A Parallel Algorithm for Solving the Complex Symmetric
FKigenproblem on the Cray J-9x

[lan Bar-On* Marcin Paprzycki®

Abstract

We consider the parallel performance of the recently proposed algorithm for the
solution of the complex symmetric eigenproblem (5], on the Cray J-9x series of parallel
shared memory vector computers. It is observed that implicit multitasking (based on

the parallel BLAS kernels) does not lead to satisfactory performance and is similar to the
parallel performance of the LAPACK routines for solving the complex Hermitian and
complex general eigenproblems. We conclude that, although these algorithms are rich

in matrix and vector operations, we have to apply more specific coarse grain techniques
to achieve higher performance.

1 Problem Specification

A new generation of algorithms for studying chemical reaction modeling [15], [14] lead to
the solution of a complex symmetric eigenproblem, i.e.

(1) AV =VA, VIV =1, A= Diag\1---\n).

T'his problem is computationally expensive as the matrices are large (of order 7000 and
more) and dense. In this paper we consider the direct solution of (1) by means of the new
algorithm presented in [5]. The algorithm may be summarized as follows:

e Reduce A to a tridiagonal complex symmetric matrix 7', i.e.
(2) Q'AQ=T, Q'Q=1I.

e Compute the spectral decomposition of T, i.e.

(3) TW =WA, WIW =1, A= Diag(\1---An).

e Compute the original eigenvectors of A by backtransformation, i.e. V = QW.

In earlier work we have studied the sequential performance of this algorithm [3], [4].
The aim of this note is to discuss the initial results of our attempts at code parallelization.
In Section 2 we shortly summarize the sequential performance of the new code and that of
the related complex eigensolvers. Section 3 presents the results of our experiments on the

Cray J-9x shared memory vector computers. Finally, Section 4 proposes the directions for
future research.

Dept. of Math and Comp. Sci., The University of Texas of the Permian Basin
1

2

2 Sequential performance

The complex Hermitian eigenvalue problem is one of the best known and most studied
problems in numerical linear algebra. The related complex symmetric eigenvalue problem,
on the other hand, has not received much attention till very recently. For example,
Wilkinson in his comprehensive work on The Algebraic Eigenvalue Problem [16], comments
only that:

COROLLARY 2.1. An arbitrary square complex matric A = (ai;) is similar to a
symmetric maolrix.
Proof. See Gantmacher [10][page 13].

Thus, he concludes, there is no reason to consider complex symmetric matrices
separately. However, in many practical applications [2], [15], [14], one is often interested
in diagonalizing very large dense complex symmetric matrices. The general eigensolvers
routines that are currently used in computational practice are very time consuming (even on
the fastest supercomputers). In an attempt to solve this problem, a new efficient algorithm
that takes advantages of the symmetricity of the matrix has been developed [5]. The
algorithm is similar to the real symmetric eigensolver with one significant difference. In
the case of a breakdown in the reduction stage (2) additional recovery transformations
have been introduced. Since in computational practice these additional transformations
occur only rarely, the total complexity of the new algorithm remains similar to that for the
complex Hermitian eigensolver. The new algorithm is therefore substantially faster than
the general eigensolver.

In Table 1 we present the performance of the new algorithm on a single processor
Cray J-916, and compare it to the performance of the standard methods, for matrices
of order n = 2200. The first row represents separately the reduction (Reduce) stage of
the algorithm (2), the computation of the eigenvalues (Eig), and eigenvectors(Vec) of the
tridiagonal matrix (3), and the final calculation of the eigenvectors (Recover) of the original
matrix. We report the running times (in seconds) as well as the Mflop rates (in parentheses)
of each stage. In the second row we have combined the running times for computing the
eigenvalues and the calculation of the eigenvectors. Finally, the last two rows present the
speedup of the new algorithm over the LAPACK routines, CGEEVX (the general solver)
and CHPEVX (the Hermitian solver).

TABLE 1
Complex Symmetric Figensolver.

n=2200 Reduce | Kig Vec Recover
| New || 324(177) | 163(14) || 154(14) | 489(172) |
Total | 487 | 1130
General || ~6.0 ~6.3
| Hermitian | ~0.6 ~1.5

Observe that the code reaches ~ 175 Mflops, about ~ 91% of the practical peak
performance of the machine [13]|, on the most time consuming stages of the algorithm.
However, due to the low performance of the middle stages, the overall performance is
somewhat unsatisfactory. We note here, that this behavior may be traced to our use
of old scalar codes by Cullum and Willoughby [7], CMTQL1 for the calculation of the
eigenvalues, and INVERMI1 for the calculation of the corresponding eigenvectors (the only

3

codes currently available, see (3|, [4] for more details). Nonetheless, the speedup with
respect to the general eigensolver is quite impressive (~ 6). Compared to the Hermitian
solver, the algorithm performs similarly in the Reduce stage, and the low speedup (~ 0.6)
when computing the eigenvalues is caused by the inefficiency of the Eig stage. However,
surprisingly, the new algorithm outperforms the Hermitian solver by ~ 1.5 times when
computing the complete eigensystem. This fact can be attributed to the implementation
details of the Recover stage.

