
Information flow and usage in an e-shop operating

within an agent-based e-commerce system

Micha l Drozdowicz, Maria Ganzha, Marcin Paprzycki,

Maciej Gawinecki, Alexander Legalov

August 3, 2008

Abstract

Utilization of software agents in e-commerce is a subject of a lot of interest. In
our work we are developing a complete agent-based e-commerce system in which
agents play all major roles representing both buyers and sellers. The aim of the
paper is to describe flow and usage of information in a virtual e-shop operating
within the proposed e-commerce system.

1 Introduction

Currently, we are developing a model agent-based e-commerce system. This
system varies from other work found in the literature at least in the following
ways:

1. Typically, only price negotiation of a single item (or collection of items
treated as subject of a “single transaction”) is contemplated (even though
the negotiation itself may follow a very complicated set of rules; e.g. two
stage negotiation found in [22]). Once the negotiation is over, agents
that participated in it complete their work and the process ends. We are
interested in a more realistic scenario when a number of items of a given
product are placed for sale one after another, e.g. 90 Canon EOS cameras
are to be sold by an e-store.

2. Since a collection (sequence) of items is sold we treat price negotiations as
a “discrete process” in which buyers are “collected” and released together
in a group to participate in a price negotiation. While the negotiation
takes place buyer(s) are allowed to communicate only with seller(s). At
the same time the next group of buyers is collected (as they arrive) for the
next negotiation. This process is similar to such forms of real-life auctions
where auctioneers gather in a room and stay in it until the auction ends.

1

3. Since multiple subsequent price negotiations (involving the same product;
e.g. Canon EOS cameras) take place, price negotiation mechanisms can
be dynamically changed. For instance, first 55 items may be sold using
English Auction, next 22 using iterative bargaining, while the remaining
13 may be sold using fixed (bargain) price.

From this setup follows that we assume that shops in the system have to
adapt to changing market conditions; and change of price negotiation mechanism
is an example of such adaptation. Obviously, to achieve this goal they have to
collect, store and later analyze information about various events taking place in
the shop. In this context, the aim of this paper is to describe flow of information
in the system, with particular attention paid to processes taking place within the
e-shop. Note that we concentrate on that part of the system due to the fact that
information flow within the client-side is much less involved and encompasses
only three entities (Buyer Agents, Client Agent and Client Decision Agent).
Finally, we outline how collected data can be used in sales forecasting.

To this effect we proceed as follows. In the next section we summarize main
features of the system. Next we follow with the description of the sources and
flow of information within the system. Finally, we briefly illustrate how stored
information can be utilized by the e-shop.

Note that this work is complementary to [10], where we describe in detail
how information is to be efficiently stored within the system. Thus readers may
want to consider that source for additional details.

2 System description

The system under construction is a model agent-based virtual marketplace,
where agents representing Buyers engage in price negotiations with agents repre-
senting Sellers. Here, instead of focusing only on a single feature of e-commerce
(e.g. price negotiations), which is often the case in the literature [4, 24, 1, 20, 22,
8, 21] we consider the complete processes that involves both the Buyer and the
Seller (as well as Wholesalers that provide products to e-stores). Thus, we start
from the moment when the User-Client expresses desire to purchase a product,
and follow the chain of events until the purchase is made, or deemed impossible.
Conceptualization of the proposed system has been represented as a use case di-
agram in Figure 1. Since the detailed description of the system can be found in
[5, 15, 7, 23], and is out of scope of this paper, here, we only briefly describe per-
tinent processes taking place in the system (and entities participating in them).

2.1 Client subsystem

First, let us consider agents supporting the User-Client in her/his shopping
needs. The Client Agent (CA) is responsible for the direct support of the User-
Client. Here, one can envision the Client Agent as a role within, or a part
of functionality of, a Personal Agent as conceptualized by P. Maes in [21].

2

Figure 1: Use Case

When the User-Client interacts with its CA (s)he describes the product (s)he
would like to buy, as well as conditions of purchase (e.g. the price and/or
delivery time). In order to fulfill the order the CA obtains a list of shops to be
contacted. This is done by querying a yellow-page (infomediary) agent called
the Client Information Center (CIC ; see, [24, 19, 9] for more details about
the role and implementation of the CIC). Obtained list of shops is adjusted
on the basis of trust considerations (see, [6, 12]). As a result, the CA interacts
with the Gatekeeper Agents (GA), representing selected shops, to ensure that its
Buyer Agents (BA) participate in price negotiations. After receiving offers from
winning Buyer Agents, the CA communicates with the Client Decision Agent
(CDA) to determine which offers are acceptable and, among them, which is
“the best.” Note, that offers arrive asynchronously and have varying expiration
dates ([15]), thus the decision making within the CDA has to include not only
product-features like price, but also reservation expiration and trust [12, 6].
If there exists a satisfactory offer and the CDA decides to accept it, the CA
finalizes the purchase. If no appropriate offer can be found, the CDA decides
course of further action, which may involve trying to negotiate for a better
price, or informing the User-Client that purchase under specified conditions is
impossible.

2.2 Shop subsystem

Activities that take place within the e-shop can be divided into four major parts:

1. selling products,

2. managing negotiation mechanism(s),

3. managing trust toward customers, and

3

4. managing product inventory.

• Selling products involves price negotiations and is handled by two agents:

– the Gatekeeper Agent (GA) that facilitates entrance of Buyer Agents
(by inviting agents to be sent in, or by creating them), registers
incoming BAs (interested in purchasing products), and starts the
negotiation; as well as

– the Seller Agent (SeA) that represents the shop during the negotia-
tion (for details of the negotiation process see, [5, 3]).

