
Developing intelligent bots for the Diplomacy game

Sylwia Polberg
Warsaw University of Technology

Email: sylwia.polberg@gmail.com

Marcin Paprzycki, Maria Ganzha
Polish Academy of Sciences

Email: firstname.lastname@ibspan.waw.pl

Abstract—This paper describes the design of an architecture
of a bot capable of playing the Diplomacy game, to be used
within the dip framework—a testbed for multi-agent negotiations.
The proposed SillyNegoBot, is an extension of the SillyBot. It is
designed to be used in the level-1 negotiations (as defined within
the dip framework) taking place during the Diplomacy game.

I. INTRODUCTION; THE DIPLOMACY GAME

THE DIPLOMACY board game was created in 1954 by

Allan B. Callhamer. The game takes players back to Eu-

rope from the beginning of the 20th century. The aim of each

player is to eliminate opponents and gain control over the con-

tinent, by any means necessary. To gain more influence, play-

ers can negotiate, create alliances, lie, break alliances and/or

promises, etc. Outcome of the game depends only on players’

decisions and behavior (there is no element of chance). More

information about the game can be found in the Wikipedia

[1], the Diplomacy Archive [2], and the rule book [3].

Since the game depends only on strategy and negotiations

it became of interest to AI researchers. There were many

projects that tried to create a successful bot for the Diplomacy

game. References to most of them are available on the DAIDE

project website [4]. Unfortunately, most of them are currently

halted, or already dead [5]. This is often not only because the

topic is hard, but also because it requires knowledge outside

of computer science. Moreover, in many cases source codes of

bots were not made available, and hence the total contribution

to the state of knowledge was relatively small. Currently,

the most active project is pursued in the Spanish Artificial

Intelligence Research Institute (IIIA). This project aims not

only at developing the dip framework (an environment, in

which agents will be able to compete against each other and

humans), but also to develop negotiating bots (however, these

are not available yet).

The aim of this contribution is to summarize the rationale

behind and describe the architecture of the SillyNegoBot,

which is to be capable of level-1 negotiations (within the dip

framework). The SillyNegoBot is an extension of the dip 0-

level Diplomacy playing SillyBot (see, [6]).

A. Rules of the Diplomacy game

Let us start by briefly describing the rules of the Diplomacy

game (for further details, see the rule book [3]). In order to

explain how the game proceeds, we need to first introduce

some basic notions. In the standard game there are 7 powers

(players) — Austria, England, France, Germany, Italy, Russia

and Turkey. The map of Europe is divided into 56 land and

Fig. 1. Sample initial map from the dipgame [7].

19 sea provinces. Each province is further split into a certain

number of coastal, sea and land regions. Among provinces,

34 are marked as Supply Centers. Controlling them allows a

player to expand his army. Homes are supply centers that each

player receives at the very start of the game. Every power has

3 of them, apart from Russia—in exchange for the longest

battle front it controls 4 home provinces. Winning condition

of the game is the control of at least 17 supply centers.

There exist two types of units: fleets and armies. Armies

travel through the land, while fleets travel through seas and

coasts. A unit of given type can only be built in a home

province that contains a region that allows its movement

(e.g. fleets can be only build in coastal regions). Only one

unit can occupy a province at a time. All units are equally

strong—during a “fight” only their number matters—more

units supporting each-other beats less units supporting each-

other, and results in capturing a given province.

B. Orders

During each phase of the game (see, below), an order has

to be issued for each unit. Depending on the specific phase,

an order can be either of the ones presented on Figure 2.

Both, in the case of a movement and attacking, unit with

bigger support “wins” and moves to the desired region (cap-

tures it). When the support size is equal, units do not move.

Interestingly, most of known diplomacy bots do not implement

the convoy order. Note that the game-server executes orders

Proceedings of the Federated Conference on

Computer Science and Information Systems pp. 589–596

ISBN 978-83-60810-22-4

978-83-60810-22-4/$25.00 c© 2011 IEEE 589

Order Abbr. Description

Hold HLD unit stays where it is

Move MTO units moves to an ad-

jacent (free) region, or

attacks it

Support
SUP

(supporting

holding unit)

for unit A to support a

stationary unit B, they

have to be neighbors

SUPMTO

(supporting

moving unit)

if unit B is moving, for

A to support it, A has to

reside next to B’s desti-

nation

Convoy CVY fleet order used to move

an army from one coast

to another

Retreat RTO move a unit that needs to

be evacuated (escape) to

a (free) adjacent region

Dislodge

(disband)

DSB used if a Retreat is not

possible (dislodges the

unit from the board)

Build BLD build a unit; if there

are more resource cen-

ters than units, and the

home province is free

Waive WVE sent if it is impossible,

or undesired, to build a

unit

Remove REM if there are more units

than source centers

player chooses unit to

remove

Fig. 2. List of Diplomacy orders.

