Adaptability in an Agent-based Virtual
Organization—Towards Implementation

G. Frackowiak!, M. Ganzha', M. Paprzycki!, M. Szymczak!,
Y .-.S. Han?, and M-.W. Park?

1 Systems Research Institute Polish Academy of Sciences,
Warsaw, Poland,
Maria.Ganzha@Qibspan.waw.pl
2 Korea Institute of Science and Technology, Seoul, Korea
myon@kist.re.kr

Abstract. Ability of an organization to adapt to change is one of its
important features. When a real-world organization is transformed into a
virtual one, with a help of software agents and ontologies, it is important
to specify how adaptability can be achieved. In our earlier work we have
conceptualized, on a general level, adaptability in an agent-based virtual
organization. The aim of this chapter is to discuss how agent adaptability
can be implemented.

Key words: software agents, virtual organization, agent systems, agent
adaptability, ontologies

1 Introduction

Organizational adaptability to various changes is one of important issues in the
world of business (see, for instance [13]. In our recent work ([10, 11, 14, 16]) we
have argued that emergent software technologies such as software agents [18] and
ontologies [2] could be the base of mapping a real-world organization into a vir-
tual one. We have thus proposed a system in which: (i) organizational structure,
consists of specific “roles” and interactions between them, and is represented by
software agents and their interactions [10]; while (ii) domain knowledge, resource
profiles (representing organizational semantics) and resource matching are on-
tologically represented and operated on using various forms of semantic reason-
ing [16]. Second, we have argued that as the real-world organization changes, not
only its ontology has to be adjusted, but also “mechanisms of interaction” within
its agent-based “representation”. Obviously, this concerns not only changes in the
the organizational structure itself, but also has to materialize as a response to
task changes carried out by the organization (not only changes within specific
projects, but also changes in the project portfolio), as well as changing interests,
needs and skills of employees.

In our earlier work ([6, 9]) we have discussed in general terms processes
involved in both human resource and non-human resource adaptability. One of
the important issues was the fact that in addition to changes in the ontology of

2 G.Frackowiak et al.

the organization, software agents that play the key role in supporting workers,
have to be adaptable as well. Therefore, the aim of this paper is to extend our
earlier results and look in more detail into the question: what will it take for Jade
agents (our current platform of choice; [3]) to be adaptable. First is to be able to
generate on demand agents with needed functionalities to fulfill specified roles.
Second is to modify them in response to changes in the organization and/or the
environment it operates in. To this effect we, first, briefly describe our system.
We follow with a discussion how agent adaptability can be actually implemented.

Before proceeding, let us make a few comments. First, note that while our ap-
proach to agent adaptability is in part responding to the way that Jade agents
operate, results presented here generalize naturally to other FIPA-compliant
agent platforms ([1]). Second, work presented here is an extension of results pre-
sented in [9, 6]. Third, it is assumed that readers possess basic knowledge about
software agents and the way they are implemented in modern agent environ-
ments, like Jade ([3]).

2 System overview

The main function of the system under development is to provide users (employ-
ees) an infrastructure that will help to fulfill their roles within the organization.
Here, the key concepts are utilization of software agents and ontologies. In the
proposed system, software agents exist, first, as independent entities, e.g. a Task
Monitoring Agent, which tracks progress of a specified task, and undertakes ap-
propriate actions in case of any delays. Note that roles that can be fulfilled by
software agents alone vary from organization to organization and depend on its
specific needs (see, also [14]). Second, every employee has an associated Personal
Agent (PA). This agent has two main functions: (a) it is the interface between
the Employee and the system (allowing her to utilize all of its functions), and (b)
it supports Employee in all roles that (s)he is to play within the organization.
In other words, an agent is integral part of system but also a bridge between
the user and the system. It is worthy mentioning, that this notion of a Personal
Agent follows the general idea put forward by P. Maes [12]. We can easily envi-
sion that a “work PA” is a part of a “complete PA” which supports User in all
facets of life.

Let us now briefly summarize main features of the proposed system. First, we
assume that work carried out within the organization is project-driven (however,
the notion of the project is very broad and includes change of a transmission
belt in a Ford Mondeo, as well as managing a team of researchers working on a
grant-based project). Therefore, it can be stated that all employee activities are
focused on tasks leading to completion of a project. After analysis of project-
driven real-world organizations, key roles were identified and we represent them
in the form of an AML Social Model diagram, in Figure 1.