– the Host Agent (HA) which supervises the negotiation and enforces
protocol of the specific negotiation that parties are engaged in; it also
collects data about the negotiation process (see below)

Finalization of purchase as well as registering (and de-registering) products
with the CIC, and coordinating work of other agents in the e-shop is the
duty of the Shop Agent (SA), which should be viewed as the Manager
of the e-store. In this role the SA is often passing messages between
agents that do not know each other (one of the important features of agent
systems is reduction of number of agents that know each-other directly to
facilitate agents system maintenance; see [26]).

• Managing price negotiation mechanisms is performed by the Shop Deci-
sion Agent (SDA), and involves selecting the most appropriate negotiation
mechanisms and their parameters, as well as strategies for Seller Agents
representing the store. Furthermore, the SDA is responsible for adapting
price negotiation mechanisms and their parameters to changing market
conditions.

• Managing of trust toward customers is also one of duties of the SDA.
Trust is the main parameter in (i) decision of admitting Buyer Agents to
negotiations, and (ii) establishing time of product reservation (to minimize
potential losses caused by unreliable or malicious customers; see, [6, 12]).

• Overseeing product stock levels is a task handled by a group of agents,
supervised by the Warehouse Agent (WA) that stores and manages infor-
mation about current inventory and about product reservations. Further-
more, the WA uses sales forecasts prepared by the SDA to proactively en-
sure adequate supply of all products. Supply orders are carried out by the
Logistic Agent (LA) that interacts with a wholesaler-oriented equivalent
of the CIC to receive a list of wholesalers that sell specific products and
dispatches requests for product sale and delivery proposals using workers
from a pool of Ordering Agents (OA). More details about the logistics
subsystem can be found in [23, 13].

4

3 Gathering and utilizing information

Let us now focus our attention on processes involved in generating, managing
and utilizing flow of information during the work of the system. Let us recall,
that we are concerned primarily with processes taking place within the e-shop.
Obviously, generation of information is a result of monitoring of the state of
various entities within the system. Subsequently, generated information has to
be delivered to the SDA for storage and processing. Monitoring and delivery of
resulting data can be performed in several ways (see [10] for more details). In the
process of selecting the right approach for our system, we have considered the
fact that as far as the SDA is concerned, there are two sources of information:

1. Information originating from the inside of the e-shop—received either
from/through the SA or the WA agents, describing specific events re-
lated to the functioning of the e-shop; e.g. buyer registration, negotiation
closing, transaction finalization, restocking deliveries etc. These messages
have to provide a complete picture of activities of individual agents within
the system and thus should be promptly delivered to the SDA. Let us note
that most messages passed within the e-shop are rather small in size (even
though there may be a relatively large number of them; scaling with the
size of activities in the shop), while the SDA is the only receiver of col-
lected data. Therefore, for the time being, we have decided to utilize an
active information source-based approach, i.e. change in the state of the
system or occurrence of an event result in a message, containing necessary
information about this event, sent to the monitoring module (the SDA).

2. Information originating outside of the e-shop—concerning number of shops
selling a specific product, and possibly, the number of queries concerning
specific products received from clients by the CIC. Since the CIC is not
an active source of information, the SDA has to be. Therefore it requests
periodically the needed data from the CIC.

Keeping this in mind we can now discuss where in the system information is
generated and how it is used. Let us start from initial interactions with clients
interested in making a purchase.

3.1 Before negotiations

3.1.1 Gatekeeper Agent interacting with Client and Buyer Agents

After the User-Client specifies its need, the Client Agent obtains from the CIC
list of shops that sell given product and adjusts it on the basis of its trust in
them (here, trust information provided by the CDA is utilized, see [6, 12]). As a
result the CA interacts with representatives of selected shops—their Gatekeeper
Agents. The aim of this interaction is first, to find out if the needed product is
still available, and second, to establish if and how the Buyer Agent can become
involved in price negotiations. Note that the Buyer Agent is a lightweight,

5

mobile agent that is delegated by the Client Agent and migrates to the e-shop
to represent the User-Client in price negotiations. In the case when the CA
is not able (not allowed by GA) to create its own BA to take part in price
negotiations, a BA could be created by the shop in response to a client request.
In both cases the Client Agent communicates with the Gatekeeper Agent. The
interaction is summarized as a sequence diagram in Figure 2.

Figure 2: Sequence Diagram of trust checking process

Below, we present code preparing message sent by the CA to initiate inter-
actions with the GA (process involves also checking hostility of the GA):

protected Vector prepareRequests (ACLMessage r eques t) {
r eques t = new ACLMessage(ACLMessage .REQUEST) ;
r eques t . addReceiver (gatekeeper) ;
r eques t . setOntology (Negotiat ionOntology .NAME) ;
r eques t . s e tP r o to co l (FIPANames . In t e r a c t i onPr o t o c o l .FIPA REQUEST) ;
r eques t . setLanguage (FIPANames . ContentLanguage . FIPA SL2) ;

CheckHost i l i ty check = new CheckHost i l i ty () ;
Action act = new Action (gatekeeper , check) ;
try {

cm . f i l l C o n t en t (request , act) ;
}

catch (Exception e) {
i f (l o gge r . i sLoggab l e (Level .SEVERE))
l ogge r . l og (Level .SEVERE, ’ ’ Cannot prepare r eques t ’ ’ , e) ;
r eques t = null ;

