
THE PROBLEM OF AGENT-CLIENT COMMUNICATION ON THE INTERNET

MACIEJ GAWINECKI ¶, MINOR GORDON †‡ , PAWEL KACZMAREK ¶, AND MARCIN PAPRZYCKI ‡§

Abstract.

In order for software agent technology to come to full fruition, it must be integrated in a realistic way with existing
production technologies. In this paper we address one of the interesting problems of real-world agent integration: the
interaction between agents and non-agents. The proposed solution is designed to provide non-agents (client software
in particular) access to agent services, without restricting the capabilities of agents providing them.

1. Introduction. The future success of online content providers will depend on their ability to
filter the mass of information available on the Web into the form that is truly useful to the individual
user [26, 23, 44, 25, 2, 64]. Before filtering services can be automated and scaled, however, the World
Wide Web must first be transformed to a machine-interpretable content base. One of the attempts
at achieving this goal is the Semantic Web [53, 54, 55], which promises to allow computing processes
to filter, separate and synthesize elements of information [14]. The major thrusts of the Semantic
Web effort are the development of languages to describe content ([48, 13, 42, 62, 63]) and of software
capable of interpreting this content.

Software agents are one of the key components in this latter category [54, 55]. Research in
this area has long emphasized the potential of agents for intelligently interpreting semantic content,
personalizing this content for the user, and acting autonomously and collaboratively to deliver it.
Agents representing users are in a position to intelligently filter information from the Web in order to
satisfy a user’s request by consulting dynamic and static sources of semantically-described content as
well as other intelligent agents. A large body of literature has developed around this role of software
agents (see for example [27] and references quoted there).

As a framework for conceptualizing intelligent computing processes such as those required for
working with the Semantic Web, software agents are close to ideal. As a specific technology for
working with the Semantic Web data, however, agents are far from ready to assume the roles
ascribed to them. Though the theoretical concepts that define the software agent paradigm have
been thoroughly researched (and remain a focus of current research efforts: see [34, 15] as well
as recent proceedings from multiple agent-focused conferences), technological advances to support
agent-based models have usually not accompanied this research [37]. Many proponents and even
standards bodies (in particular FIPA: [22]) have described detailed scenarios in which agents play
critical roles, yet very few of these designs have progressed beyond the initial stage of development.
Although the absence of supporting technology has certainly been one of the reasons for this gap
between agent theory and practice, we believe that the lack of realistic implementations of flexible
agent-based applications has also resulted in part from the attitudes of agent researchers. Most
designers have either been too “realistic” and implemented systems that can hardly be called agent-
based, or have made so many assumptions about the future of agent technology (i.e. practically every
computer connected to the Internet is capable of receiving agents [22]) that their designs will almost
certainly be outmoded before that state of technology exists and are impossible to implement beyond
some initial working model employing currently existing software. Serious efforts toward finding an
intermediate solution have only recently gained strength, and many of the conceptual problems
pointed out by critics such as Nwana and Ndumu [37] have begun to be addressed. In addition to
the basic problems of communications management and ontology agreement, Nwana and Ndumu
cited the development of realistic agent-based systems as both the problem and the solution to the
evolution of agent technology. This paper represents our attempt to address that problem.

With this in mind, we must first recognize that developers seeking to apply software agent
technology to a specific application currently have two choices: they can either wait for the ideal
technology to come along and facilitate the implementation process, or make do with existing agent

¶Department of Mathematics and Computer Science, Adam Mickiewicz University, Poznan, Poland
†Computer Science Department, Technical University of Berlin, Berlin, Germany
‡Computer Science Department, Oklahoma State University, Tulsa, OK 74106, USA
§Computer Science, SWPS, Warszawa, Poland

1

2 M. Gawinecki, M. Gordon, P. Kaczmarek, M. Paprzycki

technology, knowing that they will have to work around it as much as work with it. While the
former approach certainly has some currency for those whose goal is to develop industrial-strength
applications and therefore prefer to use well-established technology, we focus on the latter in our
research. By choosing this approach we acknowledge that any application we develop with existing,
rudimentary technology will almost inevitably be outmoded in the future by more elegant solutions.
Our hope is that in the process of developing such an application we may help shape the “ideals” of
software agent technology itself, so that future agent software developers will find it easier to work
in realistic contexts.

The application we are in the process of developing is an agent-based system supporting the
needs of travelers. In this paper we address one of the interesting problems that has materialized
during the implementation phase: the problem of software agents communicating with non-agents,
the latter being the clients of the system. The remaining parts of the paper are organized as follows.
In the next section we briefly describe the system under development and follow with a discussion of
the role and requirements for agents communicating with a heterogeneous, functionally-limited client
base. In the subsequent section we analyze in detail possible approaches to facilitating agent-client
interactions. In the next two sections we introduce and discuss the proposed solution.