Here, we can see the general hierarchical management structure that can be
applied to almost every standard real-world organization. Structure of the orga-
nization consists of Departments and Teams. Each Team has at least one Team

Adaptability in an Agent-based Virtual Organization 3

< <environment ==

Organization Q

manage

cooperate “
#*] #® i

< <entity role== < <organization unit ==
M. U <] Department [A

cooperate
*

= <entity role= = < <organization unit ==
Team Manager U -— Team (Type)) .

+Type of tasks

= ?
<<entity roles=
Worker

+EBelongToTeam(Type)

Fig. 1. AML Social Model of an organization

Manager, while each Manager may: (1) manage a team, (2) supervise managers
of lower level (in this way a recursive hierarchical structure of the organization
is represented), or (3) cooperate with other managers on the same level (e.g.
when teams collaborate, or when the CFO and the CIO have to collaborate to
introduce a new CRM platform to the organization). Note that: (a) Organization
is an “environment” for Departments, Managers, Teams and Workers; (b) Orga-
nization cannot exist without at least one Team; (c) it is possible for a Team to
consist only of a Manager—without any Workers (e.g. this could represent the
case of self-employment). In Figure 1 we also depict the Worker who can be a
member of any of the teams (obviously at a given stage (s)he is going to be a
member of one team.)

To illustrate how the proposed conceptualization can be instantiated, in Fig-
ure 2 we present example of the real-world organization; a University represented
also as an AML Social Diagram.

Here, a number of specific entities have been represented. First, we can see
the hierarchical and cooperative structure of University management (entity role
Manager, right top corner of the figure). The University Worker Team organiza-
tional unit represents all workers of the University. Since the University consists
of Departments, we can see also the Department Worker Team organizational
unit, which represents all workers of a Department. The Department consists of a
number of teams. We have considered a large Department where we can find the
Management Team (e.g. consisting of Department Chair and Associate Chairs),
Teaching Team (comprising all Teaching Faculty), Technical Team (consisting
of IT support personnel as well as laboratory personnel), Research Team (con-
sisting of grant-based all post-graduate and graduate associates), and Assistant
Team (consisting of one or more Secretaries). Finally, we can see a Worker, who
belongs to one or more teams.

4 G.Frackowiak et al.

manage
cooperate

2 «

i
LLEMYrONMEnt =5 <<organization unit < <entity role >
Organization: University £\ University Worker Team (2% Manager

<<organization unit=>
Department Worker Team £) s

<<environment>>
Department fam)

< <organization urit>>

<<iorganization unik =
Department Technical Team (-2

< <organization urit > >
Department Research Team {24

Department Assistant Team 2 ‘

{ ? i i {

<<entity rols>>
Worker

+BelongTaTeam(Type)

<<organization unik <<organization unit =
‘ Team 204 Teaching Team (24

Fig. 2. University; AML Social Model

To complete the picture, in Figure 3 we present an AML Mental Diagram
of the Department. We present this diagram first, to move from the real-life
organization depicted in Figure 2, to the virtual organization, where we talk
about specific roles and software agents that support Employees in fulfilling
them. Second, as it introduces key entities involved in agent adaptability. Finally,
as roles identified there will be used in examples across the paper.

2<agent =5
Injector Agent <zagent>> Q
Profile M. A t
<<dg> > +provideAdaptabilty b ol

<<agent>>
<<dg> s+spotProfieChange Department wnrkerg

“<agentsx
Dgpart“gm“t s Q ‘tanManageDepartment
< <pl>=+support Chair
<<agent>>
“<agent>> Personal Agent <<agent>>
¥DAgent

Graduate Program Coordinator
<<pl>>+supportUser
= ug > >+satisfylser

<<agent>>
+canjupportliser Teaching Faculty Member
<<agent>> ‘canSupportUser
TaskMonitoringAgent

<<agent>>
<= =+maintsinschedule Assistant to the Chair
< <pl>>-+controlSchedule

Fig. 3. University Department; AML Mental Diagram

In Figure 3 we introduce the VOAgent which is the one of the fundamen-
tal concepts of our system. We conceptualize the VOAgent as skeleton agent,
which can be extended with various functionalities. Those extensions allow the
VOAgent to support Employees in playing specific roles in the organization. The
VOAgent can be “transformed” into any other agent (see [6] for a similar dia-
gram that presents on a higher/generic level other roles that the VOAgent can be

