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Summary. In this paper we look into three approaches, based on: Game Theory,

Auction and Consensus methods, to combine information from multiple sources.
As originally introduced, they are conceptualized using an agent metaphor and
implemented using a JADE agent platform. Preliminary performance comparison
completes the presentation.

1 Introduction

Since different Internet search engines produce different results for the same
query, we can say that they “see” the world differently. The question then
arises: how to combine answers from different sources in such a way that the
obtained answer would be “better” than when using only a single source?
What suggest combining “advice” from multiple sources is a standard sit-
uation, when a panel of experts is used to address a problem. Combining
multiple suggestions can be achieved, among others, utilizing a Consensus

method [5, 2, 4], Game Theory and Auctions [8, 7]. These approaches have
been originally proposed as based on software agents. While this is some-
what spurious (proposed functionalities can be achieved without agents), we
follow predecessors and use JADE agent platform to implement combining
information from multiple Internet sources.

This note is organized as follows. In the next section we introduce the three
approaches to information joining. We follow with preliminary experimental
results and their analysis.

2 System setup

Proposed system can be split into two main parts: Client Module (the in-
terface) and the Main Agent (system manager). Client Module is responsible
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for interacting with the end-user. The Main Agent receives requests from the
Client Module and manages agents for information retrieval and combining
results.

At the beginning there is only the Main Agent (MA) waits for a query
and the processing algorithm of choice. When the input is received the MA
creates as many Search Agents (SA) as there are selected search engines (user
can specify how many and/or which search engines to include, or a default
number will be used). Each SA is assigned a different search engine. SA’s
query the database using the content of the query and information about
selected algorithm, to retrieve the weights set, which are used during data
processing. Weights are the ranks of search engines; computed for a given
algorithm based on previous results for a given query. Their belong to interval
(0, 1) depending on how the algorithm evaluated result set of a particular
search engine. If engine performed badly—results were not satisfactory in the
sense of the algorithm; it is assigned a smaller weight than the engine results
of which were considered as better ones (in the sense of the algorithm). If this
is the first time for a given query, all ranks are set to 1. Those weights are used
during the ranking processes to “boost” URLs originating from engines, which
contributed better results in previous runs for that query and algorithm.

Next, SAs execute the query and return their results to the MA, which
processes them according to the selected algorithm. When the processing is
finished, the MA sends the final results to the web application to be displayed.
Note that if the algorithm was able to find the best result, the result list is
displayed and knowledge base is updated instantaneously. The search engine
which yielded the top result is ranked as the best and other engines are ranked
according to how close they were to this engine. If, however, algorithm was
not able to yield a “satisfactory” answer; application displays “an answer”
and an option to provide feedback (subjective evaluation performed by the
user). Feedback (if received) ranks search engines. In the knowledge base we
store—for each query, search engine and method of answer processing, and
the engine rank.

2.1 Common algorithms

There is a number of algorithms that are used by multiple approaches. First,
the algorithm for the initial URL ranking. This initial ranking is performed
before the Game Theory and Auction methods (not the Consensus method)
start their computations. Its purpose is to calculate confidence values of Search

Agents about retrieved URLs. In general, the confidence value is calculated as
follows: |result set of agent| − position of the URL in resulting set. However,
the Game Theory and the Auction methods require that each result set con-
tains the same URLs (in any order). If this is not the case they break, since
comparison of ranks certain URLs cannot be performed. Therefore, this al-
gorithm updates the result sets with missing URLs. It also determines if the
main computational parts of the two approaches can even be performed. The
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rule is as follows: if for all pairs of result sets A and B the A∩B = ∅ then the
main part of the Game Theory and Auction cannot start. Thus, if a result set
has no common URL with any other result set it is removed from the process
as being not suitable for the algorithms which require every URL to be in
every result set. The pseudo-code of the algorithm is as follows.

