
Software Agents in ADAJ : Load Balancing in a Distributed

Environment

Michal Drozdowicz, Maria Ganzha, Wojciech Kuranowski, Marcin Paprzycki

Systems Research Institute,
Polish Academy of Sciences, Warsaw, Poland

email: maria.ganzha@ibspan.waw.pl

Iyad Alshabani, Richard Olejnik, Mahmoud Taifour

Computer Science Laboratory of Lille (UMR CNRS 8022),
University of Sciences and Technologies of Lille, Lille, France

Mehrdad Senobari

Department of Computer Science,
Tarbiat Modares University, Tehran, Iran

Ivan Lirkov

Institute for Parallel Processing,
Bulgarian Academy of Science

Abstract

Adaptive Distributed Applications in Java (ADAJ) is a platform developed for execution of
distributed applications in Java. The objectives of this platform is to facilitate application design
and to efficiently use the power of distributed computing. The ADAJ offers both a programming
and an execution environment. In the latter it implements object observation and load balancing
mechanisms. The observation mechanism allows estimating of the JVM load for each node running
the ADAJ client. The load balancing mechanism dynamically adapts the workload across the
system according to this information. Here we discuss how the original design based on JavaParty
is going to be superseded by utilization of software agents.

Keywords: distributed applications, adaptive load balancing, software agents

1 Introduction

The Adaptive Distributed Applications in Java (ADAJ) is a platform developed for efficient imple-
mentation and execution of distributed applications in Java. The ADAJ offers both a programming
and an execution environment. To facilitate efficiency of code execution the ADAJ implements ob-
ject observation which allows estimation of the JVM load on each of its nodes. This information, in
turn, allows for utilization of load balancing mechanisms, which can dynamically adapt execution of
applications to equalize loads between computers in the system.

The original ADAJ was implemented utilizing the JavaParty ([5, 29]) and Java/RMI platforms
according to a multi-layer structure using several APIs. Here, the JavaParty provided an execution
environment for running distributed applications as well as a mechanism for object migration. The
main advantages of utilization of JavaParty were:

• object tracking done by the platform,

• transparency of object placement and execution,

1

• high efficiency of the solution.

However, it had also some serious disadvantages:

• extremely tight integration with the lower layer of RMI communication,

• utilization of proprietary protocols (KRMI),

• problems of integration with component/service oriented frameworks ([7, 9]),

• unknown future direction of development and release cycle timing.

Furthermore, the original design of ADAJ had the following drawbacks:

• was not service oriented and thus did not adhere to the vision of Service Oriented Computing,

• ADAJ applications had to be written utilizing the JavaParty, so the application had to be tightly
coupled with the platform,

• did not provide architectural view, but multi-layer view of the platform (allowed for separation
of layers but no separation of concerns).

On the basis of these premises we are in the process of re-designing of the ADAJ platform. The
main goals for ADAJ 2 are:

1. create ADAJ based on Service Oriented Architecture principles,

2. remove JavaParty and replace it with a more flexible brokering mechanism,

3. integrating a dynamic deployment model for the ADAJ service oriented applications.

In this paper, we discuss how results put forward in the Agents in Grid project (see [18, 28, 19, 17,
21, 16, 22, 23, 24], and software agents in particular, can be utilized on a lower level (within the new
ADAJ) to:

• detect load imbalance,

• facilitate migration of objects from heavily loaded machine(s) to lightly loaded ones.

To this effect we proceed as follows. In the next two sections we briefly describe the original
ADAJ project and the AiG project. We follow with an outline of a solution that would combine the
two project on a high level, where the AiG would provide user interface and resource management
capability for the ADAJ, which would become the work handling infrastructure. Next we discuss how
software agents can be introduced into the ADAJ to handle load observation and balancing.

2 Adaptive Distributed Applications in Java project overview

Let us start from a brief overview of the original ADAJ project(see [26, 8, 27].

2.1 General ADAJ architecture

The original Adaptive Distributed Applications in Java (ADAJ) was a programming and execution
system for distributed applications. The ADAJ provided distributed collections and the mechanism
of asynchronous invocations. In addition, ADAJ carried out load balancing in order to improve the
performance of executed applications. This mechanism of load balancing was based on application of
object redistribution. Its mechanisms were based on exploiting and combining information from the
load observation system of the execution platform and from the observation system of dynamic relations
between objects of applications running in ADAJ. The original ADAJ was implemented utilizing the
JavaParty and Java/RMI platforms according to a multi-layer structure using several API’s. Its main
components, represented in figure 1 were:

2

• Java Virtual Machine (JVM) was regarded as a homogeneous base for construction of distributed
applications.