“simultaneously.” In other words, time of their arrival is of no

importance to their results.

1) Game play: Game proceeds in turns (representing

years). Each turn is separated into five phases that differ in

purpose and possible orders; in summary:

• Spring

The first movement season. Orders MTO, HLD, SUP and

CVY can be issued. During this phase, one usually moves

units to areas (s)he wants to annex soon, or build up

defenses against incoming enemies.

• Spring retreats

Only RTO and DSB orders can be issued. If during the

Spring phase a units is attacked and loses the fight (i.e.

the attacker had greater support), this unit has to move

out of the region. If there are no such regions, the RTO

order has to be issued. Otherwise, given army or fleet is

automatically dislodged from the board.

• Fall

Season very similar to the Spring. The only difference

is that after it ends, “newly” occupied supply centers are

being annexed and become usable in the Winter phase.

• Fall retreats

Exactly as Spring retreats.

• Winter

At the end of the year players can expand their army

(or fleet). In order to issue a BLD order, three conditions

have to be met:

– Province one wants to build a unit in, has to be an

unoccupied home.

– Province has to contain a region compliant with the

type of unit to be build.

– Amount of controlled supply centers has to be greater

than the number of owned units.

Usually one can build at most 3 units during one Winter—

reason is obvious, there are only 3 homes (4 for Russia).

Should a player have more units than supply centers,

(s)he has to remove some of them in order to restore the

balance (the REM order is issued for specific units). When

no removal is needed or no builds are possible/desired,

the WVE order is issued.

II. THE dip FRAMEWORK

In 2009, A. Fabregues and C. Sierra created the dip frame-

work [8], which allows one to create Diplomacy playing bots

and test their abilities against other bots (and humans). All

libraries needed to write dip-bots can be found within the dip

website [7]. The dip framework uses the dip language [8].

Currently, out of its 10 levels, we are interested in level-0

(Order Issuing), and level-1 (Negotiations). In Figure 3 we

summarize how the latter is structured. Interestingly, the dip

language not only differs from the earlier DAIDE language,

but there is no 1-to-1 relation between them. This difference

does not affect the game rules—only the level 0 communi-

cation is defined in the rulebook [3], while negotiations are

independent and are not defined in the original board game.

During negotiations, agents make proposals to other agents,

£1 ::=propose(α, β, deal)|accept(α, β, deal)|reject(α, β, deal)|

withdraw(α, β)

deal ::= Commit(α, β, ϕ)+|Agree(β, ϕ)

ϕ ::=predicate|Do(α, action)|ϕ ∧ ϕ|¬ϕ

β ::=α
+

α ::=agent

Fig. 3. dip level-1 language.

and accept or reject ones they receive. In order to end a

negotiation (message exchange) with a given power, an agent

sends a withdraw message (similar to a “bye” after a finished

chat). Note that this ends only a specific negotiation, (other

negotiations between these agents may ensue later). Agents

can “talk” about agreeing on truthfulness of some facts—such

as keeping a peace, or committing to do something. By an

action we understand the 0-level orders.

590 PROCEEDINGS OF THE FEDCSIS. SZCZECIN, 2011

Note that the predicates used at the level-1 are typically

limited to the following offers (and thus define the scope of

our work):

• PCE(power+)—peace between a group of powers

• ALY(power+, power+)—alliance between a group of

powers against some other group of powers.

III. SILLYBOT AGENT

Let us now briefly describe the SillyBot (a predecessor

to the SillyNegoBot), which is capable of playing using the

level 0 language. Out of many designs we have tested, this

one proved to be the most successful one. For further details

please refer to [6].

A. Bot design

Key elements of the design of the SillyBot were (see, also

Figure 4:

• Phase Graders—responsible for placing Requests.

• Board Analyzer—consisting of Board Assistant, Union

Manager and Threat Assistant.