URL ranking algorithm for Game Theory and Auction methods

Input Map of results 〈ai, ri〉 provided by

m

Search Agents—each in the form ri = 〈Ui
1, Ui

2, . . . , Ui
n〉, where Ui

j , j = 1, . . . , n, are
URLs.

Output Map containing URL ranking.
BEGIN

1. for each agent in the map:
• check if other agents result sets contain any of the URLs of the agent
• construct matrix representing how many URLs of the agent are contained in

the each result set of other agents
2. check if each agent has at least one common URL with another if not—remove it

from further processing
3. if result set of every agent is disjoint with each result set of every other agent—stop

algorithm
4. for each agent in map:

• for each URL in agent result set:
– rank the URL as follows:

rank(U
i
) = (|r| − i) × weight(r)

, where i is a position of URL in r
– find agents which result set does not contain the URL, update their rank-

ings:

rank(Ui) = 1.0 × weight(r)

(weights calculation—listing 2.1)
5. return ranking

END

Weights calculation for Game Theory and Auction methods

Weights calculation is performed after Game Theory and Auction methods
finish their main negotiation parts. This algorithm is to rank the search en-
gines according to how the URLs from a given engine were evaluated (placed)
in the final answer. The topmost URL is chosen to be the feedback result and
other result sets are weighted accordingly to the number of URLs overlapping
with the result set which provided the URL.

Input: Result from feedback; initial result sets
Output: Map of weights with corresponding agents
BEGIN

1. find the agent whose result set contains the “best” result, set his weight to 1
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2. for all other agents:

find d(r(i)
, r

w)

W [i] =
|r(i)| − d(r(i), rw)

|r(i)

where d(r(i), rw) is the number of different URLs between the result set of agent
i and the “winner” agent

3. return weights
END

After this part is finished, ranks are stored in the knowledge base for
further use. These weights are used as follows: when issuing the query for
the second time for a particular method (Game theory or Auction in this
case) the weight of the result set is used to decrease the rank of the URL
which originates from this result set. The rank of such URL is multiplied
by this weight. Thus, if it is less than 1 it is being decreased. This process
gives handicap to URLs which are returned by the search engines with low
weights—those contributed “not so good” results for a particular query. If the
weight is equal to zero the rank is multiplied by 0.01 (to still keep it in “in
the game”).

3 Three main algorithms

3.1 Game Theory

This approach was used in the NeurAge system [8, 7, 1]. In its modified
version, instead of voting for certain “classes of data,” agents vote for URLs
retrieved by search engines. Confidence values from the original algorithm
have been replaced by URL ranks (obtained after above-described the pre-
processing). Furthermore, in the original algorithm agents delivered a single
“data class” as the answer. However, in Internet searching multiple, ranked
responses are expected. Therefore, in the adapted approach, 10 “best” URLs
are returned. Here, we utilize an iterative approach, where each iteration starts
the selection process from the beginning, without previously selected URLs.
This modification does not violate main assumptions of the algorithm [9].In
general, a “game” consists of set of players, set of moves (strategies) and
specification of payoffs for each combination of moves. In a normal form the
game that is defined as follows:

There is a finite set P of players, which we label {1, 2, ..., m}. Each player k has
finite number of pure strategies (moves) Sk = {1, 2, ..., nk} A pure strategy profile is
an association of strategies to players, that is m-tuple σ = (σ1, σ2, . . . , σm) such that
σ1 ∈ S1, σ2 ∈ S2, . . . , σm ∈ Sm Let strategy profiles be denoted by Σ A payoff
function is a function F : Σ → ℜ which intended representation is the award given to
a single player as the outcome of the game. Accordingly to specify a game the payoff
function has to be specified for each player in the player set P = {1, 2, . . . , m} .