Adaptability in an Agent-based Virtual Organization 5

transformed into). Here, let us observe first that the VOAgent can be transformed
into an, above mentioned, Task Monitoring Agent (TMA). This agent is an inde-
pendent entity in our system and does not support any Employee. Next, we can
see that the VOAgent can be transformed into a Personal Agent (PA). The Per-
sonal Agent provides the basic support of an Employee. Note that the PA is not
associated with any specific role within an organization. As such, it is a generic
role that is associated with every worker in the organization. For instance, every
Employee of the University represented as a member of the University Worker
Team in Figure 2, would have a Personal Agent associated with her/him.

In Figure 3 we have identified a few sample roles that exist in a typical large
University Department: Department Worker—a basic role associated with every
worker of the Department, Department Chair, Graduate Program Coordinator,
Teaching Faculty Member, and Assistant to the Chair. Note that in smaller Uni-
versities some teams identified in Figure 2 may not be present, while some roles
introduced here may be played by a single person (e.g. the Department Chair
who is also a Graduate Program Coordinator).

Finally, Figure 3 includes auxiliary agents like Injector Agent or Profile Man-
ager Agent which play crucial role in agent adaptability and will be described
later. With this background we can look into processes involved in extending the
VOAgent to allow it to play required roles.

3 Configuring Generic Agents

3.1 Overview of agent adaptability

Before we proceed, let us note that our approach to agent adaptability follows
ideas of Tuan Tu and collaborators, from their project DynamiCS. For instance,
in [17] it was discussed how e-commerce agents can be dynamically assembled
from separate components (i.e. communication module, protocol module and
strategy module) to address the requirements of the e-commerce environment
(to be able to participate in unknown in advance form of price negotiations).
While technical details of our approach differ, we follow the same general ap-
proach of dynamically (re)assembling agents and adapting their behavior by
(re)configuring the set of “modules” that a given agent consists of. In this con-
text let us introduce an initial understanding of the notion of a module. Let
us thus say that a module is an object that encapsulates appropriate knowledge
and behaviors required for an agent to instantiate a specific functionality. For in-
stance, a Department Management Module will group behaviors and knowledge
that allow the Personal Agent extended by such module to interact with the sys-
tem and support a member of the Department Management Team in completing
Department Management-related tasks. Specifically, we that such module will
contain all necessary knowledge and behaviors to help the Department Chair in
managing duty trips of Department Workers (see, [7] for a detailed description
of duty trip support).

6 G.Frackowiak et al.

To start discussion of agent adaptability, in Figure 3.1, we present the use
case diagram of processes involved in (re)configuring agents. This Figure should
be looked into together with Figure 3.

Accessing
Organization Module

Library
Accessing
Profile Base
gent

Accessing
Personal Module
Library

Initialization

N Injector A
N~ Updating Module
<<|ndufie>> (Organization or
N Personal)
N
N N

Injecting New Module
(Organization or
Personal)

N
<<extend>>
N

<<extend>>

Reconfiguration

VO Agent

Fig. 4. Functionality of the Injector Agent—use case diagram

Here, we can see high-level conceptualization of agent initialization and recon-
figuration. Note, that almost every agent in the system (besides some auxiliary
agents like the Injector Agent) is going to be initialized in the same way. First,
the VOAgent is going to be created. This agent is able to cooperate with the In-
jector Agent in order to load required modules and knowledge. Subsequent stages
of agent initialization include providing it with appropriate modules that allow
it to extend itself with functionality required to play (a) specific role(s) (the
Injecting New Modules function). The process of reconfiguration also involves
cooperation between the IA and the VOAgent (the Updating Module function).
Note that in the case of agent initialization we can assume that such agent will
be able to self-load needed modules. As we will see later, this is not the case
when already loaded modules have to be modified /updated.

In order to provide the VOAgent with the needed modules the Injector Agent
has access to:

— Module Factories—entities containing factories of every module available in
the system (see also the component diagram in Figure 5 for more details).
This includes (1) factories of core modules (Personal Module Library) which
are associated with all functions of a Personal Agent (e.g. a Calendar Man-
aging Module), (2) specific modules (Organization Module Library) created
in order to support agent in roles identified in the organization (e.g. Faculty
Evaluation Module provided to support role of the Department Chair), and
(3) autonomous agent modules (e.g. Checking Completion of the Task Module
provided for the Task Monitoring Agent).