2. Internet-based Travel Support Systems—General Considerations. When consider-
ing existing travel support systems such as Expedia, Orbitz, Travelocity, et al., one tends to focus
on the content aspects of the system—the travel services and information these sites provide—and
not the technology that makes them work. The technology is (and should be) transparent. Behind
the scenes these travel support systems are enormously complex, and adding further levels of intel-
ligence / user friendliness will only make them more complicated (for more details of current trends
in development of intelligent travel support systems see [28] and references enclosed there). From
this perspective software agents represent an excellent means of breaking apart complex systems
into components (agents), each with its own “knowledge” and “goals”, thus allowing developers to
better address the complexity of the system [32]. In addition, travel support (browsing, booking,
etc.) is an ideal candidate for agent-based implementation because the services offered by Internet-
based travel support systems are those we associate with another kind of an agent—the human
travel agent. An agent or agents can be designed to directly adapt the role and functions of the
human travel agent by following our conventional intuition of an “agent” as someone/something
who represents us, usually in a particular domain such as travel (real estate, insurance, etc.). In
this sense, a software agent-driven travel support system can work like a real “travel agency”, with
individual “travel agents” in the system serving individual users, just as a human travel agent would
serve an individual in person. We would also like to incorporate other perspectives on software
agents, namely, the conception of agents as autonomous, intelligent entities, which has arisen from
the field of artificial intelligence. It is our belief that in order to imitate the role of a human travel
agent with our agent-based travel support system, we must start with a software agent assuming
the travel agent role and design the other agents to support this “travel agent”. In fact, we call this
central agent the “personal agent,” because it represents the travel support system to the individual
user; there is one personal agent running for every user accessing the system. The other agents
who support the personal agent have been developed as functional components of a distributed,
complex system. These secondary agents support the personal agent in fulfilling the user’s requests:
researching available options, developing travel plans and choices to fit the customer’s preferences,
booking, etc. The personal agent is responsible for interacting with the user and executing various
aspects of her request by directing other agents in the system.

2.1. System Under Development—High Level Overview. Our work on development of
an agent-based travel support system was initiated in 2001 and first described in [23, 43]. This work
led to the conceptualization of a complete framework presented in [2]. The processes involved in
personalization of information delivery (independent of the implementation) were discussed in [25].
Knowledge management in its conceptual and agent-related implementation aspects was considered
in [26, 29, 23, 64]. Our system has been designed to imitate the role of a human travel agent
in serving individual travelers: presenting a wide selection of travel choices, planning itineraries
and representing the customer to airlines, hotels and vehicle rental agencies as well as other, more

The Problem of Agent-Client Communication on the Internet 3

information-oriented services such as displaying the hours of operation of museums and historical
sites or the locations of nearby restaurants. In order to provide these services the system accu-
mulates semantically-demarcated travel-related information collected from the Internet, which is
cross-referenced according to multiple classification schemes (geospatial, ontological, method of ac-
cess, etc.).

Customers connect to our system using Internet-enabled devices—web browsers, PDAs, WAP
phones and others—and request travel-related information. The initial response to a request is pre-
pared from the information stored in the system and filtered to match the user’s personal preferences.
The system also attempts to sell additional services to the user through targeted advertisements [25].
In the process of interacting with the system, customer’s queries may be refined as more specific
choices are presented. All of the details of customer-system interactions are stored in a user behav-
ior database for later data mining [2, 24]. The complete system framework is specified in terms of
software agents, with separate agents performing all of the above-described functions [32].

One of our most important design criteria was to make our travel support system accessible
not only to the general Internet audience (typically accessing services through a desktop-based web
browser) but also to travelers accessing services through mobile devices such as laptops, PDAs and
cell phones. Each of these technologies has a certain set of capabilities and limitations that must be
considered in providing access to the different devices. This is the fundamental problem for software
agents interacting with non-agents (in this case, client devices).

Because travel support is such an ideal scenario for applying agent technology, there have been
a number of agent-related projects in this domain; unfortunately, most of these projects have either
been very limited in scope [36, 57, 58] or have never left the initial development stages (a partial
list of the projects that have never been completed can be found in [43], while others can be easily
located through Internet searching). Unlike most of these projects, our essential goal is not to prove
the elegance of design with software agents, but to demonstrate that agent technology, as it exists
today, can actually be used in a real system. This is demonstrated by the fact that the problem of
agent-non-agent interaction only arises when agent systems are actually implemented, and thus it
has been largely ignored or downplayed by other researchers [22, 37].

3. Clients of the Travel Support System. In order to develop device-independent support
for customer-system communication we have to start from the client side, as it is the diversity of
possible clients that is the source of the agent-client interaction problem. Despite the diversity
of device types the system must support, we can still assume that all interaction between devices
(clients) and the system on the Web will be conducted via the HTTP protocol. Only the content

that is delivered over HTTP that will differ from client to client. We can divide clients into two
broad classes, based on the type of content they expect:

• Non-interactive clients, which include but are not limited to web service clients (using SOAP
[56]), geospatial clients [39, 40], travel industry systems [41] and external agents [1].

• Interactive clients, which include among others conventional web browsers (interpreting
HTML) and browsers on personal devices (interpreting HTML or WML) as well as interac-
tive applications that utilize the services of our system.