Definition 1. A game in normal form is a structure (P, S, F ) Where P = {1, 2, ..., m}
is a set of players, S = (S1, S2, . . . , Sm) is a mtuple of pure strategy sets, one for
each player and F = (F1, F2, . . . , Fm) is a m-tuple of payoff.
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In the game considered here, components are as follows: (a) players are agents,
(b) possible moves are to change or to keep the URL, (c) payoffs for those
moves are defined as a 2×2 matrix. Each agent is assigned two values: for the
keeping the URL and for changing it. Those values may or may not change
each round of the game, depending on the outcome of the previous round.

At the beginning of the process, results obtained by the Manager Agent

from Search Agents are filtered, ranked and updated (see above). The URL
ranking represents confidence in a specific URL. In each round of the game two
agents with highest ranked URLs have two possibilities: to keep their answer
or to change it. If the keep action has higher value than the change action,
the agent will be assigned the action to keep its URL for the next round. If,
however, the agent is assigned the action to change its URL and the second
agent is assigned the action to keep its URL, the latter is considered a winner

of the round and the former is considered a loser—it and its result set are
discarded from further considerations. Then the next round starts (without
the agent and its result set; removed in previous round) and so on, until there
is only one agent and its top URL is the winner. Process is then repeated,
without the URL that was selected in the previous “big” round (this URL is
removed from all result sets; recall that all sets have all URL’s included; see
above). Game continues until 10 (best) URLs are selected.

3.2 Auction-based approach

Auction-based approach was originally used in the NeurAge system [7], and
was adapted to return 10 distinct URLs (rather than a single result). In each
round of the auction each agent has its “product” (URL) assigned. Afterward,
the “cost” for each assigned URL is calculated. Costs are compared and agent
with the highest cost is considered to be a loser. Afterward, the confidence
values for selected URLs are updated by subtracting the cost from their value.
Henceforth, the next round takes place. If the agent that was marked before
as a loser, loses again, it and its result set are discarded from further auctions.
After removal of a twice-looser, process enters the next round, and continues
until a single agent remains with its selected answer. This process is repeated
10 times and after each round the URL that was just selected, is removed
from result-sets of all agents.

Here, we present an example of flow of one round of the Auction method:

Input: Map containing URL rankings.
Output: 10 URLs.
BEGIN

1. repeat until there are 10 URLs in answer list
2. repeat until one agent remains

3. find highest ranked URLs for all agents and pair them (A(i), U(i))
4. calculate costs for each agent:

cost(A
(i)

) =

m
P

i=1,i6=j

(rank(A(i), U(i)) − rank(A(i), U(j)))

10
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where U(i) is URL from pair (A(i), U(i)) (highest ranked URL for agent A(i) and

U(i) is a highest ranked URL for agent A(i)

5. find agent with highest cost—a loser; it may happen that all agents have the same
costs—if it occurs twice the agent which is assigned the URL initially ranked as
the lowest is considered a loser and thus removed from further negotiation, if it is
so, go to 7.

6. if the agent is a loser twice in a row remove it from further auctions
7. update URL rankings for all agents as follows:

rank(A(i)
, U

(i)) = rank(A(i)
, U

(i)) − cost(A(i))

where the pair (A(i), U(i)) is found at the beginning; at this point the winning
URL can be changed

8. add URL to the answer list
9. remove the URL from all answer sets

3.3 Consensus method

The Consensus method was used previously in the AGWI system [5, 3, 6,
2, 4]. Its aim is to combine a set of answers into a final joint answer. The
difference in the modified approach are as follows. The algorithm for measuring
distances between result sets was adapted (to use the Levenshtein method).
Furthermore, in the AGWI system there were more search engines than there
were Search Agents (and thus only some of them were selected to be used).
Here, there are as many Search Agents as there search engines.