• Remote Method Invocation (RMI, [3]) allowed objects located within various JVM’s to com-
municate between each other as if they were located on the same JVM (using a mechanism of
stub/skeleton).

• JavaParty provided an environment of execution of applications distributed on a collection of
workstations connected by a network. JavaParty extends the Java language to make it possible to
express relatively transparent distribution as well as provides a mechanism for object migration.

• CCA component framework provided services for creating and using CCA compliant components
in the platform.

Application Builder

Relations

JVM JVM JVM

RMI

JavaParty

D
A

A

J

Object redistribution

Load

Distributed
Collections

Network

Observation

Load
 Balancing

 System

System

Control
Components

Framework
Services A

C

C

Figure 1: The ADAJ multi-layer structure.

2.2 Observation system in ADAJ

The observation system [25, 12], needed for load balancing, consisted of two mechanisms. The first is
a mechanism for observation of the dynamic relations between the objects during the execution. The
second is a computer load observation mechanism. Note that, knowledge of load of all the computers
of the system is insufficient to ensure a correct object distribution. The introduction of a mechanism
of observation of the relations (and communications) between selected objects within the JVM makes
it possible to enrich knowledge about actual application-related loads during the execution. This
observation allows estimation of global object work by counting called method activations. In this
context, the ADAJ recognizes two object types: local and global objects.

• Local objects are traditional Java objects which belong to the users. They are instantiated in
the JVM. Their static part is in the same JVM and they can be used only within the JVM they
were instantiated in. If these objects are needed on another JVM, they must be copied. The
running state of a local object and its attributes are to be copied out in the new JVM. There is
no coherence maintained between the original and the copy. A new static part is also created by
copying if necessary. This copy is also a local object.

• Global objects are typically ADAJ objects. They can be created remotely in any JVM. They
are remotely accessible and migrable.

3

Observation of relations between objects (through method invocation) allows for building dynami-
cally the graph of the object application. The marking of an object consists of adding a characteristics
to an object. One example is the addition of the “migrability” property to the object so that it becomes
a migrable object i.e. it can be moved from one JVM to another. To ensure transparency and facility
of the object creation, we chose to use marking on the level of the class. The marking of the objects is
done implicitly; the marked objects are those which inherit the class RemoteObject of JavaParty [29].
This inheritance makes it possible to remotely access appropriately marked objects.

The implementation of the marking process is done by post-compilation techniques. We used a
tool of instrumentation of the byte code: JavaClass [15] developed at the Free University of Berlin.
JavaClass allows all kinds of transformations of the bytecode: attribute and method additions, method
modifications, and per instruction addition. During the post-compilation of an application within the
ADAJ, the byte codes of all the classes is examined. Classes which inherit the RemoteObject are
implicitly marked as global classes. The bytecode of these classes is modified by adding suitable
marking information.

3 Agents in Grid project overview

In the Agents in Grid project we perceive the Grid as a distributed environment consisting of users
ready to pay for usage of resources and resource owners that offer their resources for sale. Furthermore,
we distinguish a local Grid, where some form of “organizational control” has been instantiated (e.g.
Grid within a company, or Grid service put on sale by Sun Microsystems [6]). Here, there exists
a specific entity, which is responsible for maintenance of the Grid infrastructure (and in some way
assures Quality of Service; QoS). Furthermore, existence of such entity makes it reasonable to sign
Service Level Agreements (SLA). On the other hand in a global Grid there is no entity that has a direct
administrative control over resources. These resources belong to anyone; e.g. to individual owners,
which makes them relatively low granularity (e.g. single PC’s). In this case it is rather difficult to
believe that a “business strength” SLA can be signed and QoS assured. Note that success of projects
like SETI@HOME is not a counter-argument here. In this case (and in similar projects) individual
results can be obtained in any order and there is no particular time limit on their completion (i.e.
there is no interdependency between results). This situation is not acceptable in most cases involving
business applications, where jobs have to be executed in a specific order and by a certain deadline.
To remedy this situation we proposed a different approach (see, [19, 17, 21, 16, 22, 23, 24] for more
details), where:

• Every resource as well as every User is represented by an agent (LAgent)

• Agents work in teams

• Each team has an agent-manager (LMaster)

• Each LMaster has a mirror-agent (LMirror); working together (sharing team-related informa-
tion) they attempt at assuring long-term persistence of the team

• An agent worker (LAgent) joins a team that satisfies specified criteria

• Team accepts agent workers according to its own criteria

• Selecting a team to do the job involves negotiations between LAgents representing Users and
LMasters representing teams

• The CIC (Client Information Center) agent plays the role of a central repository where informa-
tion about all agent teams is stored. Specifically, it contains information about teams that look
for workers (who they look for), and teams offering to execute a job (what resources they offer).
Utilization of the CIC represents a ”yellow page” based approach to matchmaking [32, 18].

Note that, at the current stage, the choice of the machine that will execute the CIC agent is out
of scope of our considerations. Due to a large number of complicated questions concerning efficiency
and scalability of potential solutions, we will have to address this problem in a comprehensive fashion.

4

However, it can be assumed that in the development phase of the proposed system a solution similar
to that discussed in [18] can be utilized.

As a summary, the proposed structure of the AiG system has been depicted in Figure 2, in the form
of an AML ([14]) Social Diagram. Note that LAgent and Worker are two roles, where the role of the
LAgent is the basic one. However, when the LAgent joins a team it becomes a Worker. Furthermore,
the LAgent can become (start playing a role of) an LMirror, or an LMaster.

Figure 2: The AiG System; AML Social Diagram

4 Integrating AiG and ADAJ projects

There are two levels of possible integration of software agents and the ADAJ project. The first one
is integration of such agents directly into the ADAJ fabric and utilizing them for functions like load
observation and balancing. We will devote to this possibility later parts of this paper. Here let us look
into possibility of direct integration of the ADAJ and the AiG projects.

Observe that both projects represent different “levels of abstraction.” The ADAJ project is focused
on a relatively low-level (object-centered) design, implementation and execution of applications, and
(object-level-based) load balancing of individual nodes (computers) that belong to its infrastructure.
The AiG project, on the other hand, is concerned with providing high-level infrastructure that will
allow users to interact with the Grid infrastructure and contract their resources or job execution.
Obviously, a resource contracted through the AiG infrastructure could be ADAJ -based. Similarly, a
user-job submitted to the AiG could be later executed by the ADAJ -running collection of computers.
Therefore, it should be easy to envision a situation in which the AiG is an agent-based infrastructure,
which manages high-level functionalities (the Brain), while the ADAJ is (one of possible) Grid-like
infrastructure(s) (the Brawn). The text in parenthesis was deliberately put there to show a direct link
between the general vision advocated here and content of the seminal paper entitled “Brain Meets
Brawn: Why Grid and Agents Need Each Other” ([20]).

What needs to be done to achieve integration at this level is to create an agent-based interface.
Such agent, on the one hand, has to be capable of receiving messages from other AiG agents (e.g. the
LMaster). On the on the hand, it has to be able to “communicate” with the ADAJ infrastructure,
e.g. to dynamically deploy a job, or to pass it in the right form to the right entity to be deployed
and executed. On the “way back,” it has to be able to receive the results from the ADAJ and pass
it (wrapped in an ACL message) to the LMaster. An initial solution of this type has been outlined
in [28].

5

Note also, that this approach allows the AiG to be integrated not only with the ADAJ infrastruc-
ture. Obviously, an LAgent can “represent” a single resource (computer), but it can also be a front-end
to other Grid middleware(s). In this way the AiG infrastructure may be able to facilitate high-level
Grid interoperability, where the responsibility for interacting with independent Grind middlewares will
be left to the “gateway agents” representing them (in our case Worker agents).