}
return super . prepareRequests (r eques t) ;

}

What we can see in this snippet is:

6

1. CA defines the type of communicative massage—REQUEST

2. CA defines a receiver of this message—Gatekeeper

3. the receiver can “understand” this message based on the “Negotiation-
Ontology” ontology

4. CA also defines a protocol of this communication, namely the FIPA RE-

QUEST protocol

5. the content language is based on the FIPA SL2 specification

6. the request contains a CheckHostility action which denotes the operation
of checking the trust level of a given e-shop

Upon being contacted by the CA, the GA checks if that CA is trustful. Since
the SDA has access to history of interactions with a given CA, it can utilize it
to determine if: (a) to reject CAs request to enter, (b) approve such request and
allow the CA to send a BA, or (c) approve request under condition that the BA
will be created locally (if such option is available). On the basis of assessment
provided by the SDA, the GA sends a response to the CA. The following code
snippet represents actions undertaken by the GA.

protected ACLMessage handleRequest (ACLMessage r eques t)
throws RefuseException , Fai lureException , NotUnderstoodException

{
ACLMessage r esponse ;
Str ing team = helper . getSenderTeamId (r eques t) ;
i f (team == null)
throw new UnknownTeamException (null) . f i l lACLMessage (cm, r eques t) ;

// Checking t r u s t

Hos t i l i t yCon f i gu r a t i o n h o s t i l i t y=buyerMgr . g e tH o s t i l i t y () ;
r e sponse = reques t . c r eateRep ly () ;
r e sponse . s e tPer f ormat ive (ACLMessage .INFORM) ;

Resul t r = new Resul t (requestAct , h o s t i l i t y) ;
try {

cm . f i l l C o n t e n t (response , r) ;
}

catch (Exception e) {
throw new Fai lur eExcept i on (’ ’ Cannot prepare r esponse ’ ’) ;
}

return r e sponse ;
}

Here, we can see that the Gatekeeper Agent retrieves, from the request mes-
sage, the id of the Client. Next, it acquires its trust value and on its basis
prepares an INFORM response message by appropriately filling its contents. The
decision specifies if a Buyer created by the Client can migrate to the shop plat-
form (the immigrantsAllowed flag) and if the platform allows creation of buyers
on behalf of the client (the creatingBuyersAllowed flag). In the future, such
message will also contain information about the life-timeout of the Buyer Agent

7

(determined basis on trust). Life-timeout is the length of a period of time after
which an inactive BA will be removed from the system.

Obviously, behavior of the CA depends on the received answer. First, let us
note that information contained in the answer is forwarded by the CA to the
CDA for storage and further processing. For instance, refusal of admission is
an indicator of the level of trust used in the given shop and may be used in the
future to evaluate incoming proposals (see also [6, 12]). If the CA is informed
that it can send a BA to the store, it may do it (note that, based on trust con-
siderations (see [6, 12]), the CDA may decide to not to send an agent to a store
if a very large number of e-shops, selling a given product, is available. However,
if the message informs that only locally prepared BA can be used, the CA will
confirm (or not) that it wants to utilize this form of negotiation participation.
Below you will find a snippet of code in which CA prepares a message that asks
for the BA to be created by the GA:

protected Vector prepareRequests (ACLMessage r eques t)
{

r eques t = new ACLMessage (ACLMessage .REQUEST) ;
r eques t . addReceiver (gatekeeper) ;
r eques t . setOntology (Negotiat ionOntology .NAME) ;
r eques t . s e tP r o to co l (FIPANames . In t e r a c t i onPr o t o c o l .FIPA REQUEST) ;
r eques t . setLanguage (FIPANames . ContentLanguage . FIPA SL2) ;

CreateBuyer c r ea t e = new CreateBuyer () ;
Action act = new Action (gatekeeper , c r ea t e) ;
try {

cm . f i l l C o n t en t (request , act) ;
}

catch (Exception e) {
}

return super . prepareRequests (r eques t) ;
}

In the case when the BA is send, when it arrives at a shop, it communicates
with the GA and the GA checks (again) trust towards this BA. This is necessary
because multiple representatives of the CA can participate in negotiations (for
different products) and their actions may negatively affect the trust toward their
owner. If the trust check is not successful, the BA receives a message prepared
as follows:

/∗∗
∗ Prepare REFUSE message and l e av e in {@link DataStore}
∗ o b j e c t to be sent .
∗ @param reason
∗ i s t he reason to r e f u s e admi t t ing f o r a ne go t i a t i on
∗/

protected void prepareRefuseResponse (RefuseException reason)
{
ACLMessage r eques t =

(ACLMessage) getDataStore () . get (REQUEST KEY) ;
ACLMessage r esponse = reques t . c r eateRep ly () ;

r e sponse . s e tPer f ormat ive (ACLMessage .REFUSE) ;
try {

8

cm . f i l l C o n t en t (response , reason) ;
} catch (Exception e) {

r e sponse . s e tPer f ormat ive (ACLMessage .FAILURE) ;
}

getDataStore () . put (REPLY KEY, r esponse) ;
}

We can see here that the GA creates a new REFUSE message and fills it with
a reason for refusal based on the parameter passed to the method.

