Preliminary Performance Evaluation of an Agent-Based
Geospatial Data Conflation System

Shahram Rahimi
Dept of Computer Science

Southern lllinois University

Carbondale, IL, 62901
rahimi@cs.siu.edu

Abstract

A rapid growth of available geospatial data requires
development of systems capable of autonomous data
retrieval, integration and validation. Mobile agent
technology may provide the suitable framework Jfor
developing such systems since this technology can deal
in a natural way, with the distributed heterogeneous
nature of the data. In this paper, we evaluate our novel
multi-agent architecture for geospatial data integration
and compare its performance with a client/server and a
single-agent architecture. We analyze the performance
alteration for various numbers of participating nodes,
amount of database accesses, processing loads, and
network loads.

1. Introduction

The aim of our current long-term research project is to
develop an autonomous updating system that will retrieve,
filter, integrate, conflate and validate geospatial data from
multiple heterogeneous sources, including web-based
repositories, into a single database system for subsequent
access and retrieval. Autonomous updating subsumes
several i1ssues that must be resolved for a successful
system implementation. Among these are integration of
heterogeneous geospatial data formats and resolution of
multiple representations (conflation), which are the most
time consuming and complex tasks in this process.

Conflation is a higher-level concept than integration
because it implies a deeper (semantic and “intelligent™)
knowledge about the data. Conflation results in a state of
agreement among various data sources in which a single,

'Intelligent Database Agents for Geospatial Knowledge Integration
and Management; BAA #NMA202-99-BAA-0Z2 NIMA-DoD

0-76953-1931-8/03 $17.00 © 2003 IEEE

Johan Bjursell, Dia Ali, Maria Cobb
Dept of Computer Science
University of Southern Mississippi
Hattiesburg, MS 39406-5106
{firstname.lastname}@usm.edu

550

Marcin Paprzycki
Computer Science Dept
Oklahoma State University
Tulsa, OK 74109

marcin@main.amu.edu.pl

“best” view of multiple data representations for similar data
types is presented to the user. Thus, conflation logically
can occur only if integration as defined earlier has alre ady
been resolved. Integration and conflation are time
consuming tasks that need significant data mining and may
generate heavy network traffic.

Automated conflation of maps is a complex process that
must utilize work from a wide range of subjects and has
presented several computational challenges for two
decades. More recently, researchers have turned to a fuzzy
logic, rough sets and other methods for handling
reasoning abilities under conditions of uncertainty to help
solve general conflation problems. These approaches
certainly show greater promise for producing a wider range
of acceptable results; however, models for implementation
have still been limited in their ability to provide a true,
workable solution.

A client/server based distributed model was introduced
by the authors, which lacked a satisfactory performance.
This was due to the increase of the network traffic during
the integration and conflation process. Moreover, the
concentration of the conflation process in a central
computer further declined the performance of this model.
The need for improving the performance led us to
investigate the use of software agents for the
implementation of such a system. In [2], we introduced an
autonomous multi-agent based application that retrieves,
integrates and conflates geospatial data from multiple
heterogeneous sources.

In this paper, we briefly describe our multi-agent
architecture and then concentrate on the performance of its
conflation process. We compare the performance of our
conflation model with the client/server approach.
Moreover, we consider a single mobile agent conflation
process in our comparis on to show the constructive effect
of multi-agents’ cooperation. We observe crucial
parameters in the model that may affect the performance of

the conflation process, and compare the different
approaches for a variety of settings. In this study, we
show how our multi-agent architecture improves the
conflation by reducing the size of the data transfer,
distributing the actual process, improving the data mining
and integration.

2. Architecture Overview

Figure 1 depicts the general multi-agent architecture of
our system.

Figure 1: The general multi-agent architecture of our
system.

Before proceeding to the conflation process, we list a
few of the types of agents (together with a brief
description of each) that currently are used in the system.
Detailed information can be found 1n [2].

ROI Agents (RA): Each RA is responsible for
managing updates for a particular Region of Interest (ROI).
For instance, the United Nation divides the world mnto 10
such regions. In our design, we follow this strategy. RAs
are static, remaining on the central database during the
entire process.

Queue Manager (QM): The QM is supervising a
priority queue of updates generated by the RAs.
Conflation Manager (CM): This agent s located 1n
the central database and is responsible for gencrating a
conflation agent for each update request entry in the
queue and initiating the conflation process.

e Conflation Agents (CA): Each CA, generated by the
CM, is responsible for a single update request. The CA1s a
superclass of many specialized agent classes that have
extensive knowledge about their domain relevant to the
conflation process. CAs are intelligent mobile agents,
traveling to the feeder databases to perform conflation In a
round robin fashion (described below).

e Query Agents (QA): These are released from the
central database by the conflation agents to gather
information for conflation-related queries. Prior to the CA,
the QAs arrive in all pertinent databases, perform imtial

551

queries and post the result to be used in the conflation
process by the CA.

