High performance solution of the complex symmetric
eigenproblem

llan Bar-On? and Marcin Paprzycki®

“ Department of Chemistry, Technion, Israel Institute of Technology, Haifa 32 000, Israel
E-mail: baron@cs.technion.ac.il

" Department of Computer Science and Statistics, University of Southern Mississippi, Hattiesburg,
MS 39406-5106, USA
E-mail: marcin@orca.st.usm.edu

Recetved 7 May 1997; revised 3 February 1998
Communicated by J. Dongarra

Complex symmetric matrices often appear 1n quantum physics in the solution methods of
partial differential equations such as the Schrodinger equation. We have recently introduced a
new tast and efficient direct eigensolver for this problem in [4], and reported its performance
in the eigenvalue calculation in {3]. In this paper, we further report on some benchmark tests
tor computing the full and partial eigenspectrum on a variety of super computing machines,
1.e., the Cray J-932, the DEC Alfa 8400, and the SGI Power Challenge 8000 and 10000. We
observe that in all cases the new algorithm is much faster than codes available in standard
state of the art eigensolver packages such as LAPACK.

Keywords: complex symmetric, eigenvalues, eigenvectors, algorithms, performance

AMS subject classification: 15A18, 65F15, 65Y05

1. Introduction

Recent methods for studying chemical reaction problems, for example the com-
plex scaled DVR method [2,10,13,14,16,17], require the diagonalization of very large
(order 7000 and larger) dense complex symmetric (non-Hermitian) matrices. In a typ-
ical application first, about 10-20% of the eigenvectors of matrices of order ~2000
are located about 50 times or more. These eigenvectors are used to construct the large
Hamiltonian matrix for which the complete set of eigenvalues is calculated. Modemn
matrix software libraries, such as LAPACK [1], provide no special treatment of the
complex symmetric eigenproblem and codes designed for general complex matrices
have to be used. Thus, for example, the computation of the eigenvalues of complex
Symmetric matrices may be about 10 times slower than calculation of eigenvalues of
complex Hermitian matrices [3]. Furthermore, the general eigensolver from the LA-
PACK library lacks the capability of calculating a subset of eigenvectors, as required

in the applications described above, 1.e., the whole set of eigenvectors 1S computed
(about 50 times), when only about 20% are required.

Apparently, the lack of special software for the direct solution of the complex
symmetric eigenproblem stems from the following observations:

e Complex symmetric matrices are not necessarily diagonalizable, as 1s the case for
Hermitian matrices, nor do their eigenvalues necessarily possess any special prop-
erties. In fact, any general complex matrix can be transformed into a complex
symmetric matrix by a sequence of similanty transformations [3].

e The straight reduction of a dense complex symmetric matrix to a tridiagonal form
1S not always stable.

e There is no robust theory of the complex symmetric tridiagonal eigenproblem.

However, in recent years, some effective LLanczos based iterative algorithms that have
been proposed in the literature have shed more light on the problems raised above.
ook ahead, and block Lanczos techniques [7,12,15] have been eftective in capturing
the breakdown problem in the Lanczos process, and Cullum and Willoughby [5,6]
have proposed a variant of the QR algorithm for the complex symmetric tridiagonal
eigenproblem. However, although iterative methods are very effective for solving
large and sparse eigenproblems, they are not very practical for the dense problems,
especially when all the eigenvalues of the matrix are required. Hence, In our case,
we have to look for direct methods. We have recently suggested a new fast algorithm
in [4], which is similar in concept to the standard complex Hermitian eigensolver. The
main stages of the algorithm can be summarized as follows:

Tridiagonal reduction. Reduce the complex symmetric matrix A € C" 1nto a tridi-
agonal complex symmetric matrix T € C" by a sequence of complex orthogonal
(yet stable) transformations.

Complex orthogonal QR. Compute the complete set of eigenvalues of the tridiagonal
matrix, using the complex orthogonal QR algorithm, and extract the eigenvalues
whose eigenvectors are of further interest.

