
PRACE NAUKOWE AKADEMII EKONOMICZNEJ WE WROCŁAWIU 
Nr xxx 2004 

Nowoczesne technologie informacyjne w zarządzaniu 

Łukasz Nitschke, Marcin Paprzycki, Michał Ren 
Adam Mickiewicz University, Poznań, Poland 

e-mail: lukn@wmid.amu.edu.pl, marcin@amu.edu.pl, renmich@amu.edu.pl

MOBILE AGENT SECURITY – AN OVERVIEW 

Abstract: The aim of this paper is to provide an overview of security issues facing 
mobile agent systems, and discuss ways of responding to them. We explore the 
state of the art, to assess if it is mature enough for use in real-life security-critical 
applications like contract signing or electronic transactions. 

1. Introduction to mobile software agents 

Software agents are believed to be a promising method of software development 
[Jennings, 2001]. The benefits are to include faster development, easier 
maintenance, scalability, and ease of creating distributed systems. Furthermore, the 
agent approach lends itself naturally to information management (processing and 
filtering) [Maes, 1994], and to development of systems in which AI in many forms 
can be implemented [Hendler, 2001, Brenner, 1998]. An agent system consists of 
agencies (servers with appropriate software which provide the environment for 
agents’ execution) and agents themselves. Agents are programs which, according 
to Jennings [Jennings, 1998], exhibit certain properties, such as: 
• autonomy – they act without the need of human input,  
• sociability – ability to interact with other agents or humans if necessary,  
• reactivity – ability to react to changes in the environment 
• proactivity – taking initiative, when appropriate, in order to reach objectives 

This definition of software agents is very broad, and encompasses such 
programs as the animated paperclip in Word, some computer viruses, bots in first-
person shooter games, auction agents in online auction sites, or search engine’ web 
spiders. More interesting are so-called strong agents, which according to Jennings 
[Jennings, 1995] have additional properties, such as: veracity, benevolence and 

mailto:lukn@wmid.amu.edu.pl
mailto:marcin@amu.edu.pl
mailto:renmich@amu.edu.pl


2 

rationality (however, the list of properties used to define software agents is much 
broader and lacks consensus [Galant, 2001]). Finally, mobility – the ability to 
move from one server to another, is believed to be particularly useful as it allows 
the agent’s user to be offline and unavailable while the agent is working on other 
computers. It also serves to decrease network load – bandwidth-intensive tasks can 
be performed locally. Finally, it allows for load balancing and resource 
management in a grid-type environment, where agents are means of carrying 
computationally intensive tasks [Di Martino, 2003]. Unfortunately, as this paper 
shows, mobility is extremely challenging from the security standpoint. It seems 
that security of mobile agent systems is one of the factors that prevents their actual 
use in e-commerce applications (for an in-depth discussion of current issues 
involving state of the art in agent system development, see [Paprzycki, 2003]). 

2. Cryptographic goals and tools for mobile agent systems 

It might seem that the main part of cryptography is encryption. However, in 
many circumstances (for example in mobile agent systems), other considerations 
turn out to be equally important. Let us consider the classic example of an air-fare 
search agent. The agent moves from host to host (airline servers), searching for the 
optimal offer (apart from the price, the agent can take into account such things as 
quality of service, or convenience of the itinerary).  

In this scenario, we need an assurance that the agent-code and data carried by 
the agent have not been maliciously modified and that they have not fallen into the 
wrong hands. Additionally, both parties (agent and server) may be interested in the 
other’s identity; furthermore, they may request a proof of it. Therefore, it is 
obvious that mobile agent systems must meet the following goals, most often 
referred to in cryptography as [Menezes, 1996]: 
• confidentiality – keeping information secret from all but those who are 

authorized to see it, 
• authentication – corroboration of the identity of an entity, 
• integrity – ensuring that information has not been altered by unauthorized or 

unknown means. 
To achieve these goals cryptography provides us with many useful tools such as: 
• hashing functions – a computationally efficient functions that map strings of 

arbitrary bit length to some fixed length hash-values; hash functions are hard to 
invert and designed in such a way that it is extremely difficult to find two 
different strings which yield the same hash-value, 