Adaptability in an Agent-based Virtual Organization 7

— Profile Base, which stores profiles (i.e. lists of required modules) associated
with each role identified within the organization. This information is used to
select modules required by a Personal Agent supporting a Department Worker
in fulfilling a specific role.

The Injector Agent is involved not only in agent initialization but also in
agent reconfiguration. Agent reconfiguration takes place in the following situa-
tions:

— One or more profiles in the Profile Base have changed and as a result some
modules must be added to or removed from an agent supporting functionality
specified by such profile(s). Adding a module means that a new functionality
is added to the agent (e.g. it will be now able to interface with the new Wiki
system installed to manage knowledge in the University). Removal of a module
means that the agent will no longer support some functionalities (e.g. access
to an obsolete University blackboard system will be removed).

— The organization modifies some procedures and as a result modules are up-
dated. For instance, a new post of Associate Chair for Departmental Devel-
opment is created and thus selected Department Workers will have to report
to this new Associate Chair. As a result Personal Agents of these Workers
(that support them in their roles) have to have modules involved in commu-
nication/dependency structure modified. This process involves removal of the
old version of the (Communication Module) and loading of new one.

— Agent reconfiguration can also take place in situation when only some part of
agent knowledge has to be replaced.

As an example, imagine a Department Worker who is a Professor in Depart-
ment of Biology (which is a specific instantiation of a role of the Department
Worker). His Personal Agent will have to be loaded with modules that allow it
to support her in fulfilling this role; let us name the resulting agent a Professor
Agent. The organizational profile of the Department Worker contains informa-
tion about unit(s) in the organization to which he belongs (e.g. the Department
of Biology; see, also [16]). Knowledge about modules required for an agent sup-
porting a Professor is stored in the Profile Base and can be accessed/extracted
by the Injector Agent. Therefore, when a new Professor is hired by the Uni-
versity, first a PA is assembled by on the basis of a VOAgent. This involves
loading it with standard PA modules; e.g. module that allows access to the Uni-
versity intranet. In the second step of the assembly, Professor Modules (e.g.
modules that interface with the Grant Announcement and the Duty Trip Sup-
port functionalities; see, [8]) are injected into thus created PA, extending its role
to support the Department Worker. However, when the Professor “changes its
position within the structure of the organization”, some modules are likely going
to be added, removed and/or replaced within an already existing PA; a case
of agent adaptation. For instance, if the Professor worked as the Department
Chair, she had access to personal data of other Department Workers in her De-
partment. Such access should not longer be allowed to the Professor who is not a
Department Chair, and thus modules supporting it should be removed from her

8 G.Frackowiak et al.

Personal Agent. Note that this example assumed that a specific infrastructure
for data/profile change notification exists in the system. However, here we do
not intend to discuss this issue, as it is out of scope of this paper.

3.2 General framework of agent adaptability

To discuss how agent creation and adaptation is achieved we have conceptualized
it in the form of a component diagram in Figure 5. This diagram combines the
generic framework and system artifacts which are specific to the organization
in which the system is run. In the context of this chapter we are particularly
interested in what is happening within the dash-line rectangle, which delineates
the core of the proposed approach.

,,,

i
! !
- . DT PA Modiule
GA OPM Module DT OPM Madule | | JADE extension (jar)
- - S GA PA Module

NI . s
OPM

L Frofile Monitor Agent .
- TTTTTTITTTRYTRTTTTT

Injection

> Transport Objects
T

Data Access Objects

Semantic Data Storage

Organization Specific Ortology Instance

Generic Ontology |3 ____ Org Specific Ontology

oduleProviderinteface
C Modue Factories | < fspnn Data Madel ' Org Specific Data Model
3 '