• Request System—mechanism evaluating Requests.

• Heuristic—responsible for picking a Request solution,

prioritizing Requests, and Request filtering.

Fig. 4. Structure of the SillyBot agent.

To make the description more understandable, let us start from

the Request, which is a simple entity that means “I want

someone to :an order: in a given province.” Each level 0 order

has a respective Request. For example, let us assume that there

is a province worthy annexing; we will want to issue an MTO

order (for a specific unit). Therefore, we will place a MTO

Request for that area. Moreover, each Request has to contain

a list of possible units that can perform the desired order within

a given province. When the SillyBot prepares actual orders to

be issued, the Graders generate Requests, which are collected

and sent to the Request Meeter (it is an element of the system

responsible for satisfying Requests).

To handle the Request evaluation, an algorithm based on a

tree structure has been developed. Here, the root of the tree

is empty. We take first Request and expand the root—each

node represents an actual sequence of orders satisfying the

Request. There can be many ways to fulfill a Request, hence

multiple nodes. For example, if we want to occupy Paris and

have armies in Burgundy and Gascony, our root will have

two children—one containing MTO(X,BURAMY,PARAMY),

and the other MTO(X,GASAMY,PARAMY). Order sequences

with more than just a single order can occur only in the case

of a SUP or SUPMTO Requests. This should be obvious, as

we can need help of more than just one unit. Created nodes are

later filtered for collisions—we will not want to have an order

issued for a unit that was earlier assigned a different order.

Another filter is to establish whether satisfying the Request

with orders in the node will later give us the chance to find a

node fulfilling the next Request. This basically means that if

among a group of nodes some leave at least one option for the

next Request, we will not bother with the rest and apply the

heuristic only to them. To each remaining node layer, another

heuristic is applied that attempts to pick the best node. Its focal

point is how “shared” node is—e.g. how many other Requests

the unit we have picked can satisfy. With already sorted and

grouped Requests, we aim to fulfill as many as we can. Here,

result matters most, the fact who will go where is of secondary

importance. In the final stage of the algorithm, data from all

chosen nodes is merged into a single order list and returned to

the Graders. There are several Graders—one for the building

phase, one for retreating phase and three for the movement

phase. This is due to the fact that during the start, middle

and end of the game we may want to apply different Request

placing, as priorities can change.

Results of initial tests have been reported in [6]. They were

promising enough to proceed with further developments.

IV. THE SILLYNEGOBOT

The SillyNegoBot consists of 9 agents (for the reason be-

hind its structure, see below). It is built on top of the SillyBot,

to handle the level 1 dip language. Specifically, the framework

agent (further referred to as, the Mother) extends the SillyBot

and uses its functionalities to handle the level 0 functions

(recall that the language levels are inclusive—every higher

level contains previous ones). It adds functions and classes

necessary from the point of view of framework, in order to

handle the technical side of negotiation messages. Moreover

it contains means of communicating with the remaining 8

SYLWIA POLBERG, MARCIN PAPRZYCKI, MARIA GANZHA: DEVELOPING INTELLIGENT BOTS FOR THE DIPLOMACY GAME 591

agents. Logically, the SillyNegoBot consists of the Emotional

System and Rational System. Although they share multiple

functionalities, they are kept separated in order to be turned on

and off for testing (e.g. to represent the emotion—rationality

conflict). The rationale for including emotions in the design

of the SillyNegoBot has been discussed in detail in [5].

For the design and implementation of the SillyNegoBot,

we have decided to use an already existing knowledge driven

model—JADEX, that is based on the BDI approach [9]. As

discussed in [5], we have decided to create a bot consisting

of eight separate (sub)agents: the Mother, six Ambassadors,

and an Arbitrator. In the current version we have extended

the system by the MotherMessenger agent, responsible for

transferring all level 1 reasoning to JADEX. This encapsulates

the negotiation-oriented reasoning (thus allowing to change

the negotiation “brain” without touching the remaining parts

of the system). After discussing the purpose behind all agents

we will describe the communication between them and the

complete architecture of the SillyNegoBot (for more details,

see, also [5]).

A. Agents

1) Mother: The Mother agent (a slightly modified SillyBot)

has two main tasks—the game (dip) server communication,

and specification of dip level 0 orders. Furthermore, it initial-

izes the platform for other agents and launches the Mother-

Messenger. Finally, it controls passing messages between the

MotherMessenger and the server.