The customized CA travels to the feeder databases one
by one and receives the already collected contlation data
from QAs and places them in a matching feature set. Each
object in the matching feature set is given a similarity
score. The similarity score is a weighted combination of
various criteria, which represents the degree of similanty
between an object in the matching feature set and the
feature for which the conflation process is taking place.
The features with a similarity score higher than a threshold
will be considered for the conflation process. We skip the
description of the actual conflation process, which takes
place on the similar features. For more information please
refer to [2].

3. Performance Evaluation

Before reviewing the results, we briefly describe the
client/server and the single-agent approaches. Multi-
threading and RMI are used for the client/server system
where each thread is responsible for the queries of a single
database server. The client initiates the conflation process
by accessing the servers and requesting data. After
receiving the query results from every server, the
conflation process takes place locally on the client
computer (for more information on the details of this
design, please refer to [2]). In the single-agent architecture
an agent is sent out from the central site to the data
repositories with an itinerary of IP-addresses. On each
node, the agent first queries the database and, thereafter,
conflates the data. Subsequently, the agent proceeds to
the next node along its itinerary where the process 1s
repeated. After completing its itinerary, the agent retums
to the central site and reports the result.

We run our tests on an Ethernet LAN with 100 Mbps
bandwidth. The agent architectures are implemented with
the Grasshopper Agent Platform distributed by KV~
Technologies AG. In our benchmark, the number of
participating database servers is four uniess otherwise
specified. The data is stored In Microsoft Access
databases on each server.

For the performance evaluation, we measure the total
conflation time for various settings. The parameters we
consider in our measurements are the number of queries
per server, the size of the retrieved data, and the complexity
of a conflation task. Different conflation tasks require
varying number of queries per database, thus studying the
performance as a function of queries is crucial since the
client/server approach accesses the databases remotely
while the agents interact locally with the databases. Similar
reasoning motivates us to consider the size of the retrieved
data from a query. Furthermore, the impact on the

performance based on the complexity of the actual
conflation process i1s analyzed. Since the intricacy of a
conflation task relies on the category of features as well as
type of update involved, the length of the conflation
process varies significantly. To model such settings, we
introduce conflation units, where a unit has a fixed
processing time and run scenarios with a varying number
of conflation units.

In figures 2 to 4, we evaluate the conflation process as a
function of one variable while keeping the rest of the
parameters constant to such values that will not dominate
the performance. Figure 2 ilustrates the timing results for
an increasing number of conflation units. A single query is
executed on each of the four databases, and the size of the
retricved data 1s fixed to 10 kilobytes. Consequently, only a
small amount of data is conveyed over the network. As a
result, the gain of local communication in the agent-
architectures is minimal, and the overhead of code mobility
slows down their overall performance. Furthermore, since
only one query is executed per database, the overhead of
utilizing query agents causes the multi-agent approach to
be slightly less efficient than the single-agent approach.

:lilnlfllii-rq -
Fingle Agant -
Multi Agent & ---

Constant Yalues

Database ARooassars: 1
BEiza of Retrieaved Data: 10 Kb
Sarverx: |

[
| 4
-

{Emctomde}

T el

11 Ia 1%]] 15 44 L L] 1w

Conflatioh Inite

Figure 2: Performance as a function of the number of
conflation units,

Constant Values Cltent/Furvar—
m | Conflation Units: 10 Single-Agant — — |
5iz2e of Retrisved Data: 10 b t1 Agant -----.
—

s | SeTvers: 4

-l
L* |

(Exconde)
all
L]

- f.‘{.‘:--’f.’-‘:
L

T'L wen
] - =
1} - T]

43 T

] I ik &N

1an 13

Sataagn Cannmoiiens

Figure 3: Performance as a function of database

connections.

Next we vary the number of queries per database
(figure 3); 10 conflation units is executed per server, and
10 kilobytes of data is returned per query. Since in the
multi-agent approach, query agents (QAs) are sent out

prior to the conflation agent (CA), the conflation agent is
able to start processing nearly instantly upon its arrival;
thus, the processing time 1s almost constant. The slight
increase in time originates from when the CA arrives to the
first node where the agent may stay idle waiting for the
QA to complete its task. However, as the CA arrives to
subsequent nodes, the querying is concluded, allowing
the CA to immediately process the information.
Conversely, in the single-agent solution, the same agent is
responsible for both querying and conflating data. Hence,
the single -agent’s processing time increases linearly with
the number of queries. For the same reason, the
client/server approach increases by the same rate as the
single-agent solution.