In this paper we will focus on browsing clients in the latter class. Though the class of interactive
clients described above also includes applications (Flash-based, Java applet-based, etc.), these are
not the primary client base of the system, and furthermore, we believe that users should not have to
(and may not be allowed to) download any special software in order to interact with our system (more
on this below). More precisely, if a user can and is willing to load a special applet that will allow her
computer to accept mobile agents, then the problems that are of interest to us can be solved in a
different way, or cease to exist completely. Henceforth we will refer to browser-like clients (desktop
and mobile) as simply “clients”. However, the solution proposed here can be naturally and easily
extended to include, among others, scenarios involving software agents entering user devices. Let
us now consider the basic limitations define the possible solution space and the existing capabilities
that we can exploit for our system.

3.1. Client Limitations and Capabilities. Although the HTTP protocol itself is relatively
standard across browsing clients, browsers are often limited in their ability to render content sent

4 M. Gawinecki, M. Gordon, P. Kaczmarek, M. Paprzycki

from a server via HTTP (whether in HTML or WML, and in particular XML). Therefore we cannot
impose many requirements on browsing capabilities when considering an audience as large as travel-
ers on the Internet. This automatically precludes platform-specific, device-specific, browser-specific
or otherwise specialized technologies on the client side such as Flash movies or Java applets, which
are still largely inaccessible to non-desktop-based browsers. Some users may also be unable (person-
ally) or not allowed (administratively) to modify settings or install programs on their computers,
while others may reject anything they consider “foreign”. Furthermore, despite the widespread dis-
tribution of XML parsing technology in web browsers and runtime environments such as Java, we
still cannot consistently rely on the end user’s software to interpret or transform content beyond
the standard markup languages such as HTML or WML. We must consider the client as “dumb” as
possible, so we don’t exclude clients that actually are so restricted.

On the other hand, for a web-based travel site to offer useful content and services it must
still require a minimum subset of client-side interpretative capabilities for interactive access, client
limitations notwithstanding:

• Client devices / software must be able to display some flavor of markup (HTML, WML,
XHTML, etc.)

• Clients must be able to connect one-way to services over the Internet using HTTP.
It has to be stressed that the above-described capabilities represent the required minimum. This

being the case, the system may still be able to adapt to discovered capabilities of the client: for
clients with only minimum interpretative function (e.g. the typical browsers we are focusing on),
the server system is responsible for most of the interaction and interface with the user, while more
sophisticated client applications may simply call upon the system’s functions directly (as is the case
with fully-interactive applications as well as the non-interactive clients specified previously). In this
paper we concentrate on providing a minimum subset of markup (HTML and WML) and protocol
(HTTP) we can assume all browsing clients can handle, and leave the extended capabilities of the
travel support system for the future.

3.2. Client Agnosticism. One of the strengths of the web’s client-server architecture is the
agnosticism of clients with regard to server technology. As long as a web server provides interpretable
content (markup, images, etc.) over HTTP, the web browser need never be aware of how this content
is produced. The same web page may be derived from static files, querying a database or sending a
request message to an agent across the network. The client only sees the end result—a web page.
We will take advantage of this client agnosticism by designing a server system that appears to work
like a normal web server but handles requests much differently on the server side.

4. Communicating Agents of the System. This far we have constructed the following
general picture of our work. We are in the process of developing of an agent based travel support
system in which software agents will have to communicate with customers accessing the system using
devices that we must assume have only very limited capabilities. Let us now consider two basic but
unrealistic possibilities for agent-client communication within this system.

4.1. Agents Accessing the Client Devices. In the last section we arrived at the basic as-
sumption that our agent-based travel support system should be web-based and operate within the
conventional web browser—web server infrastructure. Unfortunately, this assumption contradicts
one of the central ideals of software agent research: agents should be everywhere. The user should
have an agent on her desktop—either sent by the server or already present as the user’s personal
assistant—and this agent should be responsible for interacting with the web, in lieu of the con-
ventional web browser. Despite the fact that this vision is still only an ideal, many agent-related
software projects assume that an agent is/will be present on the user’s system. The reality is that
agent platforms generally require a host environment (“agency”, “platform”, “marketplace”) to sup-
port agent execution on the local system. Furthermore, there are only a few projects that are aimed
at supporting agents entering mobile devices [33]. The presence of such a specialized environment
on a range of client devices is obviously not a realistic assumption.

4.2. Agents Exchanging Messages with Clients. Here we consider a scenario in which a
conventional browsing device (desktop- or device-based) establishes an HTTP client-server connec-

The Problem of Agent-Client Communication on the Internet 5

Fig. 4.1. Client-agent link

tion directly with a software agent, as illustrated in Figure 4.1.

4.2.1. FIPA. After some years of uncertainty and in-fighting between different organizations
and companies, the Foundation for Intelligent Physical Agents (FIPA) [15] has emerged as the de
facto standard bearer for the agent community. FIPA has defined standards and specifications
for inter-agent communication—the Agent Communication Language [16]—as well as guidelines for
agent platforms. These standards are gradually being adopted by the agent community at large, and
have been the basis for several general-purpose agent platforms [30, 7, 8]. One of the more popular
of these—the Java Agent Development Environment (JADE)—has been widely deployed because of
its close conformance to FIPA specifications and the resulting endorsement by large-scale projects
such as the AgentCities network [1], which have a clear interest in platform interoperability. JADE
is our platform of choice for the travel support system.