Inverse iteration. Compute the eigenvectors of the tridiagonal matrnx, corresponding
to the subset of eigenvalues required, by inverse 1teration.

Back transformation. Compute the corresponding eigenvectors of the original dense
matrix by back transformations.

We have shown in [3] that the new algorithm considerably outperforms the general
eigensolver of the LAPACK library when computing the eigenvalues of the complex
symmetric matrix (which corresponds to the second stage of the DVR method). In
this paper we proceed to study the performance characteristics of the algorithm when
computing the complete or partial set of eigenvectors.

The remaining part of the paper is organized as follows: we begin by considering
the performance of the general and Hermitian eigensolvers on the Cray J-932 vector
computer in section 2. We then review the main features of the new algorithm and
its performance on the Cray in section 3. Finally, in section 4, we compare the

performance of the three routines on the superscalar machines, the DEC 8400 and

SGI Power Challenge 8000 and Power Challenge 10000. In concluding remarks some
directions for future research are presented.

2. The standard algorithms

The standard approach to compute the partial or complete set of the spectrum of
a general complex matrix could be described as follows [9]:

Stage (i). Reduce A € C™ to an upper Hessenberg matrix H € C" by a sequence of
Householder unitary transformations, i.e., H = PrAP, PfPy = I, where * denotes
the conjugate transpose.

Stage (ii). Reduce H € C™ to an upper tnangular matrix R € C™ by the QR algorithm,
Le.,, R = PYHP;, £5 P, = I, with the eigenvalues A = (Al,...,A,) on the main
diagonal.

Stage (ili). Compute the eigenvectors of R corresponding to the selected set of eigen-
values by inverse iteration, i.e., RV = VA.

Stage (iv). Recover the corresponding eigenvectors of the original matrix by back
transtormations, i.e., AQ = QA with Q = PP,V

When the matrix is complex Hermitian, the algorithm simplifies, and computa-
tional performance improves as follows:

(a) the reduced matrix is tridiagonal so that stage (i) is ~2.5 times faster,

(b) the QR step takes only O(n®) operations as compared to O(n’) for the general
case,

(c) the computation of each eigenvector in stage (111) takes only O(n) operations as
compared to O(n?) for the general case.

We illustrate this behavior in practice on the Cray J-932 vector machine (see tables 1-3)
with the aid of the LAPACK routines CGEEVX (general eigensolver) and CHPEVX
(Hermitian eigensolver). Both of these routines follow the general algorithm outlined
above. In table 1 we consider the case of computing the eigenvalues of the matrix, in
table 2 the complete spectrum, and in table 3 the partial set of the spectrum. We report
both on the running times (in sec.), and the Mflop rates (in parentheses) for problems
of size 400, 1000, 1600 and 2200. The performance data was collected using the Cray
perftrace utility, and the results reported are averages of multiple runs.

In table 1 we observe a speedup of =10 of the Hermitian eigensolver over the
general one. In addition, the Mflop rate of the Hermitian eigensolver is =1.28 higher
and this is impressive even in terms of the practical peak performance of the Cray,
195 Mflops for the level 3 BLAS matrix—matrix multiplication (see table 8). We note
also that the drop in performance of the general eigensolver when n = 1600 is likely
due to the memory bank conflicts.

Table 1
Eigenvalue calculations in sec. (Mflops).

n=400 n=1000 n=1600 n=2200

General 22(122) 289(139) 1275(129) 2920(146)

Hermitian 2.2(156) 30(178) 120(184) 304(187)

Speedup 10 9.6 10.6 9.6
Table 2

Complete eigensystem in sec. (Mflops).

n = 400 n = 1000 n = 1600 n = 2200

L. i Sl S

General 49(139) 682(150) 3070(138) 7150(153)

Hermitian 11(122) 163(132) 687(128) 1670(137)

Speedup 4.5 4.2 4.5 4.3
Table 3

Speedup for partial calculation of the eigensystem set.