2) MotherMessenger: This agent, upon receiving appropri-

ate message from the Mother, launches all other agents. It

is responsible for distributing messages, e.g. Ambassador of

Germany might not be interested in messages meant for the

Ambassador of Italy. At the end of the game it is responsible

for platform shutdown.

3) Ambassadors: The six Ambassadors are the main “think-

ing” part of the system. Note that, using a single agent to

handle all “reasoning,” would result in a single, very large,

belief base, while requiring only a part of it for each decision.

Moreover, one would have to keep track of six communi-

cation “channels” at the same time (recall that there are six

opposing powers). This would complicate the implementation,

and could lead to decreased efficiency. Therefore, we decided

to use six Ambassadors (JADEX agents; one per opponent).

The Ambassadors, facilitate level 1 messaging, and reasoning

based on their exchange (Negotiations). Note that, due to this

separation, we have created a layer of negotiations internal to

the bot; e.g. one Ambassador may need a piece of knowledge

owned by another Ambassador. To handle such situation, and

to deal with conflicting recommendations originating from

independently working Ambassadors, we have created the

Arbitrator agent.

4) Arbitrator: The six Ambassadors will sometimes require

acceptation of a goal or an action. For example, when all

(or at least some) Ambassadors decide to attack powers they

are assigned to, a decision has to be made, which attack

should materialize (while others are dropped or postponed).

To deal with this problem we introduced another agent—

an Arbitrator—responsible for mediating conflicting recom-

mendations obtained from the Ambassadors. Obviously, this

task could have been placed within the Mother agent (or the

MotherMessenger), but this would result in putting too many

unrelated functions within a single agent. Therefore, we have

followed a “single agent per major functionality” paradigm of

agent system design.

B. Architecture of the SillyNegoBot

Here. we start from key elements that are independent of

the JADEX platform. Next, we describe how we use the BDI

model. For further details concerning the reasoning behind

each element, please refer to [5].

1) Messages: Messages passed between agents will be en-

capsulated using FIPA standards. Their mapping is presented

in Figure 5. In the current version of the bot we have simplified

some messages and used the functionality taken away from

them to create new ones. Internal messages in the system can

be of the following types:

• START (START((POWER, AGENT), (POWER,

AGENT),...))– sent by the MotherMessenger to all

Ambassadors (as the first message). It and defines the

power that the given Ambassador is responsible for.

The Ambassador agent is supposed to extract its own

assignment and remember the powers of others in order

to make the internal communication easier.

• INFO (INFO(ORDER), INFO(MESSAGE)...)—

exchanged between all agents in the bot to inform

about data, e.g. the MotherMessenger agent passes an

incoming message to the Ambassador. It can also be the

case that an Ambassador sends to the Mother (through

MotherMessenger) information as to who is allied with

whom (level 0 requires such data for proper threat

estimation).

• PASS (PASS(MESSAGE))—used to ask the MotherMes-

senger and the Mother agents to pass messages from

the Ambassador to the given power. Note that a direct

communication is impossible without writing our own

server.

• FETCH (FETCH(POWER), FETCH(ORDER),

FETCH(PREDICATE),...—asks given agent to provide

specific information (beliefs, emotions and so on)

concerning a given opponent, relations between powers,

given order or belief, feeling, etc.

• ARB ID (ARB ID(AGENT))—contains the identifier of the

Arbitrator agent.

• BOARD (BOARD(GAME))—message sent from the

Mother to the MotherMessenger. State of the board is

read and transformed into OWN predicates, which are

later passed to the Ambassadors. If it is received for

the first time, Power information is read and used to

launch other agents in the platform. It requires no FIPA

encapsulation, as it sent through a socket.

• END—end of the game, shut the platform down.

592 PROCEEDINGS OF THE FEDCSIS. SZCZECIN, 2011

• NEXTPHASE (NEXTPHASE(TIMELINE))—message

marking a new phase in the game.

Internal message FIPA encapsulation

START INFORM

INFO INFORM

PASS INFORM

FETCH REQUEST

ARB ID INFORM

END INFORM

NEXTPHASE INFORM

Fig. 5. FIPA encapsulation of internal messages.

Fig. 6. Message flow diagram.