Unfortunately, FIPA and the developers of FIPA-compliant platforms such as JADE have con-
centrated almost entirely on the development of inter-agent and inter-platform protocols and lan-
guages such as ACL, with only marginal regard for the possibility of non-agents (i.e. clients such
as ours) interacting with FIPA-compliant agents. Even the inter-agent communication mechanisms
based on web standard protocols and formats (e.g. the HTTP Message Transport Protocol [19]
and the XML encoding for ACL [17]) are designed only for transporting ACL messages between
agents. Non-agents, even if they can “speak” HTTP, cannot interpret the contents of ACL messages
sent from agents without special software. The situation is further complicated by the indirection
imposed by the software agent platforms; agents may address each other within the platform via
a FIPA-specified addressing schema, but are shielded from the larger network by the platform en-
vironment. Software agents within the platform cannot be directly addressed via the standard IP,
port scheme, and thus they cannot be reached directly by client devices over HTTP.

4.2.2. Agents as Servers? Without speaking a language clients can interpret (i. e. HTML
or WML) and without being able to directly travel to the desktop or to access the personal device,
the agent is “cut off” from the user. The ideal of clients connecting directly to agents is also a dead
end. Finally, agents (as they exist now) were not designed to be servers. An agent that remained in
a known location and only responded to requests would not really be an agent by any of the existing
definitions, and enforcing these limitations on agent software (existing or specially-designed) would
mitigate many of the reasons for using agent technology in lieu of simple daemons in the first place.

6 M. Gawinecki, M. Gordon, P. Kaczmarek, M. Paprzycki

Fig. 5.1. Agents as middleware; clients reside on the Internet; the remaining tiers reside on the server

In addition, an agent that internally supported the full HTTP protocol as well as any markups the
system is expected to support (HTML, WML, or XML) would be very complex and limited in its
mobility and distribution.

In summary, as we have just argued, neither of the basic scenarios (agents entering the device or
agents acting as servers), can solve the problem of non-agent-agent communication. Rather, we have
to focus on the strengths of agent software, and let other technologies make up for its weaknesses.

5. N-Tier Systems. The conventional n-tier architecture is designed to separate user inter-
faces from business logic and business logic from the resources it employs, so that each tier is
encapsulated and need not be aware of the operations of the others. It is obvious that the n-tier
approach applies to our problem. Conceptually, the agent infrastructure becomes the middleware
[50], allowing other components of the system to handle the problem of communicating with the
user and to interact with back-end resources. A design based on agents acting as middleware is
illustrated in Figure 5.1.

Multi-agent systems are well suited for encoding middle-tier business logic. In such a system
agents should be allowed to “pretend” that they are actually interacting with and representing the
user directly, i.e. on the abstract, conceptual level we want the situation depicted in Figure 4.1
while on the implementation level we will actually have the situation illustrated in Figure 5.1. This
situation is actually fortuitous: a personal agent on the server can take advantage of the server
environment while still being geared toward serving the individual (personalizing and localizing
content derived from the system [2, 25]). There are also additional advantages of agents being
located on the server and acting as one of the layers of the n-tier system:

• Processing power: agents can either reside on large servers or be spread out on to a dis-
tributed system; each has its own advantages and disadvantages, but more importantly,
neither relies on the user’s system or bandwidth.

• Mobility: an agent could be anywhere on the network, as long as it stays in touch with the
server system.

• Access to back-tier resources: databases and other information sources can be directly ac-
cessed by agents or through other agents in closer proximity to the source.

• Uniformity: all agents can be exactly the same as they have been separated from the

The Problem of Agent-Client Communication on the Internet 7

Fig. 5.2. aZIMAS vs. Bluestone

multiplicity of “languages” spoken by clients.

We would like to construct an n-tier architecture that supports the transparent integration of a
general agent platform such as JADE into an otherwise conventional enterprise application, which
can then take advantage of the strengths of agents (both distributive and intelligence aspects) while
retaining the interoperability of existing technologies such as web servers. This relieves the agents of
the problems of communicating with non-agents while still allowing them to be the real intelligence
of the application—in the middle. Fortunately, the n-tier approach offers a great deal of flexibility
in dividing the functions of the different tiers. Some developers choose to make the presentation
layer as “dumb” as possible, even going so far as to have the middle layer output almost-presentable
content for delivery to the user. Others focus on the end user functions, and make the middleware
only a thin layer above the back-end resources on the network (both approaches are illustrated in
Figure 5.2.) Of course these distinctions and the n-tier approach itself largely excludes pure agent-
based designs, which are founded on the assumption that there is no need for intermediaries because
agents will be everywhere.

5.1. Agents on the Front End. One way to integrate agents into an n-tier server architecture
and allow clients to access them over the Internet is to actually embed agents within a web server,
tightly binding the front (presentation) and middle (logic) tiers of the system. This approach was
taken by the aZIMAS system, which uses web server modules (for Apache or IIS) to route messages
with predefined HTTP parameters to agents running in the web server’s process space [3]. This is
very efficient approach to the agent-client communication problem, as it integrates agents tightly
into an existing server structure with a minimum of customization. Unfortunately, embedding agents
in the server required the aZIMAS developers to create an entirely new agent platform to work with
the system. From our perspective this is not a true solution to the problem, as it bypasses the
problem of linking current agent platforms (such as those that comply with the FIPA standard).