n=400 n=1000 n=1600 n = 2200
20% 12.4 14.7 16.2 16.2

40% 8.3 10.3 11.2 11.6
60% 6.0 1.7 8.1 8.7
80% 4.5 5.7 6.2 6.8

In table 2 we see that the speedup of the Hermitian solver over the general solver
has now been decreased to only ~4.4. This could be partially explained by the fact
that the computation of the eigenvectors in stage (1v) 1s very time consuming and
provides no particular advantage for the Hermitian eigensolver. However, we observe
here also a change in the Mflop rates of the two routines. For the largest matrix
(when n = 2200) the performance of the general solver improves from 146 to 153
Mflops while the performance of the Hermitian solver drops from 187 to 137 Mflops.
This points to some deficiencies 1n the implementation of the eigenvector calculation
stages of the Hermitian eigensolver. Finally, note again the drop in performance when
n = 1600, this time in both routines.

In table 3, we further demonstrate the superiority of the Hermitian solver over
the general one when computing only a partial set of the spectrum, as is the case for
the DVR method. In this example, the speedup may become even more significant, as
the general solver computes the whole spectrum nonetheless.

3. Complex symmetric matrices
3.1. An overview

Let us review the standard Hermitian process applied to dense matrices, i.e.,

H(k—l) — QZ;H(’C)QIC! k — Ty ..., 35 (1)

where H = H™, QtQy = I and H® is tridiagonal Hermitian. Considering the kth
step above, we have

HY 6y
k) gk-H Vh+t - k) (Hgf_); h)
H™ = , HW = ,
" 6 h* Tk
on n
heC! v eR, 6. €C, (2)
and
k= (Qk“l In—k+l)
with
Qi =1-22, v=h+ a},ﬁ(h*h}‘”e(k-n,

where ey is the (k — 1)th standard unit vector. Hence,

(k—1) (k) hg
He” " = Qe HyZ Qp1, Ok =

*3\1/2
—-(h;:—lhk—-l)l/z(h W

Suppose that we try to apply this method to the complex symmetric matrices by re-
placing the conjugate transpose operation (-)* with the more simple complex transpose
operation (-)'. We would then get

vul I 1 1/2
1 =1-2—, =h+ ——nl _(RTR) %6, ..
Qk—1 T U T (hz_lhk—l)l/z() Ck-1)

However, this process may break down, as, for example, when

0 3 4 5i 1 1 1 1 AL =T+ 51,
3 0 51 4 1 -1 1 -1 Ay =1 = 5i,

=14 si0 30 X=|1 1 | Ay = —1 — 5i,
51 4 3 O 1

- -1 1 Ay = —7 + 5i,

with HX = XA. Here, b = (5i,4,3) and bTb = 0 even though the spectral decom-
position is very well defined. Similarly, the process may suffer from extremely large
numerical errors when b'b = 0, or even when the ()’s are of a bounded norm but their
accumulated effect is no longer bounded. Thus, the straightforward application of the
algorithm to complex symmetric matrices would not be stable in general. We shall now
describe a modified approach that we found to be quite stable in practice [4]. Consider
the kth step of (2), and let us denote the leading kth submatrix with H = A + 15,

A a B" b -
A: aT . . B = bT ﬁ . a,bER ,le,ﬁER.

Then, to reduce the column vector a + 1b to the complex scalar §, we apply the
following three basic transformations. First, we apply a Householder transformation
to reduce b € R*~!, i.e., we apply

Q;=1-2ww', w= v ,
[v]]2

to both A and B yielding H; = A; + iB; with

v = b+ sign(bp_1)||b]|2 ew—1),

7 _ N
A A; a a
[¢ _ ~T /
T =|la o x|, B
a o
a' z «

Aj

Ty _
(=1 B y|.
5)
7 y p

where
Ap=QlAQ;, a=Qfe, B;y=QTBQ;, y==|b.