In the Consensus method, result sets are evaluated and a combined result
set (without repeating URLs) is created. Next, for each URL its average po-
sition in all result sets is calculated. In what follows, the combined result sets
are sorted according to the average position of each URL. Then the consensus
answer is found and its consistency checked. Before performing the calcula-
tion, however, the result sets and consensus are normalized; only a specific
number of top URLs are incorporated into the answer. This number is of
size of the smallest non-zero result set. To check consistency of the consen-
sus answer, average of distances between result sets and average of distances
between each result set and the consensus answer are evaluated. If the av-
erage of distances is bigger than average of distances of result sets and the
consensus, then consensus answer is consistent; if not, the consensus answer
is not consistent. The following listing presents the pseudo code of algorithm
for finding the consensus answer.

Input: Map of results provided by m Search Agents. Map containing weights for
result sets.

Output: Consensus answer.
BEGIN

1. create set URLS from all URLs from all result sets (without repetitions)
2. for each U ∈ URLS

• create array <t1, t2, . . . , tn>, where ti is position on which U appears in r(i);

• if U does not appear in r(i) then set ti as the length of the longest ranking
increased by 1

• divide each ti by weight(r(i)); if weight(r(i)) = 0 divide by 0.01
• calculate average t(U) of values (t1, t2, . . . , tn)

3. consensus answer is obtained by ordering elements of according to values
END
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Having checked the consistency of the result set, the algorithm decides on
the next step. When the consistency is low, the answer containing all results
is returned and feedback is requested. If the consistency is high, 10 first URLs
from the consensus answer are presented.

Depending on the outcome of the consistency check the different entry
point is used for the weight calculation algorithm. If the consistency of the
consensus is high, agent whose result set has the smallest distance to the
consensus is selected as the agent whose weight will be equal to 1 and the
algorithm in following listing does not require the feedback URL as an input—
thus, step 1 is omitted. If the consistency is low, the first step of the algorithm
must be performed to find the “winner” agent.

Input: Result from feedback; initial result sets
Output: Map of weights with corresponding agents
BEGIN

1. find the agent whose result set contains the best result from feedback, set his
weight to 1

2. for all other agents:

find d(r(i)
, C)

W [i] =
|r(i)| − d(r(i), C)

|r(i)

where d(r(i), C) is the the Levenshtein distance
3. return weights

END

4 Initial experimental results

In our initial set of experiments three queries were issued for the testing pur-
poses: “consensus decision making”, “consensus decision making for

conflict solving”, and “is consensus decision making for conflict

solving good enough or maybe Game theory or auction is better”.
The idea was to take three queries which are related to the same topic; how-
ever first was to be simple, second intermediately complex, and third was
to be very complex, while retaining coherence. There were 5 search engines
queried. Four of them were English-language-based: Google, Ask.com, Live,

Yahoo! and one of Polish origin—Interia, which in fact is a Google based
engine; however very often it produces results which differ from its parent en-
gine. System was set-up to return 20 results for each query. In this note, due
to the lack of space, in Table 4 we present only two “performance measures;”
the Set Coverage and the and URL to URL coverage for each of the three
approaches, for each of the queries. The Set Coverage measures how many
URLs from the final result are contained in the result set returned by a search
engine regardless of the position of the URL. In other words, this measure
tells us if there is a relationship between the combined answer and answers
returned separately by each search method. The and URL to URL coverage
measures how many URLs were at the same position in both results (of the
algorithm and that of the search engine).
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Auction method, simple query