5.2. Agents on the Back End. The opposite approach places agents on the back end of an
n-tier system, treating them as service providers, in much the same way that legacy applications are
exposed as web services—by representing their functions through a standard interface, and brokering
requests for and responses from the functions through a middle tier. This was the approach taken by
Hewlett-Packard’s Bluestone middleware system [5, 9], which allows HTTP, SMTP and other client
types to communicate (bidirectionally) with agents through an intermediary (the Universal Listening
Framework) [6]. A service broker (the Universal Business Service) negotiates service requests from
clients with agents and other service providers. After the merger of HP and Compaq, the Bluestone
project was cancelled and agent-related development in the context of application services became
the BlueJADE project, which similarly attempted to integrate JADE agents into an application

8 M. Gawinecki, M. Gordon, P. Kaczmarek, M. Paprzycki

server (JBoss) [4]. One disadvantage of using agents as service providers is that it reduces them to
mere request handlers, operating through a generic interface. This limits much of the usefulness of
agents, as it ties them too closely into the architecture.

6. Agents as Middleware. For the implementation of our travel support system, we employ
a general agent platform (JADE) for serving clients over the Internet, attempting to incorporate
the best aspects of both of the extreme approaches described above, taking advantage of agents’
strengths, and minimizing exposure of their weaknesses.

In designing our system, we started from the vision of clients connecting directly to personal
agents (one client per agent) depicted in Figure 4.1 with the goal of making the layer or layers
between clients and agents as transparent as possible—such that conceptually we end up with
Figure 5.1 while actually implementing Figure 5.2. To this end we insert a limited number of
intermediaries between the client and the personal agent (the HTTP server and the Proxy agent

in Figure 6.1). These intermediaries pass requests and responses between the user’s client software
(linked to the system over the Internet) and the personal that is responsible for serving that user,
transforming the communications to appropriate formats as necessary. Let us now describe in more
detail the processes involved in passing user query from the device to the database and the results
back to the user device.

6.1. Proposed Solution. An intermediary is required to communicate with clients of various
types, in order to shield/abstract the personal agent and the rest of the system from low-level client
protocols (e.g. HTTP, WAP, etc.). In Figure 6.1 we represent only one Proxy agent that is to
handle HTML-based requests and responses, while each additional protocol would be handled by a
separate Proxy agent. We assume that requests from the system are from a specific device arrive in
the form of HTTP POSTs or GETs, which are usually initiated by filling in predefined forms (see
the next Section and Figures 6.2 and 6.3) and pushing a “submit” button. Within the HTTP server
a Proxy agent receives HTTP requests from all devices utilized by users of the system, transforms
them (see below) and forwards as ACL messages to the specific user’s personal agent. The type of
client device (which indicates the necessary transformations) can be detected implicitly (e.g. from
request headers) or explicitly (from URL tokens) and stored in server state.

One should remember that HTTP is a synchronous protocol and agent-based communication
is asynchronous. Thus each response from an agent-based environment needs to be matched with
an appropriate HTTP request. The proxy agent must keep the HTTP connection alive until final
response from the personal agent is returned. Detailed mechanics of servicing a given user-request
is as follows:

1. proxy agent receives a request over HTTP,
2. a new thread is started to process the request; the request is given the unique identification

ID; this ID includes the I/O device type information,
3. the thread forwards the request to the personal agent via an ACL message; from this point

all messages relevant to this request must be accompanied with that ID,
4. the thread suspends,
5. the personal agent processes the request and sends an ACL response through a transforma-

tion infrastructure (e.g. to transform the response into HTML, WML, etc.)
6. the proxy agent notifies the suspended thread that the response is ready, and
7. the resumed thread sends back the response (as an HTTP body) to the user device.

When the proxy agent receives the user’s query request (HTTP POST or GET), it extracts the
content of the query from the CGI query string, transforms the query into an ACL message, and
sends this message to the personal agent. For example, the contents of the message might be:

page?formvar1=val1&formvar2=val2

(see the next Section for a detailed example). The personal agent receives this message and forwards
it to the database (model) agent as well as the interaction logging agent (omitted in Figure 6.1).
The role of this latter agent is to store, for further processing and mining, information about all
interactions between users and the system [2, 25]. Further discussion of this part of the system are
outside of the scope of this paper. The database agent extracts the query from the ACL message

The Problem of Agent-Client Communication on the Internet 9

Fig. 6.1. Client side of the system, information flow details.

and transforms it into the appropriate database query language. In our system this database returns
a set of RDF [48] triples that define travel objects, which are defined with formal ontologies. The
set of RDF triples are serialized and packed into an ACL message and forwarded by the database
agent to the personal agent. The personal agent may elect to further expand/reduce the result
set by directing a set of personalization agents to add/remove triples before the set is “complete”.
The user-ready response set is then returned to the personal agent for the task of transforming the
RDF triples into a form that can be displayed on a user device. The personal agent delegates this
operation to a transformation agent, which in our system is based on the Racoon server [47]. Racoon
uses the RxPath language (analogous to XPath 1.0 in terms of syntax and behavior) and RxSLT
stylesheets (analogous to XSLT) to transform RDF-demarcated data into displayable forms such as
HTML/XML, in a manner similar to that of Apache Cocoon [12]. We have defined a separate set of
RxSLT stylesheets for each type of input device we wish to support. After applying the appropriate
transformations the transformation agents sends the resulting HTML/WML back to the personal
agent, which forwards the displayable content back to the proxy agent for transmission to the user.