If the BA receives a refusal to be admitted to the negotiation, it finishes
its operation, thus removing itself from the shop’s platform. At the same time,
positive trust check results in BA being provided with the current negotiation
protocol and template. The protocol module defines the general set of rules and
flow of the process of a specific negotiation. It is common for all BAs and,
therefore, can be passed to incoming (and created) BA(s) by the Gatekeeper
Agent. Along with the protocol, BAs receive negotiation parameters (a nego-
tiation template) that customize the protocol to the specific negotiation. The
template contains values such as the starting price, bid increment, etc. (see [5, 3]
for more details). At this moment both the incoming and locally created BAs
are in the same “stage of development” and request from their correspondent
CAs an appropriate negotiation strategy (matching the obtained protocol and
parameters of the negotiation).

In the following snippet we see how the BA handles receiving the negotiation
template from the GA.

private f ina l ACLMessage
handleProductInformationChanged (ACLMessage inform)

{
ACLMessage r eques t = inform . cr eateRep ly () ;
Resul t r ;

Negotiat ionTemplate template =
(Negotiat ionTemplate) r . getValue () ;

s t r a t egy = getStrategy (template) ;
i f (s t r a t egy != null) {

r eques t . s e tPer f ormat ive (ACLMessage .REQUEST) ;
ConfirmReady conf i rm = new ConfirmReady(template . get Id ()) ;
Action act = new Action (r e c e i v e r , conf i rm) ;
try {

cm . f i l l C on t e n t (request , act) ;
}

catch (Exception e) {
l o gg e r . l og (Level .SEVERE, ‘ ‘ Cannot prepare r eques t ’ ’ , e) ;
throw new SystemException (e) ;

}

i f (l o gge r . i sLoggab l e (Level . FINE))
l ogge r . f i n e (‘ ‘ Conf irming o f r ead i n e s s
to nego t i a t e about product < ’ ’ + g loba lProduct Id + ”>”) ;
}

else {
i f (l o gge r . i sLoggab l e (Level . FINE))

l ogge r . f i n e (‘ ‘ Cance l l i ng admiss ion process , product < ’ ’

9

+ globa lProduct Id + ‘ ‘> ’ ’) ;
r eques t . s e tPer f ormat ive (ACLMessage .CANCEL) ;

}
return r eques t ;

}

First, the BA extracts the NegotiationTemplate content object from the
message, second, it retrieves a strategy for the template it received. After-
wards, it creates a confirmation response using a REQUEST message containing
a ConfirmReady action and sends it back to the GA. In the case when the CA
cannot prepare a strategy BA decides to cancel its admission to negotiation (the
CANCEL message).

The GA informs the SDA (via the SA; as the SDA and the GA do not know
each-other directly) about all incoming/created BAs. Appropriate message in-
cludes also information about the product that the BA was interested in. This
information is stored in the data mart and can be used for demand prediction.

Note that when a product is asked for the first time (e.g. a BA arrives inter-
ested in an Olympus E-520 camera) then such product has to be reserved for a
negotiation (to assure that negotiation can take place and after it is successful,
there will be product available for sale). This is achieved by the GA communi-
cating with the Warehouse Agent. Preparing a message to the WA is achieved
as follows:

protected f ina l Vector prepareRequests (ACLMessage r eques t) {
r eques t = new ACLMessage (ACLMessage .REQUEST) ;
r eques t . addReceiver (warehouse) ;
r eques t . setLanguage (FIPANames . ContentLanguage . FIPA SL0) ;
r eques t . setOntology (Negotiat ionOntology .NAME) ;
r eques t . s e tP r o to co l (FIPANames . In t e r a c t i onPr o t o c o l .FIPA REQUEST) ;

ReserveProduct act i on = new ReserveProduct () ;
act i on . setGlobalProduct Id (g l oba lProduct Id) ;
act i on . setReleaseTime (re leaseTime) ;

Action act = new Action (warehouse , act i on) ;

try {
cm . f i l l C o n t en t (request , act) ;

}
catch (Exception e) {

l o gg e r . l og (Logger .SEVERE,
‘ ‘ Problem while prepar ing r eques t msg ’ ’ , e) ;

throw new SystemException (e) ;
}

i f (l o gge r . i sLoggab l e (Level . FINE))
l ogge r . f i n e (‘ ‘ Request for product < ’ ’+

g loba lProduct Id + ‘ ‘> r e s e r v a t i o n prepared ’ ’) ;

return super . prepareRequests (r eques t) ;
}

Here, we see that the GA creates a new message of the REQUEST commu-
nicative type, specifies the receiver of the message to be the Warehouse Agent.
The language of the content is set to FIPA SL0 and the ontology describing it is

10

the “NegotiationOntology” ontology. The sender specifies that the message is
a part of a conversation adhering to the FIPA REQUEST protocol. The message
is filled with the ReserveProduct action with the GlobalProductId parameter
set to the identifier of the product to be reserved and ReleaseTime set to the
period of time long enough to perform the negotiation.

After receiving the message the WA checks if this product is available. If yes,
the WA reserves the product and sends to the GA the Negotition Template

and the Negotiation Protocol. It is also possible that the WA informs the GA
that the product is not available (it was sold out in the meantime). For extended
discussion of this and other cases, involving for example products temporarily
unavailable, see [5].

3.1.2 Seller agent

Let us briefly note that a similar (modular) approach has been used in the
case of the Seller Agent (SeA). First, the SeA receives the same protocol and
negotiation template as other negotiation participants (since all of them are to
participate in the same price negotiation). Second, a private strategy module
that defines the way it should handle the negotiation, as well as other private
data, such as the reserve price is provided. These modules are sent to the SeA by
the SDA (via the SA and the GA, as the SDA does not know the SeA directly).