• Message Authentication Code (MAC) mechanism – a set of hashing functions 
indexed by values from the set K – H={hk: k∈K}; here each k∈K can be used 
to produce an authentication value of message m: hk(m) (MAC-value), which 
can be verified only by someone who knows k, 



3 

• symmetric and asymmetric encryption systems – consist of two types of 
transformations: E – encrypting and D – decrypting; every transformation is 
determined by a value called “the key;” in symmetric encryption systems keys 
for the inverse transformations (D(E(m))=m) are the same or trivially easy to 
compute, as opposed to asymmetric encryption where the keys are different 
and the decryption key is hard to compute from the value of the encryption key 
– in this case we speak of public (encryption) and private (decryption) keys, 

• digital signature schemes – similar to asymmetric encryption, involve two 
types of keys and two types of transformations: S – signing transformations 
determined by private keys and V – verifying transformations determined by 
public keys; Ss(m) – signature under message m created using key private s, can 
be verified by a public function (determined by a public key v) Vv which 
simply “says” whether the signature is valid or not. 

While a number of methods is available to support cryptographic needs, their 
successful application to mobile agent systems is not easy. Let us now look into the 
issues involved in this particular case in some more detail. 

3. Mobile agent platform security  

The above presented air-fare agent scenario can help us specify threats to the 
security of the host. The agent (sent by the competing airline, for instance) may spy 
on the host’s databases, or disable services (e.g. performing a denial of service 
attack). In other words, it might act as a Trojan horse. To achieve this, the agent 
may pretend to be legitimate, i.e. sent by a customer or, more seriously, to be a part 
of the airline’s agent system itself. Moreover, a benevolent agent may be corrupted 
by a third party before arriving at the airline’s platform. 

There is a whole range of options available to hosts to safeguard against such 
attacks, from simple to sophisticated [Loureiro, 2000]: 
1) Sandboxing – one of the oldest methods of limiting resources available to 
mobile code, dating back to Java JDK 1.0. The code is executed in a virtual, very 
restricted machine, therefore preventing access to vital system resources. In some 
applications, for example when the code needs access to the file system or the 
network, sandboxing proves to be too inflexible. 
2) Code signing – provides a method of distinguishing trusted and untrusted code 
using the mechanism of digital signatures. Trusted code can be granted access to 
critical system resources. Code signing was implemented, for instance, in 
Microsoft ActiveX and Java JDK 1.1.  
3) Access control – takes code signing one step further, by allowing the owner of 
the executing platform to precisely define security policies. Instead of dividing 
code into broad categories of “trusted” and “untrusted”, code is associated with the 
identity of its owner and granted appropriate, individual access privileges. Access 



4 

control was first implemented in Java JDK 1.2, and grew into a mature form in 
JAAS (Java Authentication and Authorization Services). Unfortunately, access 
control imposes a significant runtime overhead. 
4) Proof-carrying code – avoids expensive runtime checks, by performing code 
checking only once, before execution. The code carries a proof of its good 
behavior. So far, this approach has not been implemented in practice and remains a 
purely theoretical one. 

One can also imagine that instead of attacking the platform directly, agents try 
to attack other agents residing in it. For example, an agent may try to disable, 
destroy, or subvert agents of other customers. However, protection against such 
threats is really just another aspect of platform security, as it is the agency that has 
to protect the executing agents from one another. 

4. Mobile agent security 

Of course, it is not only the agency that has to include safeguard against hostile 
agents; agents themselves are exposed to attacks by a hostile agency as well. For 
example, if the agency belongs to an airline, it might try to brainwash the air-fare 
agents so they forget all competing (presumably better) offers. If the agent is 
empowered to accept an offer if it is “good enough,” the platform might try to 
disassemble it and find its threshold value. In general, the more the agent is 
authorized to do (while representing its owner), the greater the risk that at least one 
agency on its route will try to subvert it. For instance, we could have authorized the 
agent to make actual payments or to digitally sign contracts. In order to do that, the 
agent must carry with it a “secret-token,” such as the signing key, the credit card 
number, or even digital money. It is not difficult to see that stealing one of these 
may be disastrous to the agent’s owner, and very lucrative to the thief. 