5 Utilizing software agents within the ADAJ—overview

Let us now discuss how we can utilize software agents within the ADAJ infrastructure. Let us recall
that one of key functionalities of the original ADAJ system was to facilitate load monitoring and
balancing and this is what we decided to utilize software agents for. Proposal presented here is
somewhat similar to the one put forward by B. diMartino and collaborators in [10]. In their MAGDA
system, stationary agents controlled workload, while a mobile agent was responsible for load balancing.
One of the important problems with that approach is its heavy reliance on agent mobility, which can
be costly. As a matter of fact, one of the reasons for the AiG system conceptualized as described in
section 3 was to overcome some limitations of the MAGDA system. Therefore, we propose a different
approach to introduction of software agents (at this stage, primarily, as load managers) into the ADAJ
system:

• each node (computer) has a Local Agent instantiated

• each Local Agent utilizes mechanisms developed within the initial ADAJ project (see above) to
monitor activities within the local JVM

• Local Agents in specific time intervals communicate their local workloads to the Central Manager
(specifically, post them to the blackboard under its control); this process is similar to bidding in
an auction (see also [35])

• the Central Manager in specific time intervals calculates average load and sends this information
as an ACL INFORM message to all Local Agents

• overloaded Local Agents negotiate with underloaded ones transfer of some of their load to them

Let us make a few additional comments. Process described above is completely asynchronous. Local
Agents post their load information at certain time intervals, however this is a low priority task that
should not interfere with their other work. While the Central Manager updates the average load at
specific time intervals, this process does not depend on having all information updated by all Local
Agents. Instead, it uses information that is currently available within the blackboard. We also assume
that the Central Manager may be sending information about change of the average workload only if
the change is larger then a certain value (e.g. 5%). This assumption is made to reduce the overall
number of messages sent in the system. Finally, note also that it is possible that instead of a push-
based informing about average workload (the Central Manager sends information to Local Agents) it
is possible to utilize a pull-based approach in which (Local Agents check the average workload when
they see a need for this; e.g. when their local workload changes). Finding the most efficient approach
for exchanging information about local and average workloads requires further research, including
experimental work, similar to that reported in [35].

6 Load balancing

Let us now look into more details of processes involved in utilizing software agents in load balancing
within the ADAJ infrastructure. Since the services that the ADAJ 2 will be operating on (recall that
ADAJ 2 will be fully SOA) consist of objects, we can apply the similar level of granularity of observed
processes as in the original ADAJ and consider an “object” as a basic entity to be operated on. Taking
this into account, in the process of load balancing we can distinguish three basic tasks:

• detecting imbalance

• determining objects to move and the target node for the migration

6

• migrating selected objects

In the following sections we will specify in some detail how software agents can help in completing
these tasks.

6.1 Load monitoring and detecting imbalance

The original ADAJ infrastructure incorporated a highly centralized model of observing the load of
each machine and detecting the overload or underload of its nodes. Even though the information
about the local load of each JVM was generated by a local Observer module running on every node,
the whole list of objects in the JVM was transferred (through the JavaParty infrastructure) to the
global Observer module for load analysis. This implies that the global Observer module needed to
posses updated information not only about local workload, but also about all objects residing on all
the machines in the ADAJ infrastructure. This solution, though satisfactory for small to medium-sized
Grids (especially thanks to the highly efficient implementation of the JavaParty), was likely to cause
serious scalability issues for larger systems.

The centralization of knowledge and decision making processes, as well as the amount of commu-
nication required for updating the global Observer module about every change in the object structure
of the local JVM resulted in the solution outlined above. Note that, while it is possible to utilize only
an approximate value of average load balancing, to be able to decide which objects are to be moved
current information about object localization is absolutely necessary.

In the proposed approach, we will still utilize local Observer modules designed and implemented
in the original ADAJ, but instead of transferring data generated by them to a central location to be
analyzed, we will leave decisions to the Local Agents. Obviously, being over (or under) loaded depends
on the state of all other nodes, while the average load value varies over time. Therefore, we have
decided to introduce a Central Manager, that collects (within a blackboard) information about load
of individual nodes. It should be noted that, even though we are introducing a global entity storing
information about all the nodes (the Central Manager), this entity differs greatly from the global
Observer module from the original ADAJ—it receives only information about the load level, not about
specific objects generating this load. Furthermore, as indicated above, it periodically uses data stored
within the blackboard and prepares information about the estimated average load. This information
is sufficient for all nodes to establish if their workload is high enough to be claimed to be in a state
of overload, or low enough to be considered underloaded. Regardless of a specific solution used (push
or pull-based approach), after a Local Agent obtains/receives the current average load estimate it can
compare its own load to this value and make a decision on whether it needs to act (try to off-load some
of its work), or if its load can be considered “balanced.” Note that a specific value of the difference
between the average load and the local load that will initiate an action of the node remains to be
established experimentally. Observe also that in the current design of the system only agents that are
overloaded will be acting trying to reduce their loads (will be active), while underloaded nodes will
be passively awaiting load increasing proposals. It is however conceivable that both sides could be
actively seeking ways of balancing their load. We will consider this latter solution in the future.