Query Rules : Ora Specific Query Model

Fig. 5. Component Diagram of agent adaptability

Let us start our description by recalling from [6] that the OPM (Organization
Provisioning Manager) is an umbrella role that is fulfilled by a number of entities
(some of them are agents alone, while some of involve Employee(s) supported
by their PA(s)). For instance, in [10] we have argued that travel recommend-
ing functions belong to the OPM. Similar claim can be made about the Grant
Announcement application described in [15]. Finally, searching within the Uni-
versity for a classroom available during the Spring 2009 semester every Thursday
between 2PM and 4PM is also its role (fulfilled by a different (sub)entity within
the OPM ; see, also [14]). Here, we show that agent adaptability, being the case
resource management, is also one of the roles of the OPM. Therefore, the above
described Injector Agent (IA), and the Profile Monitor Agent (PMA) are also
“a part” of the OPM. The role of the PMA is to monitor changes in the data
model and to inform the IA that a particular profile was updated. Finally, the
Module Monitor Agent informs the IA about new modules or new modules ver-
sions introduced into the organization. As a result the IA has to reconfigure
agents that play a roles connected with those modules. Obviously, any form of

Adaptability in an Agent-based Virtual Organization 9

(re)configuration is pertinent to both User-supporting and autonomous agents,
as both of them are created and maintained with the help of the IA.

The TA communicates also with the Module Provider Interface, which as-
sociates modules with module factories (stored in the Module Factories) and
creates instances of modules for the requested resource (e.g. the Department
Worker fulfilling a given role).

In Figure 5 the VOAgent is represented after it has been already transformed
into the PA (but everything discussed here applies also to cases involving au-
tonomous agents). The PA is extended (with functionalities selected according
to the specific profile) to support the Department Worker in fulfilling a given
role. This is achieved by the IA through the Injection Interface.

In the figure we also represent the Generic Data Model and the Generic
Query Model using ontologies which define concepts universal for any organiza-
tion in which we could wish to implement the proposed system. These concepts
include: human resource, non-human resource, profile, profile access privileges,
organization units, module configuration, task, matching types and matching re-
lations (see also [7, 16]). Both these generic ontologies can be reused and specified
by organization specific data and query models. They are also used to generate
classes that implement behaviors of specific modules.

Let us stress, again, that we view all entities and their relations represented
within the dashed rectangle as a generic framework that will materialize in most
organizations (not only the University, which is the focus of this paper).

Considering the organization specific elements of the system (elements that
will differ between organizations and are represented outside of the generic frame-
work), crucial roles are played by the Organization Specific Data Model and the
Organization Specific Query Model. Both these ontologies reuse the Generic On-
tology, which is a part of the framework, in order to represent data structures
and matching scenarios which are pertinent to the organization. Based on the or-
ganization specific ontologies their instances can be created, stored and queried
through the Semantic Data Storage which is an infrastructure for manipulat-
ing and storing semantically demarcated data. For the time being, to support
these functionalities, we intend to utilize the Jena ([4]) persistence layer. How-
ever, we are well aware of the fact that currently existing semantic data storage
and querying software is far from being efficient. As a result, in the future we
may select a different persistence technology. Such decision is going to be based
mainly on experimental work involving various existing technologies (similar to
that described in [5]).

Finally, Special Function-related “boxes” represent specific applications that
the system is to deal with. Examples of such functions would be the Duty Trip
Support (see, [16]) and the Grant Announcement (see, [8]). Both these functions
involve interactions between the OPM and the Personal Agent. Note that while
these functions have been described in the context of a generic Research Institute,
they fit very well in the University-based example presented here.

10 G.Frackowiak et al.
3.3 Implementing agent adaptability

Let us now take a closer look at some crucial, from the point of view of im-
plementing agent adaptability, components of our system. Before proceeding let
us note that solutions discussed here are on the basis of our current state of
knowledge. It is therefore possible that as we proceed with implementation we
may find them lacking in important respects and thus in need of adjusting them.

As mentioned above, from implementation point of view the VOAgent is an
extension of the jade.core.Agent class. The extension must be made in order
to provide following functionalities:

— working with modules, in particular, adding, replacing, removing, and regis-
tering them

— working with behaviors, monitor them, controlling, adding, removing

— providing access to the Shared Object Map, which is an map of objects shared
by working behaviors

Note that module loading, removing and replacing will involve an addi-
tional ontology, which we name the Module Ontology. When fully developed
this ontology will contain terms like LOAD MODULE, REMOVE _MODULE,
SHOW _MODULE _LIST, UPDATE MODULE and will be utilized directly by
JADE agents for agent assembly and modifications.

Now we can also define more precisely the concept of a module. Each module
is an instance of a single universal module class. This class contains:

— Module name and version.