To protect agents against malicious hosts, we need to ensure that the system has 
the following properties: 
1) Privacy of computation [Sander, 1997, 1998] – which means that an agent is 
able to carry out computations without the host understanding what the agent is 
doing. This would allow the agent to carry secret values (signing key, e-money, 
credit card number) in an encrypted form but involve them in computations. To 
extract the decrypting code from the agent the attacker would have to analyze the 
code’s meaning. The following solutions attempt to make this analysis infeasible: 

a) theoretical solutions:  
i) function encryption – in case an agent has to calculate a security 

critical function f on argument x (y=f(x)) in a untrusted environment, it 
is for security reasons suggested that it should compute an encrypted 
form of the function – a superposition of functions g and f – g(f(x)); y 
can be retrieved in trusted environment using g-1: y = g-1 (g(f(x))); 



5 

security of the scheme is based on the difficulty of decomposition of 
the complex function; this model was applied only to rational functions 
so far and it was used to create a digital signature scheme for mobile 
code, 

ii) homomorphic rings – agent uses a homomorphic function in two 
algebraic rings h: R1 → R2; h is hard to reverse without knowledge of a 
secret key; agent makes his calculations on an untrusted server in ring 
R2, and the final result is obtained on a trusted host using h-1; it was 
shown that this method can be used to encrypt polynomials, 

iii) boolean circuts – every function f on any number of inputs 
f(x1, x2, …,xn) can be represented as a boolean circuit, and protocols 
exist that enable evaluation of such circuits in a distributed way, while 
keeping every participant unaware of all the inputs except for the ones 
belonging to him [Tate, 2003; Beaver, 1990], so if there are several 
agent present on different platforms, they can jointly compute a 
signature or any other function without revealing it to any one 
platform; in fact, the protocols allow even for a number of malicious 
platforms to cooperate, 

b) code obfuscators – consists of scrambling the executable code making it 
difficult to understand and reverse engineer; a number of such tools is available 
for Java bytecode, and they use the following techniques [Hongying, 2001]: 

i) layout obfuscation – renaming identifiers (e.g. methods loose their 
original names), and removing debug information (code execution 
cannot be introspected in debug mode), 

ii) control obfuscation – altering execution flow by adding artificial 
branches, 

iii) data obfuscation – reorganizing data structures. 
A serious weakness of this method is the fact that it does not provide 
provable security; in fact, there is a constant race between obfuscators and 
disassemblers, and although it seems that so far the general-purpose 
disassemblers are outclassed by obfuscators, the situation may change 
radically as soon as specialized deobfuscating disassemblers appear. 

2) Integrity of computation – gives a guarantee that the execution flow of agent 
code was not manipulated from outside of the agent. Attempts to provide this 
feature are holographic proofs. Here, the trace of the execution, showing not only 
the results, but also how they were obtained, is transformed into a holographic 
proof (which can be quickly, probabilistically checked) and appended to the agent. 
3) Privacy and integrity of data – assurance that the data carried by the mobile 
agent has not been tampered, this applies also to the agent’s itinerary, which can be 
seen as part of the data. An elegant solution, which meets this requirement, was 
presented in [Yee, 1997] in the form of PRACs (Partial Results Authentication 



6 

Codes). Every agent before leaving its home platform is supplied with a vector of 
keys. Every single key is used to create a MAC of the information gathered or 
computed on a certain server, and optionally to encrypt the data. The key is 
forgotten afterwards, preventing subsequent servers on the agent’s path from 
tampering with gathered information. PRACs are used to preserve the integrity of 
dynamic data. Static, unchangeable data (i.e. agent’s identity or itinerary), may be 
simply protected by a digital signature of the agent’s owner. An attacker intending 
to change the agent’s path without changing its identity would have to break the 
digital signature scheme. These two ideas of securing static and dynamic data were 
successfully implemented in Semoa agent platform [Roth, 2002]. 