Next, we apply a Householder transformation to reduce a’ € R*~? using

(¥

QR = [— 2wa, w = lw, UV = 5,! + sign (a'!k-Z) Haf”e’(k_g),
V|2
and get Hr = AR + 1Br with
A; a z B; b
AR — &T O‘f’ L ’ BR — BT ﬂ, ’y ’
zZ I o y B

where
1" 7, R - - 1 1 ~ ~
Ay = QLAjOr, a=0Qls, z==+|a|, By=0QLlBjOr, b=0lh

Finally, we reduce (z,z + iy)' by the complex orthogonal transformation

1 /x+1 Z .
Qc-—"‘-"(d), 52_=(27+1y)2+22, Q(T:QCZI-

o —2z T+ 1y

1) I /1 1 T+ i(y + 2)
=-XDX", = — | .], =
Qo) \/5(1 —-1) D (r+1y—z2))’
with X*X = J. Hence,
102 = z* + (|y| + |2])? B r* 4+ % + 22 + 2|y z]
2 |52| ((xz — yz 4+ Z2)2 + (2$y)2)1/2
_ T4y 42 42y
(22 + 32 + 222 = (2y2)) /2
and
1 +6\'* 2|yz|
p— S : 6 — S— g _
Iclk= (155 o

We can, therefore, monitor the norm of Q by evaluating 6, proceeding with the
above transformation as long as € is less than some prescribed threshold 7 < 1. In
this case, the reduced matrix satisfies

H =Q'HQ, Q=Q;QrQc Q'Q =1,

where (); and Qgr are real orthogonal and therefore stable, and (¢ is complex or-
thogonal but of a bounded norm. Furthermore, as (Jc applies to the next to last two
columns and rows, of which only the second to last gets mvolved in the transforma-
tions that follows, rounding errors tend to remain small as is shown 1n [4]. The case
of a breakdown, i.e., 8 > 7, could be dealt with in several ways discussed in [4]. For
example, when éx4) =~ 0 we permute the matrix rows and columns or apply some
Jacobi transformation. Otherwise, when Ok+1 # 0 we apply a step of the QR algo-
rithm to the trailing tridiagonal matrix (see (2)), which has again the effect of applying
some orthogonal transformation to the original matrix [5,11]. As a breakdown in the
algorithm is due to some special arrangement of the matrix elements, these transforma-
tions help to destroy that structure and continue with the standard algorithm. Thus, the
number of breakdowns is small in practice, and the computational complexity remains
practically the same. In place of the deterministic sequence (1), we obtain

HD = (Q(t))TH(t)Q(t), t=0,....m—-1, m=n,

where HY) = H and T = H™ is tridiagonal and complex symmetric.
Considering the rounding errors, we get

A = (QO)TEOQY + FO, |[FO, = o(c| BV,

with ¢ the machine precision. Therefore, as || H® l2= O(e || H ||2), the computed
eigenvalues are forward stable. Similarly, as

T = VIWH+ E)YW, E= VFVI v = QWOW ... Qim-1

m— 1

F= Z (V(t))T FOYy® y = ge+h . Aim=-1-0)
t=0
the computed eigenpairs should be expected to be backward stable, and this could be

verified a posterior1 as follows: for each A\ an eigenvalue of H' = H + E, there is
a 1, an eigenvalue of H, such that

|ITE:L" ,
— Al < + O(||E£]]5),

see [, p. 198]. Hence, since

TT'T

(H—}-E)I:/\I, E:——.'I:—, T:H;II—/\I,
riz
we get to the first order [u — A| < |(z'7)/(z"z)| and the computed eigenpair is stable
provided |zr| is relatively small. We conclude by saying that, for the chemical appli-
cations discussed 1n the introduction, we found that the accuracy of the new algorithm

1s practically the same as for the general solver of LAPACK [4].