Overall, we can say that, in terms of receiving and consuming information,
BAs and SeAs are the end destinations of strategy and template parameters,
originating at the CDA (for client strategy), the SDA and the WA (for the
template and shop strategy).

3.1.3 Gatekeeper Agent

As it was shown, the Gatekeeper Agent plays one of crucial roles in information
management within the shop. Therefore, to further clarify its functions, in
Figure 3 we present its use case. This figure can be treated as a partial summary
of material presented thus far.

As we can see, the Gatekeeper Agent: (1) interacts with incoming Buyer
Agents, and admits them to the negotiations (or rejects their attempt at en-
tering the host), or interact with Client Agents and, on their request, creates
Buyer Agents (or reject such requests), and provides admitted / created Buyer
Agents with the protocol and the current negotiation template; (2) in appro-
priate moments releases selected Buyer and Seller agents to participate in price
negotiations, and (3) manages updates of form (and specific details) of negotia-
tions. To further formalize the description of the Gatekeeper Agent in Figure 4
we present its statechart diagram of activities related specifically to supporting
negotiations. For additional details concerning actions of the GA see also [5, 11].

11

Figure 3: Use case diagram of the Gatekeeper Agent

Figure 4: Gatekeeper Agent negotiation related activity—statechart diagram

12

3.2 Negotiation process

It should be obvious that during price negotiations BA(s) and/or SeA(s) post
bids and as such are key generators of information about the negotiation process.
As described in [14, 16], the negotiation process is managed by the Host Agent,
which obtains from the Seller Agent a list of Buyer Agents that are to participate
in negotiations and assures that they proceed according to the specified protocol
(see also [4]). Since all information pertinent to a given negotiation is available
to the Host Agent (e.g. posted on its blackboard, see [25]), once the negotiation
is over it can pass it to the GA to be stored in, and utilized by, the e-shop. In [10]
we have provided a complete description of information related to negotiations
stored by the e-shop. A brief summary can be found in the next section and in
section 4, where the list of selected tables from the data-mart is presented.

3.3 After a negotiation

One of the more “information rich” events happening in the e-shop is the end
of a negotiation. At this moment, the GA obtains from the Negotiation Host
information about just completed negotiation and sends it to the SA. The SA, in
turn, forwards it to SDA for storing and processing. The negotiation description
contains the following information:

1. The unique negotiation identifier—generated by the WA during the nego-
tiation preparation (when product is reserved for negotiation; see above)

2. Identifier of the strategy passed to the Seller Agent—generated by the
SDA when preparing the negotiation template and strategy.

3. Identifier of the template passed to the negotiation participants.

4. Date and time of the beginning and the end of the negotiation

5. The amount of products offered

6. The list of BAs (and thus CAs) registered for the negotiation—including
those who received the negotiation template but rejected it or failed to
accept it. For each BA the following information is also specified:

(a) Date and time of providing the BA with the negotiation template.

(b) Date and time of the BA accepting the template if it occurred.

(c) A list of bids made by the client described by the time of the offer,
amount offered to buy, the price and a flag specifying if the bid was
a winning offer.

Note that, due to performance reasons we have decided to include in this message
the list of bids (instead of recording them one by one). It is also important to
stress that all information which the Negotiation Host forwards to the GA should
be marked as visible in the negotiation protocol.

13

When the negotiation is successfully completed the SDA establishes length of
reservation—time during which the negotiated conditions, such as the price and
amount of offered product, hold (here, the SA sends to the SDA the QUERY-REF

about reservation duration—getReservationDuration(ClientID), and awaits
an answer). The reservation length is to be calculated based on the level of trust
towards the client represented by the BA. Currently, all BAs receive reservation
of the same length.

The reservation can end in three ways: (1) with confirmation of the pur-
chase—SA receives a message in which the CA confirms the purchase; (2) can-
cellation of the purchase—SA receives a message about cancellation of the pur-
chase; or (3) expiration of reservation—SA did not receive the confirmation/can-
cellation message in time. Information about expiration of the reservation the
SA receives from the WA. The SA forwards to the SDA information about
(either) end of reservation, to create/update the trust profile of a given Client.
The message describing the finalization of the transaction contains the following
information:

1. Identifier of the transaction

2. Transaction outcome i.e. confirmation, cancellation or expiration

3. Date and time of the event

4 Information storing

The Shop Decision Agent is the decision-making entity within the shop sub-
system. As already mentioned, its main aims are: (1) management of trust
toward individual customers, including the decision whether to admit (and pos-
sibly in what way) their representatives to negotiations; (2) setting the product
reservation deadline; (3) managing forms and parameters of price negotiations;
and, (4) preparing sales forecasts for the automatic stock management. To
fulfill these goals, the SDA gathers, stores and processes data and knowledge
generated within the e-store.

Note that the information flow in the system has been designed to allow
the SDA to gather the most detailed information about events occurring in the
shop and ”remember” their complete history. While this enables the SDA to
make informed decisions, it also poses the danger of running into a situation
when the amount of collected data makes it impossible to effectively process it.
Therefore, we have decided to store data in a multi-dimensional data mart built
according to the star / fact constellation schema proposed in [18]. The detailed
description of this solution can be found in [10], in the following sections we
only summarize selected tables that the schema consists of.