Another, similar solution is giving the agent a public key, while the owner 
retains the private key. The agent may encrypt the information it collects with this 
public key, so that it can not decrypt it later. This ensures that nobody is able to 
cheat the agent, and pretend to be the home platform or the agent’s owner. 
Unfortunately, public key cryptography is inefficient as compared to PRACs. 

Apart from the solutions mentioned above, there are a few interesting attempts 
to address the above mentioned problems by utilizing cooperating agents. This 
approach makes an assumption that not all servers are malicious and not all of the 
corrupted ones want to collaborate with one another. It seems reasonable in a 
network of competing companies. Therefore, it is vital that the cooperating agents 
are scattered among the system nodes rather than located on the same server. 

Roth in [Roth, 1999] proposes a scenario, in which agents work in pairs – let us 
call them agent A and B. A visits a set of hosts H of airlines, while his partner 
moves to a server which belongs to a rival of H. A walks the predefined path and 
passes the offers to B. Once A has collected all the information they can choose the 
best offer; moreover, they can pay for it using e-money shared by them using a 
secret sharing scheme1 – B can send his part of the e-coin. 

Authors of [Page, 2004] show that we can attempt to build self-supporting 
communities of agents, so that every member of the community has at least two 
guards of its security – the Shared Security Buddy Model. 

5. Social threats to mobile agents 

Finally, there are threats to mobile agents that stem from how the interactions 
between the agents and agencies are set up in the real world. One such threat is that 
it is the agency that is executing the agent-code, and that it is the agency that 
ultimately provides all the input that the agent receives. If an air-fare agent has a 
hardwired threshold below which it will accept an offer immediately, it does not 

                                                           
1 Cryptographic mechanism which allows to split confidential data into pieces which 

separately reveal no information about the data and which can be used to recover the secret 



7 

help if it is encrypted and obfuscated. A fraudulent agency may simply execute the 
agent several times, each time with a different set of offers. Providing agents with 
fabricated environments is known as a Cartesian deception. Several ways of 
dealing with this problem have been developed: 
1) High Security Modules (HSMs) – every platform must have a secure hardware 
device that cannot be tampered with, has a very restricted set of inputs and outputs, 
and is capable of performing cryptographic operations. Such a device can then be 
involved in interactions between the agent and the agency, ensuring for instance 
that they are performed only once. Unfortunately, such a solution is expensive, and 
implies trust in the maker of the HSM. 
2) Clueless agents – it is possible to create agents that do not know their intended 
purpose [Riordan, 1998]. As an example consider an agent that performs a patent 
search by calculating hashes of strings, and trying to match them with a stored 
value. Here, if a certain string is in the database, it will be found, but one can not 
derive it from the agent beforehand, so the patent idea stays safe. Many variations 
are possible, including perfect obfuscation of agent’s purpose until a condition is 
met. Note that this approach may give rise to new type of hard to defeat viruses and 
worms, which will not reveal their payload until they infect a system with a certain 
domain name, or a certain thing appears for sale on eBay. Unfortunately, clueless 
agents tend to be rather inefficient, and not every problem can be solved by them. 
3) Agent/platform networks – certain real-world situations lend themselves 
naturally to creation of a network of agents which, while not cooperating per se, are 
able to communicate, and would be more resistant to corruption. Consider, for 
example a network of personal assistants, which all keep track of movies that their 
owners like. In order to get a recommendation, one could have his assistant to 
question assistants of people who fit a certain profile (liked the same movies). Even 
if a fraction of agents maliciously cheat (for example to promote a certain movie), 
the net effect is mitigated by the honest ones. Unfortunately, since creation of 
agents is not expensive, such networks are susceptible to corruption by masses of 
agents generated by one person and acting in concert. There are some possible 
solutions: accepting new members only by invitation (which defeats the purpose of 
open exchange of information), creating trust-networks or ensuring that a human 
spends some time before releasing next agent, by giving out a test that only a 
human can pass [Ahn, 2003] (which is not going to deter a determined adversary). 
4) Dummy agents – certain forms of corruption of agent platforms can be detected 
like corruption of organizations in the real world – by undercover agents. An agent 
may pretend to represent a customer, and searching for the best air-fare price, but it 
might contain certain data, that should never change if the agencies are benevolent. 
If the data does change, one can be sure that at least one agency on the agent’s path 
has acted malevolently. It is then easy to isolate the rogue agency by using more 
such agents with different paths.  