3 Parallel Performance

In our initial attempt at parallelization we have decided to use the automatic multitasking
facility available on the Cray’s FORTRAN compiling system. This decision was based
on two assumptions. First, the new code has been implemented in such a way that all
computationally intensive stages are performed by the BLAS routines [12], [9], [8]. Second,
we wanted to compare the parallel performance of the new code with the corresponding
LAPACK [1] routines and the parallelization of most of the LAPACK routies is based on
the parallelism in the optimized BLAS kernels [6], [11].

The experimental data for the parallel performance was collected on three Cray J-9x
machines; a 5 and a 16 processor computers in the Computation Center University of
Texas in Austin and a 16 processor machine at the Supercomputing center in Ben Gurion
University, Israel. Neither of the machines has been used in a benchmarking mode and their
load has varied from very light, to relatively heavy. To establish the run-times reported
here multiple runs of each experiments have been performed and a combination of timef,
second and mttimes utilities has been used. Obviously, the results reported for the larger
number of processors do not represent the best possible performance, but they are reliable
enough to establish the general picture of the performance of the codes.

In the first series of experiments we have investigated the parallel performance
of finding the eigenvalues only. The results for the matrix of size n = 2200 are
summarized in Table 2 and presented in Figure 1.The first series of experiments with the
Hermitian solver CHPEVX (HermPac) and the new code (New) indicated no parallelization.
We have therefore experimented also with the unpacked Hermitian eigensolver routine
CHEEVX(HermUnp). Finally, the results of experiments with the general solver CGEEVX
are reported (General).

TABLE 2

Eigenvalue Calculation

n=2200 [General | HermPac | HerUnp l New
| 1procs. || 2730 | 303 || 302 | 487 |
16 procs || 1387 | 303 | 96 | 487 |
Speedup | 1.968 1 314 | 1
| Efficiency _ 12% | 6% _' 19% | 6% |

We observe some speedup for the general solver, and for the unpacked version of the
Hermitian solver. The packed Hermitian solver, as well as the new code do not parallelize
at all. The reason for this is that both codes use the packed storage representation of
the data and thus call the packed storage based BLAS kernels. These kernels have not
been parallelized by the Cray [11]. Note however, that the cost of using the unpacked
version is relatively high, e.g. as the matrices can easily reach the size 7000 x 7000 the

4

unpacked memory scheme costs ~ 200M Bytes of additional memory (assuming 8-byte
double precision real numbers). Still, the results indicate that there exist at least two
possible approaches for the parallelization of the new code. First, it is possible to use
the unpacked storage representation and apply the parallelized BLAS kernels. Second, it
is also possible to develop optimized parallel versions of the appropriate packed storage
BLAS kernels. This latter approach could also benefit the packed storage version of the
Hermitian solver.

In the second series of experiments we consider the parallel performance of these
routines when computing the complete eigensystem. Table 3 presents these results for the
general solver, the packed (HermPac) and unpacked (HermUnp) versions of the Hermitian
solver and two results for the new code. The first result represents the performance of
the whole algorithm (New), the second the performance of just the backtransformation
stage(NewBack). As previously the speedup and efficiency are reported.

TABLE 3

Figenvector Calculation

n=2200 | General || HermPac HermUnp | New || NewBack
1 procs. 1 6724 1533 | 1531 || 1143 { 495 |
| 16 procs || 3406 1313 1079 [769 | 104
Speedup 1.97 1.16 1.41 1.48 4.76
Efficiency || 12% 7% 9% 9% 30%

As expected, when the complete eigensystem is calculated the general solver behaves
quite similarly to the case when only the eigenvalues were sought. The results presented
in Tables 2 and 3 and in Figure 1 show clearly that the general solver can successfully
utilize only 2 processors and any further increase in the processor number does not lead to
performance increases of either of its stages.