We drop the internal parsing in the following messages:

• SOLVE (SOLVE(MESSAGES))—sent by the Ambassador

to the Arbitrator, in order to receive acceptance of moves.

In response the Arbitrator sends out a CFP message,

which should be answered with PROPOSE messages that

Ambassadors want to send to their respective powers. In

other words—an initial message for conflict resolution.

• ACCEPT PROPOSAL, REJECT PROPOSAL—to be used

as an answer for the PROPOSE message.

2) Emotions: Emotions impact the probability of other

powers actions—how will they react to negotiations (offers

and counter-offers), whom will they help, and who not. Simple

analysis of “what action benefits one most” is not enough

in the case of a game like Diplomacy, and often fails to

lead to the optimal strategy (in particular, in case of bots

playing against humans). Typical primary emotions include

fear, sadness, anger and happiness [10]. There is quite a

number of models allowing introducing emotions into a system

like ours, some more complex than others. When it comes to

computers, HUMAINE Emotion Annotation and Representa-

tion Language EARL is worth mentioning [11]. However, it

distinguishes a total of 48 emotions, out of which some are

of no interest to us. Moreover attempting at using it would

move the project to a completely new complexity level, and

change the focus too far into the human emotions. The level 5

dip language provides us with the following emotions: Very

Happy, Happy, Sad and Angry, which is partially related to

the theoretical models (e.g. the James model, the Weiner and

Graham, and the main categories of the Parrot model [10]).

However, fear is not included in our set—basically because it

is a weakness when felt by our bot, and a fact impossible to

verify when felt by other players (see, also [5]).
From basic emotions we create two aggregated values, Like,

and Emotional Trust. The first one represents the general

outcome and how we feel about the opponent, while the latter

represents the comfort in/confidence towards someone.
Emotion facts are stored as triples Power—Feeling—

Reason, where Power represents who “felt,” Feeling can be:

Very Happy, Happy, Sad and Angry, while Reason is a list

of Expressions that caused given emotion to arise—basically

it is the left hand side of rules that are responsible for

creating this fact and perhaps increasing its probability. For

example “Germany is happy with Italy offering peace” will be

represented as GERMANY—HAPPY—PROPOSE(ITA, GER,

COMMIT(ITA, GER, PCE(ITA,GER))). Basic emotions used

in the dip framework are extended by two new numerical

variables—Liking and Emotional Trust—that represent how

“in general” we feel about our opponent.
3) Personality: Players differ—some cheat and lie, some

don’t. Some forgive and forget, while others hold grudges till

the end of the game (and sometimes, beyond). They can like

some actions more than others. This all calls for creating a

structure that will represent such characteristics of a bot, its

“personality.” In our approach we express personalities in a

.pers file that is loaded into a belief set. Note that they impact

almost every process in the bot—from creating conclusions,

relationships, to decision making. Personality contains also

additional information—how emotionally we react to some

actions, whether some we despise more than others. Therefore,

we can model how Like and Emotional Trust are decreased

or increased, based on events in the game. Here, we present

sample characteristics:

• Boolean canLie.

• List 〈int〉 initialLike—initial value of like for opponents.

• List 〈int〉 likeWeight—here, we can define how much

SYLWIA POLBERG, MARCIN PAPRZYCKI, MARIA GANZHA: DEVELOPING INTELLIGENT BOTS FOR THE DIPLOMACY GAME 593

weight is put to different types of actions or emotions;

this is useful for expressing a person that “only looks at

good sides,” that gains “liking” fast when made Happy,

but loses it slowly when made Sad or Angry, etc. Same

applies to changes of opinion about a player that attacks

him or supports him.

• int likeLimit—value of liking below which we stop ne-

gotiation (“I hate you, I’m not talking to you”).

All entries are in a form Class—Name—Values. One line is

one such triple, with elements separated with the — character.

Thanks to this we can easily use Java Reflection to parse the

file and load all the necessary data. Here is a fagment of the

.pers file:

• Boolean—canLie—0

• Vector 〈Integer〉—initialLike—50 50 50 50 50 50

• int—memlevels—5

• Vector 〈Integer〉—memvals—10 9 7 6 4

4) Reasoner: Our bot is capable of creating conclusions

from facts thanks to a rule based reasoner. Based on the rules

defined in an external .rf file, our agents can create new facts.