8 

6. Conclusions 

In this paper we have attempted to summarize the main problems involved in 
assuring security of agent-based systems as well as state-of-the-art in solving them. 
We have found that as far as host security is concerned, problems appear to be 
almost solved. The only remaining issue is to make the existing solutions more 
efficient. Agent (mobile code) security, on the other hand, remains an open 
problem. Its nature lies in the character of the mobile code itself – it has to be run 
by untrusted hosts, which have to be able to trace every executed instruction in 
order to provide access control. The current weaknesses in the area of privacy and 
integrity of computation seem to preclude use of agents for truly security sensitive 
tasks, such as signing of contracts, electronic payments, and so on. Only some 
tasks can be securely performed by agents – for example information-gathering or 
database searches. This may change, if the promising idea of cooperating agents is 
developed further. From the practical point of view, even the simple database 
search can only be performed securely if the platform supports at least some 
security mechanisms, like PRACs in case of Semoa. Unfortunately, the most 
popular agent platforms such as Jade, Grasshopper, or Aglets were not built with 
agent security in mind. 

Bibliography 

Jennings N. R. (2001) An agent-based approach for building complex software systems, 
Communications of the ACM, 44 (4), pp. 35-41 

Maes P. (1994) Agents that Reduce Work and Information Overload, Communications of 
the ACM, 37(7), pp. 31-40 

Hendler J. (2001) Agents and Semantic Web, IEEE Intelligent Systems Journal, 16 (2), pp. 
30-37 

Brenner W., Zarnekow R., Wittig H., Schubert C. (1998) Intelligent Software Agents, 
Springer-Verlag 

Jennings N. R., Wooldridge M. (1995) Intelligent Agents: Theory and Practice. The 
Knowledge Engineering Review, pp. 115–152 

Jennings N. R., Wooldridge M. (1998) Applications Of Intelligent Agents, Springer-Verlag 
NY, Agent technology: foundations, applications, and markets, pp. 3-28 

Galant V., Tyburcy J. (2001) Intelligentny Agent Programowy, Prace Naukowe AE 
Wrocław, Nr 891, pp. 46 – 57, in Polish. 

http://www.ecs.soton.ac.uk/~nrj/download-files/cacm01.pdf
http://www.acm.org/pubs/cacm/
http://pattie.www.media.mit.edu/people/pattie/CACM-94/CACM-94.p1.html
http://www.acm.org/pubs/cacm/
http://www.acm.org/pubs/cacm/


9 

Di Martino B., Rana O.F.(2003) Grid Performance and Resource Management using 
Mobile Agents, in: Getov, V. et. al. (eds.) Performance Analysis and Grid 
Computing, Kluwer, 2003 

Paprzycki M., Abraham, A. (2003) Agent Systems Today: Methodological Considerations, 
Proceedings of the 2003 International Conference on Management of 
e-Commerce and e-Government, Jangxi Science and Technology Press, 
Nanchang, China, pp. 416-421 

Menezes A., van Oorschot P., Vanstone S. (1996) Handbook of Applied Cryptography, 
CRC Press, CRC Press, Boca Raton, USA  

Loureiro S., Molva R., Roudier Y. (2000) Mobile Code Security, Proceedings of ISYPAR 
2000 (4ème Ecole d'Informatique des Systèmes Parallèles et Répartis), Code 
Mobile  

Kirn S., Petsch M., Lees B. (1999) Intelligent Software Agents: Security Issues of a New 
Technology, Information Security Management: Global Challenges in the 
New Millennium, Dhillon G. ed., ch. 11,  