— List of behavior descriptions that should be loaded in order to support a spe-
cific functionality. This list is constant for every agent using a specific module.
We assume that modules group exactly the same behaviors. Description should
contain all data necessary to load the behavior.

— List of objects that should placed in agent’s Shared Object Map. This list
will differ between agents because data used by behaviors will depend on the
specific profile utilized by an agent.

We also predict some other properties needed within modules, which however
do not belong to this level of abstraction. Such properties could be: date of mod-
ule creation, sequence number, signature of module creating entity, additional
data necessary for module loading, etc.

As an example imagine an instance of the Module class—a Department
Worker Module—prepared for a Biology Department Worker. The name set for
this module is Department_ Worker, the version(let assume that it is not the first
one) is 3.0. The list of behavior descriptions contains only one behavior which
allows user to interact with other Department Workers (specifically, it allows the
PA that represents a given Worker to interact with PAs representing other Work-
ers). Of course, the real module will contain also other behaviors. Knowledge
part of this module contains name of department which is Biology and list of
other Department Workers (again, it is list of PAs representing other Workers).

Adaptability in an Agent-based Virtual Organization 11

Now, the instance of the Department Worker Module prepared for a different
University Employee, but from other Department (let us say Chemistry) will be
slightly different. The module name and version won’t be different. Also the list
of behaviors won’t change. The difference will be in the knowledge included in
this specific instance. The name of department will be Chemistry and because
it is a different Department, the list of Workers will also be different.

An important issue which we have to deal with during agent creation or up-
date is to supply it with definitions of new classes e.g. new behaviors classes,
new ontologies, etc. Before loading of any knowledge part or behavior (which
are instances of some classes) we have to inform agent about localization of all
required classes. Therefore, information about all required classes has to be in-
cluded into agents’ classpath. Currently we assume that each module will contain
information about localization of all required classes. However, we acknowledge
that class loading is somewhat more complex problem requiring further investi-
gation. For instance, it is also possible that class localization will not be included
in the module but there will be some action, performed by the Injection Agent,
preparing agent for module inclusion.

Note also that behaviors included in modules cannot be default Jade be-
haviors. We presume that in order to provide agent in full behavior monitoring
and control function we have to extend them with names and versions. In other
words, agents have to be self-aware as to which versions of which specific behav-
iors they are build out of.

Now let us extend described thus far concepts and discuss somewhat more
complicated issues and some real-life examples of their utility.

4 Examples and further considerations

Let as assume that there is a Department Worker in the University who belongs
to Department Technical Team. He plays the role of Technical Support and his
duties include installing software, taking care of hardware problems, preparing
auditoriums for lectures, etc. All behaviors supporting this Department Worker
in fulfilling role of a Technical Support will have to be included in his Personal
Agent in the form of a Department Technical Support Module. Functionality of
this module will help him with incoming requests, reporting his activities, or-
dering materials (e.g. toner for printers) from university warehouses, etc. This
module consists of behaviors supporting, among others, the above mentioned
functions, as well as the necessary data, e.g. list of other members of the Depart-
ment Technical Team. Now, let us imagine that we want to create a VOAgent
and turn it into an extended PA, which supports the Department Worker in
fulfilling the Technical Support role.

To achieve this goal, we have to inject the PA it with core modules that
support the primary role of a Department Worker and, of course, include also
the Technical Support Module. This module is prepared by the Technical Support
Factory (an instance of a Module Factory from Figure 5). In order to inject nec-
essary modules we have to prepare them first. First, the Injector Agent obtains

12 G.Frackowiak et al.

names of one or more Module Factories that will provide the VOAgent with mod-
ules that extend it to become a PA. When the Personal Agent is fully assembled,
the TA accesses the Profile Library and obtains information about role(s) of a
given Department Worker which is(are) to be supported by its PA, as well as a
list of modules that have to be associated with each of these roles. In our case
this is the Technical Support role and a list of modules that constitute the com-
plete support for this role. Next, the IA contacts the Module Provider Interface
and obtains the list of classes implementing particular Module Factories. These
Factories allow the IA to create instances of modules for (the) specific role(s).