4.1 Bid Fact Table

The Bid Fact Table contains information about bids made during negotiations.
Each row in the table depicts a single bid and holds information about amount

14

of the bid along with links to the dimensions of: the client who made the bid,
the product, the date and time of the offer, the negotiation template and the ID
of strategy used in the negotiation and the bid status, i.e. whether the bid was
above or below the negotiation minimum price and if it was a winning offer.

4.2 Transaction Fact Table

The Transaction Fact Table is the largest fact table in the schema and contains
information about the complete sale process flow, for every transaction in the
system (with the exception of the bidding process persisted in the Bid Fact
Table). This table is built on the basis of the Accumulating Snapshot pattern
([18]) and describes transactions using series of boolean flags as well as date and
time dimension links that answer questions if and when the transaction passed
consecutive steps of the sales process.

4.3 Negotiation Fact Table

Every row in the Negotiation Fact Table holds data describing a single nego-
tiation such as the negotiation end date and time, product, used strategy and
template and the following metrics: the amount of units offered, the starting
and minimum prices, the quantity and value of the items reserved in winning
bids, quantity and value of the items actually purchased, the total number of
bids, the number of winning bids and the number of finished transactions.

4.4 Supply Fact Table

The Supply Fact Table accumulates data about wholesale orders and deliveries
of stock to the shop’s warehouse: the amount of ordered and delivered product
organized along the following dimensions: the id of the wholesaler that car-
ried out the order, the ordered product and references to the date and time
dimensions describing the order and delivery events.

4.5 Inventory Snapshot Fact Table

The Inventory Snapshot Fact Table is a helper table aggregating information
about stock levels of products at daily granularity. This data is derived from
the Negotiation and Supply Fact tables to make accessing stock level information
easier and more efficient.

5 Information processing

Let us now discuss utilization of data stored by the e-shop. To start, in Table 1,
we summarize key areas in which we envision that information collected by the
e-shop can be used. This list is, obviously, not a comprehensive one. Rather, it
is presented to indicate potential usefulness of the proposed data management
approach.

15

Expected result Method used
Length of the sales forecasting period Estimating the longest period for which the

sales amount time series is stationary using the
P-value test

Forecasted sales amount Double/triple exponential smoothing of the
sales amount time series

Estimated margin of the forecast Mean absolute deviation between the initial-
ized forecasting model and historical data

Amount of units offered Moving average of maximum bid amount of
units across past negotiations

Evaluating the product price Derivative following method—adjusting the
price according to the result of previous change

Table 1: Data mining aims and methods

Using data stored in the data mart we have conceptualized and implemented,
within the SDA, a few simple decision-making processes related to determining
negotiation parameters and forecasting the sales volume. It should be noted
that our goal was not to implement the complete SDA functionality—we have
not yet, for example, approached the challenge of managing trust. It was also
not our aim to perform a comparative analysis of possible solutions to the im-
plemented functionalities in search of an optimal method or algorithm. What
we set out to do was to show that the data gathered and stored by the SDA
can be transformed into useful knowledge to be used by other agents in the
system—in our case the GA and the WA. Let us start with a description of
proposed approaches to knowledge extraction.

5.1 Setting negotiation parameters

The outcome of the process of determining the shop’s negotiation parameters
is the type of negotiation protocol to be used for the sale of specific product,
the strategy for the SeAs to follow and a vector of parameters for both the
strategy and protocol modules. The set of parameters may differ from one type
of negotiation procedure to another and at this point we have decided to limit
our scope to a simple multi-item English Auction without a reserved price and
unlimited bid step. In this case, the only parameters the SDA needs to evaluate
are the starting unit price of the product and the desired amount of product to
be offered in a single negotiation.

5.1.1 Evaluating the price

The obvious goal of modifying the price of products is to maximize the shop’s
profit. A very interesting comparison of a few methods of automatic price
evaluation can be found in [17]. We have decided to incorporate one of methods
described there, namely the Derivative Following Algorithm. According to [17],
this method should perform reasonably well, especially in an environment where
all agents use the same strategy. It consists in setting the future price of the
product based on the change of profit that occurred after the previous price

16

modification. Initially, the price is selected randomly and after some period
of time, it is increased or decreased by some value. The decision whether to
increase or decrease the price is random at first, then it is determined by the
result of comparing the change in profit between past two periods. If the profit
has increased due to the previous price change, then the price is modified in
the same direction. If the profit has decreased, the direction of price change
is reversed. With every period, the price modifier is exponentially decreased
according to the following equation:

δn =
δn(n0 + 1.0)

n0 + currentPeriod
(1)

where n0 = currentPeriod/10.
A slight modification of the method was introduced to take into account also

the number of clients registered in the shop looking for the specific product. The
modification was meant to handle cases where the drop in profit is caused by the
overall drop in demand for the product. Since the process of setting the price
was based on information about the value of products sold, past prices of the
product and the number of clients registered as looking for it; this information
comes from the Sales and Demand fact tables (see [10]).

5.1.2 Setting the number of offered units

The reason why setting this parameters in multi-item auctions is important
is because the items offered at a negotiation are reserved for the time of the
auction—they cannot be offered at a different one. This is a reason why the
shop should not offer too many items at a time. On the other hand, setting
too small a value can result in losing clients who want to buy a greater number
of items—being forced into taking part in consecutive negotiations may not be
acceptable. We have, therefore, decided to set the amount offered to the most
probable amount of a single bid.

To determine how many items a single customer may bid, the moving average
method has been used, taking into account the maximum amount offered in a
single bid in the course of past negotiations. The data has been taken from the
Sales Fact Table.