In figure 4, we increase the size of the retrieved data per
each query from 0 to 200 kilobyte. Again, 10 conflation
units are processed per server; and each server is queried
10 times. Both agent architectures stay essentially
constant by processing the data locally on the data
servers in contrast to the client/server application, which
transfers the data over the network and processes it on
the central server. As discussed previously, compared to
the single -agent solution, the multi-agent approach does
not gain much from sending out the query agents since
there are only 10 queries per server; the gain is subdued
by the additional overhead.

Cliant /Searvar
Singles Agamt — —
Multl Agent ------

Constant ¥Yalues
Conflaticn Units: 10
Databasae Accassas: 10
Sarvars: 4 i

148 F

[
~
i

(1 acomded

X iLwmm

"

L]] L] 108 ire

Matriwrad Dates Sixzs

Figure 4: Performance as a function of the size of retrieved
data per query.

So far, we have seen how the number of conflation
units, the number of database connections and the size of
the retrieved data independently impact the performance.
Figures 5 to 7 combine these properties by plotting the

- total processing times for the three architectures with the

552

number of queries on the x-axis and the size of the
retrieved data on the y-axis.

For small values of the parameters, all architectures
perform similarly. However, apart from there, the multi-
agent system performs significantly better as the
processing times increase considerably faster for the two
other versions. The single-agent approach looses in
efficiency to the multi-agent system when the number of

queries increases. For the client/server approach, the
remote communication becomes the liable factor as the
size of the data increases, which 1s even further intensified
by a growing number of database accesses. While the
client/server quickly reaches timings over 100 seconds,
the multi-agent system stays below 90 seconds even for
100 database hits and retneved data of size 400 kilobytes.
Moreover, the single-agent architecture 1s significantly
faster than the client/server, yet substantially slower than
the multi-agent approach.

Llienkt/ tarver
BO0 ———

BOG «anna

Constant Values

Tima (Facends]

10

Conflation UInits:
servers: §

TOD
00
LY
400

Figure 5: Performance of the client/server architecture as a
function of the number of queries and the size of retrieved
data.

Constant Values
Conflation Units:
Saervers: 4

Fingle Agent ——
150 — .
100

10

Times [(Sacend1]

ieg
10
150
40
M
90
L 1
L 1

L L

|

Figure 6: Performance of the single-agent architecture as a
function of the number of queries and the size of retrieved
data.

Constant Values

Conflation Units:
Servers: 4

Hulti Agent
8y — -

iiiii

10

Tima [Secondx}

29
as
a0
kL]
10
&5
50

Figure 7: Performance of the mu!t-i-agent architecture as a
function of the # of queries and the size of retrieved data.

Figure 8 shows the speedup of the agent architectures
compared to the client/server approach as a function of the

553

size of the retrieved data with 50 database accesses and
process 10 conflation units per server. The agent
approaches clearly outperform the chlient/server. For 5
database accesses, the client/server outdoes the agent
architectures for query results of size less than 300
kilobytes; however, a larger amount of retrieved data and
more database accesses favor the agent approaches, and
especially the multi-agent architecture. For 100 accesses
the agent approaches dominate even more.

Constant Yalues

10
50

Conflatjion Units:
Database AcCCasses:
Sarvers: 4

Ja0 130 400

[1] i 189 %0

Aairiarad daka simnm

Figure 8: The spéedup of the agent approaches cu_mpared
to the client/server approach as a function of the size of
retrieved data with 50 databases accesses per server,

180

(et

4. Conclusion

In this paper, we benchmarked a new multi-agent-based
geospatial data conflation system and comp ared 1t with a
client/server based and a single-agent based approach.
The multragent architecture substantiates great advantage
over the two other approaches, especially when the
capacity of the computation and data transfer increase.
From the results presented, we have demonstrated how our
multi-agent architecture can decrease the network traffic,
divide the tasks efficiently and, thus, increase the
performance of such a system.

For a sufficiently small amount of geospatial data, the
client/server performs better. This is due to the overhead
of managing the agents as well as the time of transferring
the agents including their data state, knowledge base, and
functionality from one node to another.

5. References

[1] M. Cobb and F. Petry, “Modeling Spatial Relationships
within a Fuzzy Framework™, Journal of the American Society for
Information Science, 49(3), 253-266, 1998.

[2] S. Rahimi, M. Cobb, D. Ali, M. Paprzycki, and F. Petry, “A
Knowledge-Based Multr-Agent System for Geospatial Data

Conflation”, Journal of Geographic Information and Decision
Analysis, ISSN 1480-8943, pp. 67-81, Vol. 6, No. 2, 2002.

	IAT0002 copy.gif
	IAT0001 copy.gif
	IAT0003 copy.gif
	IAT0004 copy.gif