6.2 Determining which objects to move and where

When the Local Agent determines that the node it represents is overloaded and thus decides to move
some of its objects to a different one, it needs to find a machine that will accept a specific part of the
load. In the original ADAJ this functionality was performed by the global Load module. Based on the
fact that dynamic adaptability of workflows is one of the few areas of successful utilization of software
agents in real-life applications (see, [13, 31, 11]), we have decided that this is precisely where software
agents can help in increasing scalability and efficiency of the platform. Specifically, in both cases
reported in literature software agents were associated with entities placed in a dynamic environment
with a goal of managing local workload through utilization of negotiations. In the case of Daimler
Chrysler ([13, 31]) agents representing multi-purpose machines in an assembly plant negotiated the
flow of parts that were to be produced. In the transport case ([11]), agents representing trucks, load
and drivers dynamically negotiated flow of goods. In both cases a performance gain of about 10-20%
over static scheduling was reported.

7

We have, therefore, envisioned a model in which load balancing decisions in the system are made in
the course of a multi-agent negotiation (see, also [33, 30]). In this solution the overloaded agent sends a
Call For Proposal (CFP) message to other agents in the system, specifying objects it would like to “give
away.” Here we plan to use the FIPA Contract Net Protocol ([1]) for the negotiation process. However,
negotiations may need to be modified to be able to iteratively negotiate with selected partners (which
is not included in the original Contract Net, where only a single round of negotiations is expected).
Selection of specific objects that the Local Agent would like to send to another node should be a result
of (multi-criterial) analysis of: (a) object-dependencies, i.e. local and global objects, (b) cost of moving
objects (or groups of objects), (c) economical constraints, etc. Agents receiving the CFP will utilize
(multi-criterial) analysis to establish if accepting these objects “makes sense to them.”

Note that we assume here that agents in the system are “benevolent.” In other words, we assume
that underloaded agents are “very interested” in receiving objects from overloaded agents. Obviously,
this assumption reduces (if not completely eliminates) the impact of the economic considerations within
the ADAJ. However, we would like to claim that this assumption is a reasonable one. Note that the
ADAJ is a very tightly coupled system and can be considered an example of a “desktop Grid,” where
all resources belong to a single owner. In this case the assumption about benevolence of agents working
together to maximize the throughput is a reasonable one. At the same time, integration of the ADAJ
with the AiG will represent the moment in which the economic model will come to play with full force.
Here, the agent representing the ADAJ -based infrastructure will try to negotiate the best conditions
for selling resources it represents.

When considering the scalability of the proposed approach we need to address the overhead related
to sending a CFP to all Local Agents within the ADAJ infrastructure. Let us assume that in the push
model information about current average workload has been send to all (n) Local Agents in the ADAJ
infrastructure. Next, k of them have determined that they are overloaded. As a result k∗(n−1) CFPs
are send. Obviously at least (k− 1) ∗ (k− 1) of these messages are sent completely uselessly (to agents
that are overloaded to start with; while, currently, we do not allow for object swapping as a method
for performance optimization). To avoid this situation, we propose a solution in which the Manager
Agent, apart from calculating the estimated average load, also holds a list of underloaded nodes. This
can be achieved in a very easy way as each node has a “placeholder” within the blackboard and thus
the Manager Agent can immediately establish which nodes are underloaded. Therefore, when a Local
Agent representing an overloaded machine needs to find a receiver for some of its objects, it can query
the Manager Agent for a narrowed-down list containing only these agents that can be expected to be
interested in receiving more work.

Once the agent determines (as a result of negotiations), which objects are to be sent and to which
node, the object migration process can commence.