3.2. Performance analysis

In this section, we proceed to investigate the performance of the new algorithm
on the Cray machine. In tables 4 and 5 we compare the performance of the new
algorithm with that of the general and Hermitian eigensolvers from the LAPACK
library for matrices of order n = 2200. The times (in sec.) and Mflop rates (in
parentheses) of the four stages of the new algorithm: the reduction to the tridiagonal
matrix (Reduction), the calculation of the eigenvalues of the tridiagonal matrix using
CMTQLI (Eig.), the calculation of the eigensystem of the tridiagonal matrix using
INVERMI (Vec.), both routines from the Lanczos package [5,6], and the calculation of
the eigenvectors of the original matrix by back transformation (Recover), are presented
In table 4. In table 5, we depict the times for computing the eigenvalues only (column
one), and the whole computation (column two) for the above three algorithms. We
also represent here the speedup of the new algorithm over these standard routines (in
parentheses).

We observe a relatively high performance in the reduction and back transfor-
mation stages, 1.e., =175 Mflops or ~91% of the practical peak performance. This
performance has been obtained even though the code 1s implemented using calls to the
level 1 and 2 BLAS kernels only. On the other hand, the performance of the intermedi-
ate stages, that require only O(n?) flops, is very poor and especially so when compared
to the pertormance on the RISC-based machines we review later, see table 9. We note
here that the computation of the eigenvalues of tridiagonal Hermitian matrices is also
performed much more efficiently [3]. Thus, we may attribute these phenomena to the

scalar nature of the routines CMTQL1 and INVERM1 that we used, and conclude that
more etficient codes should be used for future implementations. Observe also that the

Table 4

Performance of the new algorithm.

—
Reduction Eig. Vec. Recover

—_—
n = 2200 324(177) 163(14) 154(14) 489(172)

—'—_"“_"""_—"_‘—'_-_——-——-—_____-______—____

Table 5
Speedup with respect to the standard routines.
Red. + Eig. Total
New 487 1130
General 2920(6) 7150(6.3)
Hermitian 304(0.6) [670(].5)
Table 6

Percentage for the middle computations.

n Red. Trd. Rec. Tot. Trd. / Tot.

2400 422 377 647 1446 26%
2800 666 S14 1024 2204 23%
3200 988 672 1510 3170 21%
3600 1403 348 2142 4393 9%
4000 1923 1045 2968 5936 18%

increase in the dimension of the matrices tends to diminish this effect as illustrated in
table 6. Here, we report on the relative time of the middle stages (Trd.) in terms of
the total running time of the algorithm for increasing size of the matrices. We also
depict here the times for the individual Reduction (Red.) and Recovery (Rec.) stages.

We further observe that the new algorithm outperforms the Hermitian solver
by =~1.5 times when computing the whole spectrum. Moreover, ignoring the time
spent in the two middle stages, which as we noted above is peculiar to the tridiagonal
code we use, the new algorithm is even twice as fast. Thus, this reassures our earlier
observation (see also section 2, tables 1 and 2) that the Hermitian eigensolver of
LAPACK 1s implemented rather inefficiently.

Finally, in table 7, we report the speedup of the new algorithm with respect to
both standard solvers when only a part of the eigensystem set is computed. Here, as
betore (see table 3), we compare the computation of selected eigenvectors by the new
algorithm with that of the complete set by the general eigensolver. We also depict
for comparison the speedup with respect to the Hermitian eigensolver computing the
same size of a subset. Thus, as is the case for the chemical reaction modeling prob-
lems discussed before, the new algorithm may substantially outperform the general

eigensolver.

Table 7
Speedup with respect to a partial eigensystem set.

n = 2200 General Hermitian

20% 11.6 0.7

40% 9.6 0.8

60% 8.2 0.9

80% 7.1 1.1
Table &

Pertormance of BLAS level 2 and 3.
n = 1000 Cray DEC SGI | SGI2

-GEMM 195 220 290 340
_GEMYV 190 40) 45 50

4. Superscalar machines

We proceed 1n this section to compare the performance of the three solvers on the
superscalar machines: the DEC Alpha Server 8400 (DEC), the Silicon Graphics Power
Challenge 8000 (SGII), and the Silicon Graphics Power Challenge 10000 (SGI2). We
also compare their performance with that of the Cray J-932. To obtain the running
times we have used the appropriate Unix-based CPU-time-oriented timers. All codes
have been run in double precision (which is compared to the Cray’s single precision).
Manufacturer provided BLLAS kemels and LAPACK routines have been used. Each
result presented 1s an average of multiple runs.