In our example the Module Factory will prepare instance of the module class,
which contains all data and behaviors required for the given module. As men-
tioned before, the Module Factory will prepare data that includes, among others,
the list of other team members (retrieved from the Data Model specifically for
the given Department Worker). The Module Factory will also add descriptions
of behaviors (e.g. for dealing with requests, interacting with supply department,
etc.) to the module object. Currently, we assume that descriptions of behaviors
contain information about behavior’s classes and about additional (3’rd party)
libraries which should be added to the agent classpath. These Java objects can
then be self-injected by the PA, turning it into Technical Support Agent.

Let us use a different example, and observe what happens when the Depart-
ment Worker (see Figure 3) is promoted to become a Department Chair and her
PA has to be modified to support her in the new role. As a result of the promo-
tion, the organization profile of the Department Worker (the Human Resource
Profile; see [16]) is adjusted. This information becomes known to the Profile
Monitoring Agent, which in turn informs the IA about this fact. The IA accesses
the Profile Library and obtains a complete list of modules that should consti-
tute the PA that can support the Department Worker in the role of Department
Chair; and contacts the Module Provider Interface to obtain information which
classes factory will create modules that need to be injected into the PA. On the
basis of thus obtained list, the IA will modify the PA.

Let us now focus on another complex issue. Let us consider, again, the Tech-
nical Support Module, which provides set of behaviors and knowledge that allow
the PA to support a Department Worker in the role of Technical Support. Every
change in real-life organization procedure(s) must also affect behaviors of the
Technical Support Agent. Imagine that before an organizational change mem-
bers of the Technical Support were allowed to exchange requests (as long as
they were completed in time) without approval of the Technical Team Manager.
After the change, members of the Technical Support Team are not allowed to
exchange requests. All exchanges have to be approved by the Technical Support
Team Manager. This change affects not only the Technical Support Team Mem-
bers but also several other entities including, for instance, the Technical Support
Team Manager (and thus their appropriate Personal Agents). As a matter of
fact, every entity, which takes part in this scenario will have to accommodate
the new procedure. This requires reconfiguration of agents representing affected
entities. New versions of behaviors and modules must be introduced into the

Adaptability in an Agent-based Virtual Organization 13

system, and this requires update of appropriate Module Factories. New libraries
with behavior definitions and module factories have to be stored. Next, the In-
jector Agent must help install new modules with new behaviors to every agent,
which role requires using just updated modules.

While injecting new modules is rather easy to achieve (agents can self-inject
with additional modules), module updating is a more complex problem. Let us
observe that:

— when we introduce new modules we have to be sure that every agent in the sys-
tem will “instantaneously” start working with the same version of the module;
situation in which agents try to communicate with each other while utilizing
incompatible procedures/messages/protocols can result in a disaster

— update cannot occur in the middle of a conversation/transaction between any
affected agents; as a matter of fact, agents cannot switch behavior version (kill
older version and load a new one) if the current one is a part of a still working
process.

Combining these two observations makes it easy to see why module update is
a very complex issue and may even lead to the need of complete system shutdown.
It is only in this case when we can for certain assure that no transaction is in
progress and that no agent-version incompatibility will occur. We will investigate
this issue in more details, with an attempt at reducing the impact of module
updating on the functioning of the system.

5 Concluding Remarks

In this paper we have considered adaptability in an agent-based virtual orga-
nization. Specifically, we have concentrated our attention on issues involved in
implementation of agent adaptability, while using an example of a University
to illustrate potential solution and open research questions. We are in the pro-
cess of implementing the proposed solution and will report on our progress in
subsequent publications.

ACKNOWLEDGMENT
Work supported in part by the KIST-SRI PAS “Agent Technology for Adaptive
Information Provisioning” grant.

References

1. The foundation of intelligent physical agent (fipa). http://fipa.org/.
2. Semantic web. http://www.w3.org/2001/sw/.
3. Jade—java agent development framework. TILab, 2008. http://jade.tilab.com/.

14

10.

11.

12.

13.

14.

15.

16.

G.Frackowiak et al.

Jena—a semantic framework for java. http://jena.sourceforge.net, 2008.

K. Chmiel, D. Tomiak, M. Gawinecki, P. Karczmarek, M. Szymczak, and M. Pa-
przycki. Testing the efficiency of jade agent platform. In ISPDC ’04: Proceedings of
the Third International Symposium on Parallel and Distributed Computing/Third
International Workshop on Algorithms, Models and Tools for Parallel Comput-
ing on Heterogeneous Networks (ISPDC/HeteroPar’04), pages 49-56, Washington,
DC, USA, 2004. IEEE Computer Society.