5.2 Sales forecasting

Forecasting product sales has been realized by analyzing the time series of the
amount of sales, with the period length equal to the prediction horizon. The
conditions determining the choice of a method of analysis was the possible ex-
istence of both trend and seasonal fluctuations of the data. Therefore, we have
decided to use the exponential smoothing model ([2]).

The possible existence of seasonality in the data determined the use of triple
exponential smoothing. The problem with this method, however, is the amount
of data needed to estimate seasonal changes is large—it needs two complete
cycles of the data to initialize these values. This posed a problem in cases

17

when the system has not yet accumulated enough sales data. To overcome this
challenge we have introduced several countermeasures. Firstly, the length of a
cycle of data was variable—seasonality can be analyzed on a weekly, monthly,
quarterly, half-yearly or yearly level depending on the amount of available data.
Secondly, if we have insufficient data to even perform a weekly seasonal analysis,
the forecasting method is automatically switched from triple to double expo-
nential smoothing, which does not take seasonality into account and hence does
not pose any data amount requirements.

The forecast deviation, which is another parameter of the prediction message
sent to the WA by the SDA is simply calculated as the the mean absolute
deviation calculated basing on the initialized model and the historical data used
in the process.

The forecasting process uses the data about the amount of items sold (i.e.
the reservations of which have been confirmed by the clients and the sales process
finalized) taken from the Sales Fact Table.

6 Sample information utilization

6.1 Test setup

We have performed several tests to establish usability of data processing meth-
ods described in previous sections. To be able to accurately describe the input
conditions of the test we have developed a simple testbed, consisting of two
agents “stubbing out” the parts of the system that interact with the SDA:

1. the Shop Agent Stub—engaged in the same communication protocols as
the SA, and

2. the Warehouse Agent Stub—a mock agent of the WA.

Thanks to this approach we were able to feed the SDA agent with exactly
the information we wanted output for, without the need of setting up complex
relations between other agents in the system—especially multiple clients. We
could also more easily simulate compressed flow of time.

To simulate the amount of items bought by clients we have incorporated a
very simplistic economic model. We have assumed that each client has a maxi-
mum price at which he/she will buy the product. If the shop’s price is higher,
than the client will simply resign. We have also assumed that in each negoti-
ation only one buyer can take part. With these assumptions all negotiations
consist of a single bid if the price is fine for the client and no bid if it is too
high. The client’s maximum price is calculated according to the normal distri-
bution with the mean value taken from the scenario definition file and possibly
changing every day and the variance being a certain percent of the mean value
(the percentage constant across the experiment).

18

6.2 Test scenario

In the test scenario used to check the SDA’s ability to adapt to changing con-
ditions we have made the following assumptions:

• The length of the simulation is 1200 days.

• The length of the forecast horizon is 3 days, so the total number of fore-
casting periods is 400.

• The shop under consideration is the only one selling the product (there is
no competition).

• Clients always buy 10 items of the product if such quantity is sold by the
shop.

• The mean price every client is prepared to pay for the product is generated
based on a normal distribution, with the mean of 5 and the variance 0.5.
The relative variance of the maximum price has been set to 0.2.

• The number of clients visiting the shop for the product has been generated
for each day according to the normal distribution with the mean rising
linearly from 30 at the beginning of the simulation to 60 at the end, with
a relative variance of the mean value of 0.05.

In the figure 5 we depict the number of clients registering at the shop, while
figure 6 shows the results of a sample test of predicting sales.

In this scenario we have tested the sales forecasting module. Its task was
made difficult not only by the rising trend of the input data and this data’s
deviance but also by additional deviance caused by the functioning of the price
modification module. Despite those problems we have managed to prevent stock
shortages in 78% of periods with a mean amount of overstocked product equal
to 20% during overstocked periods. During the understocked periods, the mean
amount of the items not sold due to the product shortage was 10% of the sold
quantity with the median of 8%.

7 Concluding remarks

In the paper we have presented a comprehensive picture of information man-
agement within the e-store part of an agent-based e-commerce system. First,
we introduced scenarios in which data elements are generated. Next we have
discussed flow of messages involved in leading to storing this data in the e-shop’s
knowledge base, as well as utilization of knowledge extracted from it. Finally,
samples of utilization of data stored in the central repository were presented and
a specific application experimentally evaluated through simulation. Currently
the application is further tested. In the next step we plan to start developing a
larger portfolio of data mining methods to be used within the context presented
here.

19

Figure 5: Test input data

Figure 6: Results of the test

20

References

[1] Agorics. http://www.agorics.com/Library/Auctions/.

[2] Nistsematech e-handbook of statistical methods. http://www.itl.nist.

gov/div898/handbook/pmc/section4/pmc43.htm.

[3] C. Badica, M. Ganzha, and M. Paprzycki. Implementing rule-based auto-
mated price negotiation in an agent system. Journal of Universal Computer
Science, (13(2)):244–266, 2007.

[4] P. C. J. N. Bartolini C. A software framework for automated negotiation. In
Proceedings of SELMAS’2004, pages 213–235. LNCS 3390, Springer Verlag,
2005.

[5] C. Bădică, A. Bădită, M. Ganzha, and M. Paprzycki. Developing a Model
Agent-based E-commerce System, pages 555–578. E-Service Intelligence—
Methodologies, Technologies and Applications. Springer, 2007.