6.3 Object migration

In the original ADAJ platform the task of object migration and tracking their location was handled
by the JavaParty framework. However, due to reasons described above, we have decided to change
this layer of the application. Thus, a need arose to develop or facilitate a solution for for transferring
objects and for tracing movement of objects (to update all necessary references once an object moves).
We have considered using agents in both of these challenges, but regarding the migration process itself
we have found the following disadvantages of such approach:

• To be compliant with FIPA standards ([2]) and taking into account capabilities of existing agent
platforms, objects would have to be transfered within ACL messages (only the Voyager agent
platform introduced in the late 90’th and currently extinct had capabilities for transferring objects
directly between agents; [34]), which would limit the scope of possible serialization methods and
generate an overhead related to serialization and deserialization.

• The solution would require to be developed from scratch within the JADE ([4]) agent platform
(as we are not aware of any off-the-shelf middleware frameworks taking care of such functionality)

We have therefore decided, that the task of moving an object from one machine to another can be
more easily implemented using a standard approach, especially given that we have experience in this
field gained when developing the original ADAJ.

8

Apart from the migration itself, it is also necessary to be able to trace movement of objects, as
local objects depend on such capability of the system. This functionality, on the other hand, necessi-
tates capability of notifying nodes holding dependent objects about migration of their dependencies.
Considering this task we have come up with a simple protocol of communication between the nodes
engaged in the migration process. This protocol will ensure that the migrating object is not used while
it is in a transition state and that the information about its new location is delivered promptly and
reliably.

Figure 3: sequence Diagram

In the diagram we can see 3 nodes (A,B,C):

• Node A holds some objects that depend on the object O that is being transferred

• Node B is overloaded and starts the transfer of object O to node C

• Node C is underloaded and is ready to receive object O

As is shown on the diagram, the protocol specifies the interaction as follows:

• Node B sends a message to Node A telling it about the start of the transfer of object O

• Upon receiving the notification, Node A locks all remote references to object O, to prevent calling
O’s methods during the transferring process

• When O has been locked, Node A sends a confirmation message to B, to tell it that it is now safe
to transfer the object

• Object O is transferred to Node C

• Node C sends a confirmation message to node B, to tell that transformation has been completed

• Node B sends a notification to Node A, telling it that the object reached its destination and
providing it with the object’s new location

• Node A modifies its tracing data with the new location of object A and releases locks on references
of object O’s

Again, we have considered the agent-based approach to this problem. The requirement for each
node is to have an entity listening to notifications from other nodes and then registering the movement
of the dependent objects. We have decided that this is a good place to utilize capabilities of existing
software agent platforms (JADE in our case), due to the following reasons:

9

• JADE agents take the burden of inter-platform communication off the developer—JADE provides
a uniform model of sending and receiving messages.

• JADE agents run in a separate thread, hence can be easily used as listeners to messages from
the outside of the platform without interfering with the task execution

• JADE agents have built-in queuing of messages, thus enabling better scalability of the solution.

It should be noted, however, that using agents in such a scenario makes it necessary to implement
an interface of integration between the non-agent (ADAJ) middleware infrastructure, used by the
ADAJ services for remote method invocation and the listener agents. The possible implementation of
such interaction depends mostly on the selection of the agent execution scenario.

• If the agent is to be run separately of the ADAJ infrastructure, then the only way for them
to interact would be by some means of inter-process communication (such as pipes or shared
memory). This would, of course, mean that the infrastructure would need either to constantly
monitor the shared memory or check it for notifications on every remote method invocation. This
solution, while separating the infrastructure from the inter-host communication method is likely
to be burdened with a serious inter-process communication overhead.

• The agent can run in the same process as the ADAJ infrastructure. If this is the case, the agent
could simply pass the reference to an appropriate module taking care of the object tracking and
interact by calling the module’s methods directly.

Not determining the final implementation approach (which will be determined experimentally),
we can still state that the proposed solution to migration and movement notification lets us clearly
separate the infrastructure responsible for object migration, tracking and remote invocation from the
agent layer that takes care of providing interested parties with the information about when and to
where specific objects are to be transferred.

7 Concluding remarks

In this paper we have considered how software agents can be introduced into the ADAJ middleware.
Our observations and experiences based on the Agents in Grids project allowed us to specify two levels
of agent-ADAJ integration. The high level that can be used without any direct interference within the
ADAJ and a low level that infuses software agents into ADAJ. We have also outlined how the latter
proposal can be actually realized. We are currently investigating which infrastructure can be used to
provide flexible and efficient object migration that will also be easily integrable with appropriate parts
of the ADAJ and JADE agents. We will report on our progress in subsequent publications.