G. Frackowiak, M. Ganzha, M. Gawinecki, M. Paprzycki, M. Szymczak, C. Badica,
Y.-S. Han, and M.-W. Park. Adaptability in an agent-based virtual organization.
Internetional Journal Accounting, Auditing and Performance Evaluation, 2008. in
press.

G. Frackowiak, M. Ganzha, M. Gawinecki, M. Paprzycki, M. Szymczak, M.-W.
Park, and Y.-S. Han. Considering Resource Management in Agent-Based Virtual
Organization. Studies in Computational Intelligence. Springer, Heidelberg, Ger-
many, 2008. in press.

G. Frackowiak, M. Ganzha, M. Gawinecki, M. Paprzycki, M. Szymczak, M.-W.
Park, and Y.-S. Han. On resource profiling and matching in an agent-based virtual
organization. In Proceedings of the ICAISC’2008 conference, LNCS. Springer, 2008.
in press.

M. Ganzha, M. Gawinecki, M. Szymczak, G. Frackowiak, M. Paprzycki, M.-W.
Park, Y.-S. Han, and Y. Sohn. Generic framework for agent adaptability and
utilization in a virtual organization—preliminary considerations. In J. Cordeiro
et al., editors, Proceedings of the 2008 WEBIST conference, pages IS-17-1S-25.
INSTICC Press, 2008. to appear.

M. Ganzha, M. Paprzycki, M. Gawinecki, M. Szymczak, G. Frackowiak, C. Badica,
E. Popescu, and M.-W. Park. Adaptive information provisioning in an agent-based
virtual organization—preliminary considerations. In N. Nguyen, editor, Proceed-
ings of the SYNASC Conference, volume 4953 of LNAI, pages 235-241, Los Alami-
tos, CA, 2007. IEEE Press.

M. Ganzha, M. Paprzycki, E. Popescu, C. Bidica, and M. Gawinecki. Agent-
based adaptive learning provisioning in a virtual organization. In Advances in
Intelligent Web Mastering. Proc. AWIC 2007, number 43 in Advances in Soft Com-
puting, pages 25—40, Fontainebleu, France, 2007. Springer.

P. Maes, R. Guttman, and A. Moukas. Agents that buy and sell: Transforming
commerce as we know it. 42(3):81-91, 1999.

Y. Malhotra. Role of information technology in managing organizational change
and organizational interdependence. http://www.kmbook. com/change/, 1993.

M. Szymczak, G. Frackowiak, M. Ganzha, M. Gawinecki, M. Paprzycki, and M.-W.
Park. Resource management in an agent-based virtual organization—introducing
a task into the system. In Proceedings of the MaSeB Workshop, pages 458-462,
Los Alamitos, CA, 2007. IEEE CS Press.

M. Szymeczak, G. Frackowiak, M. Ganzha, M. Paprzycki, M.-W. Park, Y.-S. Han,
Y. T. Sohn, J. Lee, and J. K. Kim. Infrastructure for ontological resource matching
in a virtual organization. In N. Nguyen and R. Katarzyniak, editors, Proceedings
of the IDC Conference, volume 134 of Studies in Computational Intelligence, pages
111-120, Heidelberg, Germany, 2008. Springer.

M. Szymczak, G. Frackowiak, M. Gawinecki, M. Ganzha, M. Paprzycki, M.-W.
Park, Y.-S. Han, and Y. Sohn. Adaptive information provisioning in an agent-based
virtual organization—ontologies in the system. In N. Nguyen, editor, Proceedings
of the AMSTA-KES Conference, volume 4953 of LNAI pages 271-280, Heidelberg,
Germany, 2008. Springer.

Adaptability in an Agent-based Virtual Organization 15

17. M. Tu, F. Griffel, M. Merz, and W. Lamersdorf. A plug-in architecture providing
dynamic negotiation capabilities for mobile agents. In K. Rothermel and F. Hohl,
editors, Proceedings MA’98: Mobile Agents, volume 1477 of LNCS, pages 222-236.
Springer-Verlag, 1999.

18. M. Wooldridge. An Introduction to MultiAgent Systems. John Wiley & Sons, 2002.