[6] C. Bădică, M. Ganzha, M. Gawinecki, P. Kobzdej, and M. Paprzycki. To-
wards trust management in an agent-based e-commerce system—-initial
considerations. In A. Zgrzywa et al., editors, Proceedings of the MISSI
2006 Conference, pages 225–236, Wroc law, Poland, 2006. Wroc law Univer-
sity of Technology Press.

[7] C. Bădică, M. Ganzha, M. Gawinecki, P. Kobzdej, M. Paprzycki, M. Scafes,
and G.-G. Popa. Managing information and time flow in an agent-based
e-commerce system. In D. P. et. al., editor, Proceedings of the Fifth Interna-
tional Symposiom on Parallel and Distributed Computing, pages 352–359.
IEEE CS Press, Los Alamitos, CA, 2006.

[8] V. Chavez and P. Maes. Kasbah: An agent marketplace for buying and
selling goods. In Proc. of the First Int. Conf. on the Practical Application
of Intelligent Agents and Multi-Agent Technology, London, UK, 1996.

[9] M. Dominiak, W. Kuranowski, M. Gawinecki, M. Ganzha, and M. Pa-
przycki. Efficient matchmaking in an agent-based grid resource brokering
system. In M. G. et. al., editor, Proceedings of the International Multicon-
ference on Computer Science and Information Technology, pages 327–335,
2006.

[10] M. Drozdowicz, M. Ganzha, M. Gawinecki, P. Kobzdej, and M. Paprzy-
cki. Designing and implementing data mart for an agent-based e-commerce
system. IADIS International Journal on WWW/INTERNET, 2008. (to
appear).

[11] M. Ganzha, M. Gawinecki, P. Kobzdej, and M. Paprzycki. Model agent-
based ecommerce system. In S. et. al., editor, Development of Multi-Agent
Systems in Socio-Economic Environments. Placet, Warsaw, Poland, 2008.
in Polish.

21

[12] M. Ganzha, M. Gawinecki, P. Kobzdej, M. Paprzycki, and C. Bădică. Func-
tionalizing trust in a model agent based e-commerce system. In M. B. et.
al., editor, Proceedings of the 2006 Information Society Multiconference,
pages 22–26. Josef Stefan Institute Press, 2006.

[13] M. Ganzha, M. Gawinecki, P. Kobzdej, M. Paprzycki, and T. Serzysko.
Implementing commodity flow in an agent-based model e-commerce system.
In Parallel Processing and Applied Mathematics, LNCS, pages 400–408.

[14] M. Ganzha and M. Paprzycki. Adapting price negotiations to an e-
commerce system scenario. In K. Saeed et al., editors, Proceedings of
the CISIM Conference, pages 380–386, Los Alamitos, CA, 2007. IEEE CS
Press.

[15] M. Gawinecki, M. Ganzha, P. Kobzdej, M. Paprzycki, C. Bădică, M. Scafes,
and G.-G. Popa. Managing information and time flow in an agent-based
e-commerce system. In D. Petcu et al., editors, Proceedings of the 5th Inter-
national Symposiom on Parallel and Distributed Computing, pages 352–359,
Los Alamitos, CA, 2006. IEEE Press.

[16] M. Gawinecki, P. Kobzdej, M. Ganzha, and M. Paprzycki. Introducing
interaction-based auctions into a model agent-based e-commerce system—
preliminary considerations. In R. do Nascimento et al., editors, Proceedings
of the EATIS Conference, ACM Digital Library, New York, NY, 2007. ACM
Press.

[17] J. Kephart, J. Hanson, and A. Greenwald. Dynamic pricing by software
agents. Computer Networks, 32:731–752, 2000.

[18] R. Kimball and M. Ross. The Data Warehouse Toolkit: The Complete
Guide to Dimensional Modeling, 2nd Edition. John Wiley & Sons, 2002.

[19] W. Kuranowski, M. Ganzha, M. Paprzycki, and M. Dominiak. In S. et.
al., editor, Development of Multi-Agent Systems in Socio-Economic Envi-
ronments, chapter Software Agents as Resource Brokers in the Grid, pages
369–391. Placet, Warsaw, Poland, 2008. in Polish.

[20] K. Laudon and C. Traver. E-commerce. business. technology. society (2nd

ed.). Pearson Addison-Wesley, 2004.

[21] P. Maes, R. Guttman, and A. Moukas. Agents that buy and sell: Trans-
forming commerce as we know it. 42(3):81–91, 1999.

[22] D. Rolli and A. Eberhart. A descriptive auction language. Electronic
Markets – The International Journal, 2005.

[23] T. Serzysko, M. Gawinecki, P. Kobzdej, M. Ganzha, and M. Paprzycki.
Introducing commodity flow to an agent-based model e-commerce system.
In Proceedings of the 2007 IAT Conference, 2007.

22

[24] D. Trastour, C. Bartolini, and C. Preist. Semantic web support for the
business-to-business e-commerce lifecycle. In WWW ’02: Proceedings of the
11th international conference on World Wide Web, pages 89–98, New York,
NY, USA, 2002. ACM Press. http://acm.org/10.1145/511446.511458.

[25] K. Wasilewska, M. Gawinecki, M. Paprzycki, M. Ganzha, and P. Kobzdej.
Optimizing blackboard implementation of agent-conducted auctions.
IADIS International Journal on WWW/INTERNET, 2008. (to appear).

[26] M. Wooldridge. An Introduction to MultiAgent Systems. John Wiley &
Sons, 2002.

23