Rules are in a form {Expression+} → {Expression+}|p,

where the Expression is a helper class containing either an

order, a message, a predicate, or a function. p stands for initial

probability that the drawn conclusion is correct. Some rules

might have 100% probability. In other cases, we treat them

as some initial data that can undergo many changes during

computations. Here we can see the predicates connected to

the level-0 language, and where do they come from:

• ATK(unit owner, region owner)—attack—when a desti-

nation of MTO(unit, region) is occupied by opponent’s

unit, or it is a supply center controlled by an opponent.

• DEF(power init, power aim)—aim power defended from

init power (symmetric to ATK).

• PTAH(unit owner, power,x)—in position to attack/help in

x rounds—currently distance x is set to not bigger than 2,

can be generated by MTO, HLD, RTO and BLD orders.

This value was found empirically as being not too far for

conclusion to be insignificant, and not too close to trigger

the reasoning too late.

• HLP(unit owner, help receiver)—if an opponent issued

a support order towards rival’s unit, we can say it

was helping it. Generated by SUP(unit, HLD(unit)) and

SUP(unit,MTO(unit,region)).

• DSTR(power,power)—a power destroyed opponent’s

unit—generated directly by forced DSB(unit), or indi-

rectly by REM(unit) by taking away resources.

• STR(power,power)— one power is stronger than the

other—comes from calculating resources and units.

• OWN(power, region)—power owns given region—

created from the current board state.

• NONE(power, power)—nothing occurred between two

powers.

For level 1 following predicates were introduced:

• WAR(Power, Power)—given powers are at war—can be

generated for several reasons, e.g. attack, helping the

attacker, being allied with the attacker.

• ALY(Power, Power+)—given powers are allied/at

peace—can be caused by received messages, observed

help or affiliation.

• LIKE(Power, Power)—needs to be used with the EVAL

function, stands for Like.

• ETRUST(Power, Power)—needs to be used with the

EVAL function, stands for Emotional Trust.

• TRUST(Power, Power)—needs to be used with the EVAL

function, stands for Trust.

• REP(Power)—needs to be used with the EVAL function,

stands for Reputation.

• EREP(Power)—needs to be used with the EVAL func-

tion, stands for Emotional Reputation.

• HAPPY(Power, Power, expression), VHAPPY(Power,

Power, expression), ANGRY(Power, Power, expression),

SAD(Power, Power, expression)—used to express how

given power felt about opponents action/sent message/etc.

We also have the five functions used for the Time line related

analysis:

• FUT(expression)—reasoning about future.

• PAST(expression)—reasoning about past.

• INC(expression)—increase value by a modifier defined in

the .pers file.

• DEC(expression)—decrease value by a modifier defined

in the .pers file.

• EVAL(expression)—used for emotion evaluation, it

fetches the numerical value of given emotion.

As stated above, beliefs contain a variable Time line and

can be grouped by it. To switch between such groups we

use the FUT and PAST functions. We use such to express

opinions like “Opponents units are close to me, he might

attack me in the next round”. A simple example of when can

that be useful—“German units are getting close to the Italian

units, and hence Germany might attack Italy”, represented

as PTAH(GER, ITA, 2) → FUT (ATK(GER, ITA))|30
(value 30% is just a sample probability).

The INC and DEC functions are used to deal with numerical

variables such as Trust, Reputation, their emotional equiva-

lents, and Liking. They provide a signal that a value should

be decreased or increased, e.g. “Germany attacked Italy hence

Italy likes Germany less” expressed as: ATK(GER, ITA) →
DEC(LIKE(ITA,GER))|100. The quantity by which we

should increase or decrease the value is defined in the Per-

sonality of the bot and can be further affected by the current

situation; e.g. if we are close to losing, we might care less or

care more about specific situations surrounding us.

The general structure of the Reasoner is depicted in Fig-

ure 7. As it can be easily seen, the .rf file is first analyzed

by a Rule Reader, based on a tree parser (thanks to it we can

handle any level of nesting). The Rules are then passed to the

Rule Manager that handles firing, matching and substitution.

Whenever the belief base is extended, we fire the rules,

generate all possible facts and add them to the belief base.

594 PROCEEDINGS OF THE FEDCSIS. SZCZECIN, 2011

Algorithm IV.1: REASONER(newbelief)

FireRules(newbelief);
PerformMatching();
List < Expression > out = Substitution();
if out! = null

then GenerateNewBeliefs(out);

Fig. 7. Structure of the Reasoner.