The unpacked Hermitian solver only slightly outperforms the packed version and both
these solvers are much slower than the new code. This result indicates not only that
the single processor performance of the backtransformation stage of the Hermitian solver
is rather inefficient (see Table 1 above), but also that its parallel performance leaves a
lot to be desired. As for the new code, parallel speedup is obtained only in the last,
pbacktransformation stage. Here the performance is surprisingly good considering that the
experiments have been executed on a relatively busy machine.

Finally, Figure lpresents the speedups of the eigenvalue calculation and the total
execution are represented for the matrix of order n = 2200 and for 1,2, ..., 16 processors.
The results of the eigenvalue calculation for the packed Hermitian solver and the New code
are omitted as no speedup has been achieved. The results for the bactransformation stage
of the new algorithm are included separately.

The results confirm that there are only two algorithms that lead to speedup. The
unpacked version of the Hermitian eigensolver when only the eigenvalues of the system are
calculated and the backtransformation stage of the new algorithm.

4 Conclusions

We have presented initial results of our attempts at parallelization of the new algorithm
for solving the complex symmetric eigenproblem. Our results confirm that using implicit
multitasking yields very little gain in terms of speedup and that more explicit parallel

5 + | —8— EIGENVALUES General —a— TOTAL General
—8— EIGENVALUES Hermitian (unpacked) —m— TOTAL Hermitian (unpacked)
—»— TOTAL Hermitian (packed) —o— TOTAL New
4.5 + | _o— BACKRANSFORMATION New
4]
n 3.5 -
)
D .
m | ..
0 _ - '-
Dos - 5-——8
2T gy —p—A—4
3% % % % :
12

8 9 10 11
of Processors

F1G. 1. Multiprocessor performance comparison.

techniques should be used. The basic directions of our research are currently as follows:
e experiments with unpacked versions of the new code

o development parallel BLAS kernels for the packed storage representation

e development of the new vector-parallel codes for the complex symmetric tridiagonal
matrices

e experiments on scalar parallel shared memory computers

e introduction of explicit parallelization into the new code

Acknowledgments We thank Prof. Nimrod Moiseyev, from the Chemistry Depart-
ment of the Technion, for the computer time grant.

References

1] E. Anderson et. al., LAPACK Users’ Guide, STAM, 1992.

2] Z. Bai, D. Day, and Q. Ye, ABLE: an adaptive block lanczos method for non-Hermitian
etgenvalues problems, Tech. Rep. 95-04, University of Kentucky, Feb. 1996.

3] 1. Bar-On and M. Paprzycki, An Efficient Algorithm for Finding Eigenvalues of Complex
Symmetric Matrices. submitted for publication, 1996.

[4] 1. Bar-On and M. Paprzycki, High performance solution of a complex symmetric eigenproblem.
submitted for publication, 1996.

5] I. Bar-On and V. Ryaboy, Fast diagonalization of large and dense complex symmetric matrices,

with applications to quantum reaction dynamics, Siam J. Sci. Stat. Comput., (1996). To appear.
6] Cray Research, UNICOS Math and Scientific Library Reference Manual, (1995).

7] J. Cullum and R. Willoughby, Lanczos Algorithms for Large Symmetric Eigenvalues Compu-
tatzons, Birkhauser Boston, 1985.

8] J. J. Dongarra, J. Du Croz, I. Duff and S. Hammarling, A Set of Level 3 Basic Linear Algebra

Subprograms, Technical Report ANL-MCS-TM57, Argonne National Laboratory, (1988)

9] J. J. Dongarra, J. Du Croz, S. Hammarling and R. J. Hanson, An Extended Set of FORTRAN

Basic Linear Algebra Subprograms, ACM Transactions on Mathematical Software, 14 (1988)
10} F. Gantmacher, Applications of the theory of matrices, John Wiley & Sons, 1959.
11] C. Hempel, Silicon Graphics Inc., personal communication.
12| C. L. Lawson, R. J. Hanson, D. R. Kincaid and F. T. Krogh, Basic Linear Algebra Subprograms
for FORTRAN Usage, ACM Transactions on Mathematical Software, 5, (1979)

[13] M. Paprzycki and C. Cyphers, Multiplying matrices on the Cray - Practical considerations,
CHPC Newsletter, (1991).

[14] V.Ryaboy and N.Moiseyev, Cumulative reaction probability from siegert eigenvalues: model
studies, J. Chem. Phys., 98 (1993).

[15] V.Ryaboy and N.Moiseyev, Three dimensional study of predissociation resonances by the
complex scaled discrete variable representation method: HCO/DCO, J. Chem. Phys., 103
(1995).

[16] J. H. Wilkinson, The Algebraic Figenvalue Problem, Oxford University Press, 1965. Reprinted
in Oxford Science Publications, 1988.