Sander T., Tschudin C. (1997) Towards Mobile Cryptography, International Computer 
Science Institute technical report 97-049  

Sander T., Tschudin C. (1998) Protecting Mobile Agents Against Malicious Hosts. Lecture 
Notes in Computer Science 1419, pp. 44  

Tate S., Xu K. (2003) On Garbled Circuits and Constant Round Secure Function 
Evaluation, Computer Privacy and Security Lab, Department of Computer 
Science, University of North Texas, Technical Report 2003-02  

Beaver D., Micali S., Rogaway P. (1990) The round complexity of secure protocols, 
Proceedings of the twenty-second annual ACM symposium on Theory of 
computing, pp. 503-513  

Hongying L. (2001) A comparative survey of Java obfuscators available on the internet, 
http://www.cs.auckland.ac.nz/~cthombor/Students/hlai/

Yee, B. (1997) A sanctuary for mobile agents. Technical Report CS97-537, Department of 
Computer Science and Engineering, UC San Diego,  

Roth V. (2002) Empowering mobile software agents, Proceedings of 6th IEEE Mobile 
Agents Conference, Suri N, ed., Lecture Notes in Computer Science, vol. 
2535 pp. 47–63 

Roth V. (1999) Mutual protection of co-operating agents, Vitek J., Jensen C. eds., Secure 
Internet programming: security issues for mobile and distributed objects, 
Lecture Notes In Computer Science vol. 1603, pp. 275-285  

http://www.cs.auckland.ac.nz/~cthombor/Students/hlai/


10 

Page, J., Zaslavsky, A., Indrawan, M. (2004) A Buddy Model of Security for Mobile Agent 
Communities Operating in Pervasive Scenarios, Proceedings of Second 
Australasian Information Security Workshop (AISW2004), pp. 17-25. 

Riordan J., Schneier B. (1998) Environmental Key Generation towards Clueless Agents, 
Mobile Agents and Security, G. Vigna, ed., Springer-Verlag, pp. 15-24.  

von Ahn L., Blum M., Hopper N., Langford J. (2003) CAPTCHA: Using Hard AI Problems 
for Security, Advances in Cryptology, Eurocrypt 2003 

Wilhelm U., Staamann S., Buttyán L. (1998) Protecting the Itinerary of Mobile Agents. 
Proceedings of the ECOOP Workshop on Distributed Object Security  

Roth V. (2003) Cryptographic Protection of Migratory Software, NebraskaCERT 
Conference  

Binder W., Roth V. (2002) Secure mobile agent systems using Java – where are we 
heading? Proceedings of 17th ACM Symposium on Applied Computing, 
Special Track on Agents, Interactions, Mobility, and Systems (SAC/AIMS)  

Bettelli A. (2003) The Trustworthiness in Software Agents' Electronic Signatures 
Proceedings of LEA 2003: 2nd Workshop on the Law and Electronic Agents, 
pp. 81-95  

Hartvigsen G., Helme A., Johansen S (1995) A Secure System Architecture for Software 
Agents: The Virtual Secretary Approach, BROADCAST (Basic Research On 
Advanced Distributed Computing: from Algorithms to SysTems) Technical 
Report  

Tate S., Xu K. (2003) Mobile Agent Security Through Multi-Agent Cryptographic 
Protocols, Proceedings of the 4th International Conference on Internet 
Computing (IC 2003), pp. 462-468   

BEZPIECZEŃSTWO SYSTEMÓW MOBILNYCH AGENTÓW – 
PRZEGLĄD 

Streszczenie: Celem niniejszej pracy jest dokonanie przeglądu problemów bezpieczeństwa 
systemów mobilnych agentów, jak również niektórych metod radzenia sobie z nimi. 
Dokonaliśmy przeglądu aktualnego stanu wiedzy by ocenić czy jest wystarczająco 
zaawansowany by sprostać zastosowaniom dla których bezpieczeństwo jest warunkiem sine 
qua non, takich jak podpisywanie kontraktów albo elektroniczne pieniądze. 
 