6.2. Example scenario. Here a simple example scenario should serve to illustrate the process
depicted above. We assume that a user has successfully logged in to the system and established
interaction with a personal agent. For this scenario the data consists of sets of RDF triples with
elements from a restaurant ontology [11]:

:Poland ZP Swinoujsc ie Albatros Klub Nocny1051910264
a r e s :Re s taurant ;

r e s : t i t l e ”Albatros , Klub Nocny” ;
l o c : s t r e e tAdd r e s s ” u l . Zeromskiego 1” ;
l o c : c i t y ” Swinou j s c i e ” ;
l o c : c oun t r y ”Poland” ;

10 M. Gawinecki, M. Gordon, P. Kaczmarek, M. Paprzycki

Fig. 6.2. Input form for the system

l o c :phone ”+48 (91) 321 18 66” ;
l o c : s t a t e ”ZP” ;
l o c : z i p ”72−600” ;
r e s : a c c e p t s mon:AmericanExpressCard ,

mon:DinersClubCard ,
mon:JCBCard ,
mon:MasterCardEuroCard ,
mon:VisaCard ,
mon:DebitCard ;

The Problem of Agent-Client Communication on the Internet 11

r e s : a l c o h o l r e s :Fu l lBa r ;
r e s : c u i s i n e res :BarPubBreweryCuis ine ;
r e s : h ou r s ”24h” ;
r e s : l o c a t i o nPa th ”Poland/ZP/ Swinou j s c i e ” ;
r e s :pa r s edHours ”0−24|0−24|0−24|0−24|0−24|0−24|0−24” .

In order to query the restaurants in the database the user fills in a form defining criteria of a
restaurant search and clicks the <query> button. An example of the form used in our system is
shown in Figure 6.2.

Here the user is looking for a pub in the city of Swinoujscie. The submitted CGI query string
for this request is as follows
http://www.agentlab.net/restuarant/page?action=getdata&alcohol=

FullBar&cuisine=BarPubBreweryCuisine&city=Swinoujscie

The proxy agent that receives the HTTP requests maps the variables of the CGI query string to
the temporary form [[alcohol{{FullBar[[cuisine{{BarPubBrewery[[city{{Swinoujscie), and
packs this string into an ACL message, which is sent to the database agent via the personal agent
(as described above). The database agent extracts the variables and and composes them into an
RDQL query [49]:

SELECT
? r

WHERE
(? r , <r e s : c u i s i n e> , <res :BarPubBreweryCuis ine>) ,
(? r , <r e s : a l c o h o l> , <r e s :Fu l lBa r>)
(? r , < l o c : c i t y> , ” Sw inou j s c i e ”)

USES
r e s f o r <h t tp : //www. agent lab . net /schemas/ r e s taurant#> ,
l o c f o r <h t tp : //www. agent lab . net /schemas/ l o c a t i o n#> ,
a l c o ho l f o r <h t tp : //www. agent lab . net /schemas/ a l c oho l#>

The query is executed against our RDF database and matching RDF triples are serialized to create
an RDF/XML document:

:Po land ZP Swinoujsc i e Albatros Dyskoteka1051905696
a r e s :Re s taurant ;

l o c : s t r e e tAdd r e s s ” u l . Zeromskiego 1” ;
r e s : a l c o h o l r e s :Fu l lBa r ;
l o c : c i t y ” Swinou j s c i e ” ;
l o c : c oun t r y ”Poland” ;
r e s : c u i s i n e res :BarPubBreweryCuis ine ;
r e s : h ou r s ”24h in summer” ;
r e s : l o c a t i o nPa th ”Poland/ZP/ Swinou j s c i e ” ;
r e s :pa r s edHours ” 0 −24 |0 −24 | | | | |” ;
l o c :phone ”+48 (91) 321 18 66” ;
l o c : s t a t e ”ZP” ;
l o c : z i p ”72−600” ;
r e s : t i t l e ”Albatros , Dyskoteka” .

The process then proceeds as outlined above. The user sees the HTML-rendered query results as a
normal web page (v. Figure 6.3).

The entire chain of interactions between software agents on the server side remains transparent to
the user. The problem of agent-client interaction has been successfully addressed without resorting to
a proprietary agent platform or unrealistic assumptions. Furthermore, the extensive features of the
general-purpose JADE agent platform allow us to exploit other properties of agent systems, such as
the ability to distribute and migrate agents (specifically, the database, transformation, and personal
agents) between multiple agent machines. From a conceptual perspective, the use of software agents
has resulted in a highly modular and encapsulated design, with agents for each of the tasks in the

12 M. Gawinecki, M. Gordon, P. Kaczmarek, M. Paprzycki

Fig. 6.3. Results page

system. Furthermore, we believe that our use of the personal agent is a particularly intuitive means
of representing and coordinating per-user interaction.