Acknowledgement

Collaboration of the Polish and Bulgarian teams is partially supported by the Parallel and Distributed
Computing Practices grant. Collaboration of Polish and French teams is partially supported by the
PICS grant New Methods for Balancing Loads and Scheduling Jobs in the Grid and Dedicated Systems.

References

[1] Fipa contract net protocol specification. http://www.fipa.org/specs/fipa00029/SC00029H.

html.

[2] The foundation of intelligent physical agent (fipa). http://fipa.org/.

[3] Remote method invocation home. http://java.sun.com/javase/technologies/core/basic/

rmi/index.jsp.

[4] Jade—java agent development framework. TILab, 2008. http://jade.tilab.com/.

10

[5] Javaparty software. University of Karlsruhe, 2008. http://svn.ipd.uni-karlsruhe.de/trac/

javaparty/.

[6] Sun utility computing. Sun Microsystems, 2008. http://www.sun.com/service/sungrid/index.
jsp.

[7] Iyad Alshabani. A Framework for Distributed and Parallel Software Components. PhD thesis,
University of Lille, Lille, France, December 2006.

[8] Iyad Alshabani, Richard Olejnik, and Bernard Toursel. Parallel tools for a distibuted components
framework. In International Conference On Information and Communication Technologies: From
Theory To Applications, Damascuc, Syria, April 2004.

[9] Iyad Alshabani, Richard Olejnik, Bernard Toursel, Marek Tudruj, and Eryk Laskowski. A frame-
work for desktop grid applications: Ccadaj. In ISPDC, pages 208–214, 2006.

[10] Rocco Aversa, Beniamino Di Martino, Nicola Mazzocca, and Salvatore Venticinque. Magda: A
mobile agent based grid architecture. Journal of Grid Computing, 4(4):395–412, 2006.

[11] M. Becker, G. Singh, B.-L. Wenning, and C. Gorg. On mobile agents for autonomous logistics:
An analysis of mobile agents considering the fan out and sundry strategies. International Journal
of Services Operations and Informatics, (1), 2007.

[12] Amer Bouchi, Richard Olejnik, and Bernard Toursel. An observation mechanism of distributed
objects in Java. In PDP, pages 117–122, 2002.

[13] S. Bussmann and K. Schild. An agent-based approach to the control of flexible productionsys-
tems. In Proceedings 8th IEEE International Conference on Emerging Technologies and Factory
Automation, volume 2, pages 481–488, 2001.

[14] Radovan Cervenka and Ivan Trencansky. Agent Modeling Language (AML): A Comprehensive
Approach to Modeling MAS. Whitestein Series in Software Agent Technologies and Autonomic
Computing. A Birkhauser book, 2007.

[15] Markus Dahm. Byte code engineering. In Java-Informations-Tage, pages 267–277, 1999.

[16] Mateusz Dominiak, Maria Ganzha, Maciej Gawinecki, Wojtek Kuranowski, Marcin Paprzycki,
Svetozar Margenov, and Ivan Lirkov. Utilizing agent teams in grid resource brokering. Interna-
tional Transactions on Systems Science and Applications, 3(4):296–306, 2008.

[17] Mateusz Dominiak, Maria Ganzha, and Marcin Paprzycki. Selecting grid-agent-team to execute
user-job—initial solution. In Proceedings of the Conference on Complex, Intelligent and Software
Intensive Systems, pages 249–256, Los Alamitos, CA, 2007. IEEE CS Press.

[18] Mateusz Dominiak, Wojciech Kuranowski, Maciej Gawinecki, Maria Ganzha, and Marcin Paprzy-
cki. In Proceedings of the International Multiconference on Computer Science and Information
Technology, pages 327–335. PTI Press, 2006.

[19] Mateusz Dominiak, Wojciech Kuranowski, Maciej Gawinecki, Maria Ganzha, and Marcin Pa-
przycki. Utilizing agent teams in grid resource management—preliminary considerations. In
Proceedings of the IEEE J. V. Atanasoff Conference, pages 46–51, Los Alamitos, CA, 2006. IEEE
CS Press.