Rule matching is performed as follows: we read all variables

in the rule premises, and all variables in the beliefs sequence,

and we check them for application. If we managed to assign

them in a one-to-one manner, such that the order is preserved,

it means that we can draw conclusions. Variables in the created

expressions, such as Power x, are substituted by real values

(e.g. France, Russia), and finished elements can be added into

the belief base. Thanks to the Java Reflection, we can easily

extend predicate, function, etc., without any further need of

modifying the mechanism. For an example illustrating how

the reasoner works, please refer to [5].

Here is an extract from the .rf file:

• MTOOrder(Power x, Region unit, Region dest) +

OWN(Power y, Region dest) = ATK(Power x, Power y)

— 100

• ATK(Power x, Power y) = WAR(Power x, Power y) —

100

• DSTR(Power x, Power y) = WAR(Power x, Power y) —

100

• WAR(Power x, Power z) + ALY(Power y, Power x) =

WAR(Power y, Power x) — 60

Please note that here “+” and “=” do not stand for arithmetic

operations. They are simply used to express “and” and impli-

cation. It is just a personal choice of symbols.

5) Making a decision: The Ambassador and the Arbitrator

choose which recommendations to follow and which should

be (at least temporarily) abandoned, in the following way:

• Compute all consequences—this basically means that us-

ing the reasoner we estimate the effects of our decisions,

e.g. taking into account consequences for the owned land,

feelings of our opponents, possible opponent actions, etc.

• Compute likelihood of given outcome—is evaluated on

the basis of probabilities of specific beliefs that form it.

• Filtering—we remove decisions that would lead us to

something we cannot, or do not want to, do, e.g. betrayal

(breaking a promise, or attacking an ally without prior

warning)

• Evaluate the benefits of decisions—whether we get some

land, if yes, how good it is; do we make enemies, if yes,

how bad it is; do we do something we like and approve,

if yes, how much; and so on. Very important is the fact

whether our decision gets us any closer to our goals.

The outcome of the algorithm is an assignment of a numerical

value to a decision. This allows us to rank possibilities and as a

result the highest ranked one is the winner. However, we send

to the Arbitrator three best results, just in the case it rejects a

choice we established to be the best (from our perspective).
The decision cycle of the Arbitrator is very similar when

it comes to computing consequences and judging them. How-

ever, its main aim is to agree to the most beneficial combina-

tion of Ambassadors’ proposals. In this way, we can say that

while Ambassador think locally, the Arbitrator thinks globally.
6) Embedding it all into BDI: All knowledge our bot has—

Personality, power assignments, facts etc., is held in the belief

base. It consists of four main belief sets, all represented as

JADEX Tuples:

• Assignment Belief Set—stored as pairs Agent—Power

• Setup Belief Set—holds personality elements and techni-

cal information for the bot

• Emotion Fact Belief Set—holds triples Time line—

Emotional Fact—Memory time. Time line is the time

given belief was generated, Memory time is the number

of rounds it should be stored. The Emotional fact is an

emotional predicate (possibly combined with functional)

such as DEC(LIKE(GER, ITA)). It is accompanied by the

reason for generation.

• Rational Fact Belief Set—as above, for rational facts.

• Relationship Belief Set—stores powers and their relation-

ships with each other: Trust, Reputation, Emotional Rep-

utation, Like. Note that it was separated from other belief

sets, in order to reduce the complexity of computation—

we are going to use them often, and it is handy to save

them separately, rather than having to repeatedly search

through the belief set.

In our bot, we make an extensive use of triggers and

goals. The first category is the events caused by an incoming

message—they are used to launch the FIPA Arbitrator/ Am-

bassador message plans (JADEX plans that are meant to react

to messages). Next, content is read and an appropriate event

dispatched. It fires the internal message plan that performs

the desired action—what interests us most at this point, is

the INFO received from the MotherMessenger, and what is

happening in the Arbitrator during the decision agreement.

Other messages mainly operate on the belief base—add,

remove, fetch, etc. Manipulating beliefs can fire the reasoner

plan (JADEX plan that launches the reasoner and adds created

beliefs to the belief base) that is meant to draw all possible

conclusions from the provided data. Message sending is fired

with a send event, dispatched from any plan. The schema

of message exchange between the MotherMessenger and the

Arbitrator is represented in Figure 8.
After receiving a negotiation message passed by the Mother

and the Mother Messenger, we can finally start thinking and

planning. As mentioned before, we evaluate the consequences.