7. Concluding remarks. In this paper we have presented a solution to the client-agent com-
munication problem, one of the key challenges in developing realistic agent systems that interact
with user devices on the Internet. The proposed solution is based on inserting proxy agents into
an HTTP server, which act as a gateway between the outside world and the agent system. Thus
far we have completed the implementation for the HTML-based browser used as an I/O device in
the system. In the next step we will add another class of proxy agents to process WML-based
interactions as well as agent to serve Java-enabled mobile devices. We will report on our progress
in subsequent papers.

REFERENCES

[1] Agentcities Network Services, http://www.agentcities.net
[2] R. Angryk, V. Galant, M. Paprzycki, M. Gordon, Travel Support System - an Agent-Based Framework,

Proceedings of the International Conference on Internet Computing IC’2002, CSREA Press, Las Vegas,
NV, 2002, pp. 719-725

The Problem of Agent-Client Communication on the Internet 13

[3] S. Arumugam, A. Helal, A. Nalla, aZIMAS: Web Mobile Agent System,
http://www.harris.cise.ufl.edu/projects/publications/ma02 final.pdf

[4] Bluejade Project, http://sourceforge.net/projects/bluejade
[5] Project Bluestone; Summary,

http://www.bluestone.com/downloads/pdf/06-21-01 Total-e-Server white paper.pdf, 2001
[6] Project Bluestone; Universal Listening Framework,

http://www.hpmiddleware.com/downloads/pdf/02-27-01 ULFWhitePaper.pdf, 2001
[7] P. Buckle, FIPA and FIPA-OS Overview, Invited talk, Joint Holonic Manufacturing Systems and FIPA

Workshop, London, September, 2000,
[8] FIPA-OS, http://fipa-os.sourceforge.net
[9] B. Burg, em Agents in the World of Active Web-services,

http://www.hpl.hp.com/org/stl/maas/docs/HPL-2001-295.pdf, 2001
[10] M. Butler, F. Gianetti, R. Gimson, T. Wiley, Device Independence and the Web, IEEE Internet

Computing, September/October, 2002, pp. 81-86
[11] ChefMoz, http://chefmoz.org/
[12] Cocoon Project, http://cocoon.apache.org/
[13] DAML Ontology Language, http://www.daml.org
[14] D. Fensel, Ontologies: A Silver Bullet for Knowledge Management and Electronic Commerce, Springer-Verlag;

Berlin, 2001
[15] Foundation for Intelligent Physical Agents, http://www.fipa.org
[16] FIPA, FIPA ACL Message Structure Specification, http://www.fipa.org/specs/fipa00061, 2001
[17] FIPA, FIPA Agent Message Transport Envelope Representation in XML Specification,

http://www.fipa.org/specs/fipa00085

[18] FIPA, FIPA Agent Message Transport Service Specification, http://www.fipa.org/specs/fipa00067, 2001
[19] FIPA, FIPA Agent Message Transport Protocol for HTTP Specification,

http://www.fipa.org/specs/fipa00084, 2001
[20] FIPA, FIPA Agent Message Transport Protocol for IIOP Specification,

http://www.fipa.org/specs/fipa00075, 2000
[21] FIPA, FIPA Agent Message Transport Protocol for WAP Specification,

http://www.fipa.org/specs/fipa00076, 2000
[22] FIPA, FIPA Personal Travel Assistance Specification,

http://www.fipa.org/specs/fipa00080/XC00080B.html, 2001
[23] V. Galant, M. Gordon, M. Paprzycki, Knowledge Management in an Internet Travel Support System,

Proceedings of ECON2002, ACTEN Press, Wejcherowo, 2002, pp. 97-104
[24] V. Galant, J. Jakubczyc, M. Paprzycki, Infrastructure for E-Commerce, Proceedings of the 10th Conference

on Extraction of Knowledge from Databases, Wroclaw University of Economics Press, Wroclaw, Poland,
2002, pp. 32-47

[25] V. Galant, M. Paprzycki, Information Personalization in an Internet Based Travel Support System, Proceed-

ings of the BIS’2002 Conference, Poznan University of Economics Press, Poznan, Poland, 2002, pp. 191-202
[26] M. Gordon, J. Jakubczyc, V. Galant, M. Paprzycki, Knowledge Management in an E-commerce System,

Proceedings of the Fifth International Conference on Electronic Commerce Research, Montreal, Canada,
October, 2002, CD, 15 pages

[27] IEEE Intelligent Systems Journal, Special Issue, Vol. 16, No. 2, 2001,
http://www.computer.org/intelligent/ex2001/x2toc.htm

[28] IEEE Intelligent Systems Journal, Special Issue on Intelligent Systems for Tourism, Vol. 17, 2002, pp. 53-66
[29] M. Gordon, M. Paprzycki, A. Gilbert, Knowledge Representation in the Agent-Based Travel Support

System, Advances in Information Systems, Springer-Verlag, Berlin, 2002, pp. 232-241
[30] Java Agent Development Environment(JADE), Telecom Lab Italia,

http://jade.cselt.it and http://jade.cselt.it/papers.htm

[31] JENA, http://www.hpl.hp.com/semweb
[32] N.R. Jennings, An Agent-based Approach for Building Complex Software Systems, CACM, Vol. 44, No. 4,

2001, pp. 35-41
[33] LEAP Project, http://leap.crm-paris.com/
[34] P. Maes, Agents That Reduce Work and Information Overload, CACM, Vol. 37, No. 7, 1994, pp. 31-40
[35] Mozilla, http://www.mozilla.org
[36] D. Ndumu, J. Collins, H. Nwana, Towards Desktop Personal Travel Agents, BT Technological Journal, Vol.