[20] Ian Foster, Nicholas R. Jennings, and Carl Kesselman. Brain meets brawn: Why grid and agents
need each other. In AAMAS ’04: Proceedings of the Third International Joint Conference on
Autonomous Agents and Multiagent Systems, pages 8–15, Washington, DC, USA, 2004. IEEE
Computer Society.

[21] Maria Ganzha, Marcin Paprzycki, and Ivan Lirkov. Trust management in an agent-based grid re-
source brokering system—preliminary considerations. Applications of Mathematics in Engineering
and Economics’33, pages 35–46, 2007. M. Todorov (ed.), American Institute of Physics, College
Park, MD.

11

[22] Wojciech Kuranowski, Maria Ganzha, Maciej Gawinecki, Marcin Paprzycki, Ivan Lirkov, and
Svetozar Margenov. Forming and managing agent teams acting as resource brokers in the grid—
preliminary considerations. International Journal of Computational Intelligence Research, 4(1):9–
16, 2008.

[23] Wojciech Kuranowski, Maria Ganzha, Marcin Paprzycki, and Ivan Lirkov. Supervising agent
team an agent-based grid resource brokering system—initial solution. In F. Xhafa and L. Barolli,
editors, Proceedings of the Conference on Complex, Intelligent and Software Intensive Systems,
pages 321–326, Los Alamitos, CA, 2008. IEEE CS Press.

[24] Wojciech Kuranowski, Marcin Paprzycki, Maria Ganzha, Maciej Gawinecki, Ivan Lirkov, and
Svetozar Margenov. Agents as resource brokers in grids—forming agent teams. In Proceedings of
the LSSC Meeting, LNCS. Springer, 2007.

[25] Richard Olejnik, Amer Bouchi, and Bernard Toursel. A Java object observation policy for load
balancing. In PDPTA, pages 816–821, 2002.

[26] Richard Olejnik, Amer Bouchi, and Bernard Toursel. An object observation for a Java adaptative
distributed application platform. In PARELEC, pages 171–176, 2002.

[27] Richard Olejnik, Valerie Fiolet, Iyad Alshabani, and Bernard Toursel. Desktop grid platform for
data mining applications. In International Symposium on Parallel and Distributed Computing,
ISPDC-06, Timisoara, Romania, 2006.

[28] Richard Olejnik, Bernard Toursel, Maria Ganzha, and Marcin Paprzycki. Combining software
agents and grid middleware. In C. Cerin and K.-C. Li, editors, Proceeding of the GPC 2007
Conference, number 4459 in LNCS, pages 678–685, Berlin, 2007. Springer.

[29] M. Phillippsen and M. Zenger. Javaparty—transparent remote objects in java. In ACM 1997
Workshop on Java for Science and Engineering Computation, Las Vegas, USA, 1997.

[30] C. Preist, N.R. Jennings, and C. Bartolini. A software framework for automated negotiation. In
Proceedings of SELMAS’2004, pages 213–235. LNCS 3390, Springer Verlag, 2005.

[31] R. Schoop, R. Neubert, and B. Suessmann. Flexible manufacturing control with plc, cnc and soft-
ware agents. In Proceedings. 5th International Symposium on Autonomous Decentralized Systems,
pages 365 – 371, 2001.

[32] David Trastour, Claudio Bartolini, and Chris Preist. Semantic web support for the business-to-
business e-commerce lifecycle. In WWW ’02: Proceedings of the 11th international conference on
World Wide Web, pages 89–98, New York, NY, USA, 2002. ACM Press.

[33] M.T. Tu, F. Griffel, M. Merz, and W. Lamersdorf. A plug-in architecture providing dynamic
negotiation capabilities for mobile agents. In Kurt Rothermel and Fritz Hohl, editors, Proceedings
MA’98: Mobile Agents, volume 1477 of LNCS, pages 222–236. Springer-Verlag, 1999.

[34] F.-J. Wang, C.-Z. Liao, J.-W Huang, and S.-H. Chen. The seventh ieee workshop on future trends
of distributed computing systems. chapter An Agent Platform and Related Issues, page 219. 1999.

[35] Katarzyna Wasilewska, Maciej Gawinecki, Marcin Paprzycki, Maria Ganzha, and Pawe l Kobzdej.
Optimizing blackboard implementation of agent-conducted auctions. IADIS International Journal
on WWW/INTERNET, 2008. (to appear).

12