In the meantime it might happen that one of the JADEX agents

will demand additional information or some confirmation

from another agent. We “pause” the fire plans, mentioned

above, and wait for an answer (for the time defined in the

Setup Belief Set). After deciding what to do, we hold 3 best

possible choices and call the Arbitrator for an approval, as

SYLWIA POLBERG, MARCIN PAPRZYCKI, MARIA GANZHA: DEVELOPING INTELLIGENT BOTS FOR THE DIPLOMACY GAME 595

Fig. 8. Recceiving messages diagram.

depicted in Figure 9. The received answer is then passed to

the MotherMessenger agent.

Fig. 9. Arbitrator cycle.

However, with the current plans and events, we have a

problem—the first act of negotiation from the Ambassadors

side can start only as an effect of a received message. It means

that we need a plan that is “always running in the background,”

and performing part of the computations mentioned above to

check whether we need some interaction with opponents. If

such a need is established, we create an appropriate goal and
fire the grading plan that will choose what should be done.

This is the default behavior. Of course, it can happen that the

previous step will precisely know what is required and pass

such data to the Ambassador. For technical issues, such as

how precisely the triggers work, see [9].

V. CONCLUDING REMARKS AND PRELIMINARY TESTS

In this paper we have described the background of the

Diplomacy game and the architecture of the bot that is

to play it using Negotiations. After correcting some minor

implementation errors, the bot will be tested against humans,

and the IIIA—CSIC bot. One of the important directions of

experimental testing of the proposed design will be use of

different personality setups. Most interesting should be the

tests with different emotional – rational ratios, e.g. 0:100,

50:50, 100:0. Finally, we expect to use the experimental data

to tune up the bot’s heuristic and in this way complete the

work with dip level-1.

Initial tests with the 50:50 ratio included 10 games with 3

human players (3, 3 and 4 games), in proportion 1 SillyNe-

goBot, 6 DumbBots and 1 human. Such choice was made to

analyze the behavior of the SillyNegoBot. We used DumbBots

to have clear view at the SillyNegoBot—human negotiations.

Out of the conducted games, 3 ended prematurely due to

technical errors, out of the remaining 7, our bot won 4. Results

gave us more information on what needs to be corrected both

from the implementation and the behavior side. However, the

overall conclusion is that the current version of the SillyNe-

goBot is too trustful and too nice towards other players.

ACKNOWLEDGMENT

We would like to thank A. Fabregues and C. Sierra for

support with the framework and the bot, and the COST Action

IC0801 for funding the STSM visit that made creation of the

architecture design possible.

REFERENCES

[1] Wikipedia, the free encyclopedia. http://en.wikipedia.org/wiki/
Diplomacy (game).

[2] Diplomacy Archive http://www.diplom.org/∼diparch/god.htm
[3] Calhamer, Allan B. The Rules of Diplomacy 4th Edition. s.l. : Avalon

Hill Game Co., 2000.
[4] Diplomacy AI Centre. http://www.daide.org.uk/l.
[5] Sylwia Polberg, SillyNegoBot Architecture, to appear in: M. Essaaidi,

M. Ganzha, M. Paprzycki (eds.), Software Agents, Agent Systems and
Applications, IOS Press, 2011

[6] Sylwia Polberg, Shupantha Kazi Imam, Developing Bots for the Diplo-
macy Game, submitted for publication.

[7] Fabregues, Angela and Sierra, Carles. Dipgame. www.dipgame.org.
[8] Fabregues, Angela and Sierra, Carles. Testbed for Multiagent Systems.

http://www.iiia.csic.es/files/pdfs/DiplomacyTestBed.pdf.
[9] Braubach, Lars, et al. JADEX - BDI Agent System. http://jadex-agents.

informatik.uni-hamburg.de/xwiki/bin/view/About/Overview.
[10] Emotions

http://changingminds.org/explanations/emotions/primary secondary.htm
http://changingminds.org/explanations/emotions/basic\%20emotions.
htm

[11] EARL http://emotion-research.net/projects/humaine/earl

596 PROCEEDINGS OF THE FEDCSIS. SZCZECIN, 2011