16 No. 3, 1998, pp. 69-78
[37] H. Nwana, D. Ndumu, A Perspective on Software Agents Research, The Knowledge Engineering Review, Vol.

14, No. 2, 1999, pp. 1-18
[38] OASIS/ebXML Registry Services Specification v2.0,

http://www.oasis-open.org/committees/regrep/documents/2.0/specs/ebrs.pdf

[39] Open GIS Consortium, Inc., http://www.opengis.org
[40] OpenGIS Catalog Services Implementation Specification,

http://www.opengis.org/techno/specs/02-087r3.pdf

[41] OpenTravel Alliance, http://www.opentravel.org
[42] OWL Ontology Language, http://www.w3.org/TR/owl-ref/
[43] M. Paprzycki, R. Angryk, K. Kolodziej, I. Fiedorowicz, M. Cobb, D. Ali and S. Rahimi, Development

of a Travel Support System Based on Intelligent Agent Technology, Proceedings of the PIONIER 2001

14 M. Gawinecki, M. Gordon, P. Kaczmarek, M. Paprzycki

Conference, Technical University of Poznan Press, Poznan, Poland, 2001, pp. 243-255
[44] M. Paprzycki, C. Nistor, R. Oprea and G. Parakh, The Role of a Psychologist in E-commerce Personal-

ization, Proceedings of the 3rd European E-COMM-LINE 2002 Conference, Bucharest, Romania, 2002, pp.
227-231

[45] M. Paprzycki, P. J. Kalczynski, I. Fiedorowicz, W. Abramowicz, M. Cobb, Personalized Traveler
Information System, Proceedings of the 5th International Conference Human-Computer Interaction,
Akwila Press, Gdansk, Poland, 2001, pp. 445-456

[46] S. Poslad, H. Laamanen, R. Malaka, A. Nick, P. Buckle, A. Zipf, CRUMPET: Creation of User-friendly
Mobile Services Personalised for Tourism, Proceedings of: 3G 2001 - Second International Conference on

3G Mobile Communication Technologies, 26-29 March 2001, London, UK.
http://conferences.iee.org.uk/3G2001/, 2001

[47] Racoon, http://rx4rdf.liminalzone.org/Racoon
[48] RDF Primer, http://www.w3.org/TR/rdf-primer/
[49] RDQL - A Query Language for RDF,

http://www.w3.org/Submission/2004/SUBM-RDQL-20040109

[50] G. Rimassa, Perspectives for Agent Middleware, http://citeseer.nj.nec.com/551140.html
[51] RxPath, http://rx4rdf.liminalzone.org/RxPath
[52] RxSLT, http://rx4rdf.liminalzone.org/RxSLT
[53] W3C Semantic Web, http://www.w3.org/2001/sw/
[54] SemanticWeb Project, http://www.semanticweb.org
[55] SemanticWeb General Description,

http://www.semanticweb.org/about.html#bigpicture

[56] SOAP, World Wide Web Consortium, http://www.w3.org/2002/ws, 2002
[57] J.N. Suarez, D. O’Sullivan, H. Brouchoud, P. Cros, Personal Travel Market: Real-Life Application of the

FIPA Standards, Technical Report, BT, Project AC317, 1999
[58] J.N. Suarez, D. O’Sullivan, H. Brouchoud, P. Cros, C. Moore, C. Byrne, Experiences in the Use of

FIPA Agent Technologies for the Development of a Personal Travel Application, Proceedings of the Fourth

International Conference on Autonomous Agents, Barcelona, Spain, 2000
[59] W3C, WSDL specification, http://www.w3.org/TR/wsdl
[60] W3C, XUL specification, http://www.mozilla.org/xpfe/xptoolkit/xulintro.html
[61] W3C, XUP specification, http://www.w3.org/TR/xup/#normalop request ex

[62] Web Ontology (WebOnt) Working Group, http://www.w3.org/2001/sw/WebOnt/
[63] Web Ontology (WebOnt) Working Group, http://www.w3.org/2001/sw/WebOnt
[64] J. Wright, M. Gordon, M. Paprzycki, P. Harrington, S. Williams, Using the ebXML Registry Repository

to Manage Information in an Internet, Proceedings of the BIS 2003 Conference, Poznan University of
Economics Press, Poznan, Poland, 2003, 81-89

Edited by: Dan Grigoras, John Morrison
Received: May 10th, 1997
Accepted: October 21th, 1997

