha M., Iordache A., Paprzycki M. (2005) Implementing Rule-based Mechanisms

for Agent-based Price Negotiations. In: Proceedings of the ACM SAC Conference (to appear),

[12] Bădică C., Bădită A., Ganzha M., Iordache A., Paprzycki M. (2005) Rule-Based Framework for Automated

Negotiation: Initial Implementation. In: Proceedings of the RuleML Conference (to appear)

[13] Menezes A., van Oorschot P., Vanstone S. (1996) Handbook of Applied Cryptography, CRC Press, CRC

Press, Boca Raton, USA

[14] Loureiro S., Molva R., Roudier Y. (2000) Mobile Code Security, Proceedings of ISYPAR 2000 (4ème Ecole
d'Informatique des Systèmes Parallèles et Répartis), Code Mobile

[15] Dageforde M. Security in Java 2 SDK 1.2 , http://java.sun.com/docs/books/tutorial/security1.2/overview/

[16] Suri N., Bradshaw J., Breedy M., Groth P., Hill G., Jeffers R., Mitrovich T. (2000) An Overview of the

NOMADS Mobile Agent System, in Proceedings of ECOOP 2000

[17] Sander T., Tschudin C. (1997) Towards Mobile Cryptography, International Computer Science Institute

technical report 97-049

http://www.ecs.soton.ac.uk/%7Enrj/download-files/cacm01.pdf
http://www.acm.org/pubs/cacm/
http://www.acm.org/pubs/cacm/
http://ki.pwsz.net/ganzha/homepage.html
http://is.comp-craiova.ro/%7Ebadica_costin/
http://ajith.softcomputing.net/
http://is.comp-craiova.ro/%7Ebadica_costin/
http://ki.pwsz.net/ganzha/homepage.html
http://is.comp-craiova.ro/%7Ebadica_costin/
http://ki.pwsz.net/ganzha/homepage.html
http://is.comp-craiova.ro/%7Ebadica_costin/
http://ki.pwsz.net/ganzha/homepage.html
http://is.comp-craiova.ro/%7Ebadica_costin/
http://ki.pwsz.net/ganzha/homepage.html

[18] Sander T., Tschudin C. (1998) Protecting Mobile Agents Against Malicious Hosts. Lecture Notes in
Computer Science 1419, pp. 44

[19] Burmester M., Chrissikopoulos V., Kotzanikolaou P. (2000) Secure Transactions with Mobile Agents in

Hostile Environments, Proceedings of the 5th Australasian Conference on Information Security and Privacy
table of contents, pp: 289 - 297

[20] Tate S., Xu K. (2003) On Garbled Circuits and Constant Round Secure Function Evaluation, Computer

Privacy and Security Lab, Department of Computer Science, University of North Texas, Technical Report
2003-02

[21] Beaver D., Micali S., Rogaway P. (1990) The round complexity of secure protocols, Proceedings of the

twenty-second annual ACM symposium on Theory of computing, pp. 503-513

[22] Yao A. (1986) How to Generate and Exchange Secrets, In 27th FOCS, pp. 162-167

[23] Lindell Y., Pinkasy B. (2004) A Proof of Yao's Protocol for Secure Two-Party Computation, Electronic

Colloquium on Computational Complexity, Report No. 63

[24] Lien H. (2002) System Design and Evaluation of Secure Mobile-Agent Computation with Threshold Trust,

http://zoo.cs.yale.edu/classes/cs490/02-03a/lien.henry/

[25] Hongying L. (2001) A comparative survey of Java obfuscators available on the internet,

http://www.cs.auckland.ac.nz/~cthombor/Students/hlai/

[26] Collberg Ch., Low D., Thomborson C. (1997) A Taxonomy of Obfuscating Transformations,

http://www.cs.arizona.edu/~collberg/Research/Publications/CollbergThomborsonLow97a/

[27] Levin L. (1999) Holographic Proofs, http://www.cs.bu.edu/fac/lnd/expo/holo.html

[28] Roth V. (2002) Empowering mobile software agents, Proceedings of 6th IEEE Mobile Agents Conference,

Suri N, ed., Lecture Notes in Computer Science, vol. 2535 pp. 47–63

[29] Yee, B. (1997) A sanctuary for mobile agents. Technical Report CS97-537, Department of Computer

Science and Engineering, UC San Diego,

[30] The Trusted Computing Group (2004) TCG Specification Architecture Overview,

https://www.trustedcomputinggroup.org/groups/infrastructure/

[31] Garg, N., Grosu, D., Chaudhary V. (2005) An antisocial strategy for scheduling mechanisms, Proceedings

of the 19th IEEE International Parallel and Distributed Processing Symposium.

[32] Hardware Security Modules, history: http://www.eracom-tech.com/pioneering.0.html#1526

[33] Bajikar, S., Trusted Platform Module Whitepaper, Intel Corporation, Mobile Systems Group, June 2002,

http://developer.intel.com/design/mobile/platform/downloads/Trusted_Platform_Module_White_Paper.pdf

[34] Roth V. (1999) Mutual protection of co-operating agents, Vitek J., Jensen C. eds., Secure Internet

programming: security issues for mobile and distributed objects, Lecture Notes In Computer Science vol.
1603, pp. 275-285

[35] Page, J., Zaslavsky, A., Indrawan, M. (2004) A Buddy Model of Security for Mobile Agent Communities

Operating in Pervasive Scenarios, Proceedings of Second Australasian Information Security Workshop
(AISW2004), pp. 17-25.

http://www.cs.auckland.ac.nz/%7Ecthombor/Students/hlai/
http://www.cs.arizona.edu/%7Ecollberg/Research/Publications/CollbergThomborsonLow97a/

[36] Hexmoor H., Bhattaram S., Wilson S. (2004) Trust-based Security Protocols, SKM 2004 Workshop, SUNY
Buffalo, September 2004

[37] von Ahn L., Blum M., Hopper N., Langford J. (2003) CAPTCHA: Using Hard AI Problems for Security,

Advances in Cryptology, Eurocrypt 2003

[38] Riordan J., Schneier B. (1998) Environmental Key Generation towards Clueless Agents, Mobile Agents and

Security, G. Vigna, ed., Springer-Verlag, pp. 15-24.

	1. Introduction to Mobile Agents
	2. Security Requirements for Mobile Agent Systems
	2.1. Typical Scenarios
	2.1.1. Airfare Agent
	2.1.2. Price Negotiators
	2.1.3. Network Management Agents

	2.2. Classification of Threats
	2.2.1. Platform-to-platform
	2.2.2. Agent-to-platform
	2.2.3. Platform-to-agent
	2.2.4. Agent-to-agent

	3. Cryptographic Goals and Tools for Mobile Agents
	4. Mobile Agent Platform Security
	5. Mobile Agent Security
	5.1. Privacy of Computation
	5.1.1. Theoretical Solutions
	5.1.1.1. Function Encryption
	5.1.1.2. Homomorphic Rings
	5.1.1.3. Boolean Circuits

	5.1.2. Practical Solutions – Code Obfuscation

	5.2. Integrity of Computation – Theoretical Solutions
	5.2.1. Privacy and Integrity of Data – Practical Solutions

	6. Trust-based Models
	6.1. Hardware-based Solutions
	6.2. Cooperating agents
	6.3. Undercover agents
	6.4. Clueless agents

	7. Concluding remarks