Auction Ask.com Live Interia Yahoo Google

Set Coverage 60% 40% 110% 60% 70%

URL to URL 0% 10% 20% 30% 20%

Game theory method, simple query

Game theory Ask.com Live Interia Yahoo Google

Set Coverage 60% 60% 70% 80% 60%

URL to URL 30%% 10% 0% 50% 0%

Consensus method, simple query

Consensus Ask.com Live Interia Yahoo Google

Set Coverage 70% 50% 80% 70% 80%

URL to URL 20% 20% 10% 20% 10%

Auction method, intermediate query

Auction Ask.com Live Interia Yahoo Google

Set Coverage 10% 10% 50% 10% 40%

URL to URL 0% 10% 0% 0% 0%

Game theory method, intermediate query

Game theory Ask.com Live Interia Yahoo Google

Set Coverage 60% 40% 30% 40% 30%

URL to URL 40% 0% 10% 0% 10%

Consensus method, intermediate query

Consensus Ask.com Live Interia Yahoo Google

Set Coverage 50% 30% 70% 40% 60%

URL to URL 0% 20% 0% 0% 0%

Auction method, very complex query

Auction Ask.com Live Interia Yahoo Google

Set Coverage 0% 0% 30% 0% 40%

URL to URL 0% 0% 10% 0% 20%

Game theory method, very complex query

Game theory Ask.com Live Interia Yahoo Google

Set Coverage 0% 40% 30% 10% 50%

URL to URL 0% 0% 0% 10% 0%

Consensus method, very complex query

Consensus Ask.com Live Interia Yahoo Google

Set Coverage 10% 20% 90% 20% 40%

URL to URL 0% 0% 30% 0% 0%

Table 1. Summary of experimental results
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Let us observe that as the query becomes more complex, the coverage
drastically decreases. This can be explained by the fact that the responses
generated by various search engines have less and less in common. Therefore,
regardless of the method used, the final answer set becomes a collection of
“separate links” chosen from each individual answer-set. This trend is even
more drastic in the URL to URL comparison. Here, already for the interme-
diate query practically no URL is in the same location in the answer set as
it is in any of the search engines. This indicates also that this performance
measure is not particularly useful for the application in question.

As expected, results returned by Interia and Google are very similar, with
both performance measures varying, randomly favoring either one of them.
Interestingly, these two search engines seem to have best performance for the
complex query. However, this may be a result of collusion, where two similar
search engines “dominate” views of the others. This observation provides also
a warning, that the selection of the “groups of experts” has to provide as
“orthogonal” view of the subject as possible. Otherwise, regardless of the
method used, the returned combined answer may be dominated by a few
experts that see the problem similarly.

Observed results suggest also that the consensus method does what its
name suggests—delivers response that is closest to consensus. This can be
seen particularly in the case of the complex query, where for the consensus
method the Set Coverage is non-zero also for search engines other than Interia

and Google.
Overall, on the basis of all of our experiments (also these not reported

here), we can state that: (1) Results delivered by the Auction method are
highly dependent on each individual result set and do not represent well the
“combined view” of all search engines. No matter if the URL is in many re-
sult sets, it may not make it to the final (combined) result. Instead, returned
are “winning” URLs, which appear in a single result sets. (2) Game Theory

method also does not seem to create a combined view of initial answers. How-
ever, if a URL is at of of top places of more than one result set, it is very likely
to be incorporated into the final result set (even though it may be locate much
lower than its average position). (3) The Consensus method returned the re-
sults which represent the most common view of participating search engines.
However in three tested cases all returned result sets were inconsistent(!) ac-
cording to consensus theory itself. This happens due to the high “position
dispersion” of URL’s throughout the result sets. There are situations where
a URL is, for instance, on the 1st place in one result set, on the 9th place in
another result set, and on the 5th in the next. For this result, the Levenshtein
distance between response sets is relatively large and thus the final result set is
inconsistent. Nevertheless, if one was not to take the consistency into account
(as in its current form it may not be a useful measure after all), the Consensus

method provided results which could be claimed to be “the best overall.”
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5 Concluding Remarks

In this note we discussed three methods for combining results from multiple
Internet sources and presented initial evaluation of their performance. Our
results indicate that each method leads to a different combined answer set.
Out of these methods, the Consensus method seems to generate the most
“common” view of the initial answers, while the remaining two methods tend
to favor certain answers over others. This is particularly the case for the
Auction theory. We are currently performing additional experiments with the
three methods and starting to look more qualitatively into obtained answer
sets (to establish their value for actual users).
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