In table 8, we report typical measures of the practical performance of these
machines for the level 2 and 3 BLAS kemels. Note that on the Cray, both levels
are efficiently implemented, whereas on the RISC machines, the level 3 routines are
much superior to those of level 2. Hence, the actual performance may be heavily
dependent on the detailed implementation issues of the algorithm, and whether it is
using level 2 or level 3 routines. In our case we note that the LAPACK routines
were designed to take advantage of these features, see [1], whereas the new code is
currently implemented using only level 2 routines. Nonetheless, the new code is faster
than the general eigensolver and further improvements should be anticipated when
implementing the algorithm with level 3 BLAS.

4.1. The classical algorithms

We report 1n tables 9, 10 and 11 on the performance of the standard LAPACK
routines ZGEEVX and ZHPEVX for matrices of order n = 2200. We present their
running times (in sec.) and their efficiency with respect to the performance on the
Cray J-932 (in parentheses).

In table 9 we consider the case of computing the eigenvalues only. We present
separately the running times of the reduction stage and the calculation of the spectrum

Table 9

Eigenvalue calculations in sec.

_—
n = 2200 DEC SGI1 SGI2

.
General solver

W

Reduction] 388 1130 1228
Spectrum 2196 3095 2263
Total 3584 (81%) 4225 (69%) 3491 (84%)

Hermitian solver

Reduction 689 677 720
Eigenvalue 3 6 2
Total 692 (44%) 683 (45%) 722 (42%)
Speedup 5.2 0.2 4.8
Table 10
Complete eigensystem in sec.
n = 2200 DEC SGI SGI2
General 8292 11081 7588
9680 (74%) 12211 (59%) 8816 (81%)
Hermitian 3321 2648 3378
4010 (42%) 3325 (50%) 4098 (41%)
Speedup 24 3.7 2.2

stage. For the general solver, in the reduction stage the SGI1 is about 20% faster than
the DEC (and about 10% faster than SGI2), but about 40% slower than these machines
on the spectrum stage. In case of the Hermitian solver the DEC and the SGIs behave
practically the same.

In table 10 we consider the case where we compute the complete set of e1gen-
vectors. Here, the reduction stage remains essentially the same so that we depict the
times for the remaining stages, i.e., the calculation of the eigenvalues and €1genvectors
of the reduced matrix, and the computation of the eigenvectors of the original matrix.
We also depict here the total time for the whole algorithm. Note that here SGI1 is the
slowest machine for the general case, but the fastest for the Hermitian case.

In table 11 we finally consider the computation of only a partial set of the eigen-
system (similar to table 3). We depict the speedup of the Hermitian solver calculating
the partial eigensystem with respect to the general solver computing the complete eigen-
system set. In addition, we report (in parentheses) the efficiency of these routines with
respect to their performance on the Cray. We observe a decrease in the speedup of
the Hermitian solver over the general solver as compared to the one on the Cray, see
table 3. This is especially evident for the DEC, for which the efficiency does not reach
40% of the Cray. It should be noted that when the complete eigensystem is calculated
the performance of the DEC (compared to the Cray) improves by about 17% while the

Table 11

Speedup for partial calculation of the eigensystem set.

_ e
n = 2200 DEC SGI1 SGI2

_—
20% 8.4 (38%) 12.5 (45%) 8.5 (43%)

40% 5.1 (32%) 9.3 (47%) 6.5 (46%)
60% 3.3 (28%) 8.0 (54%) 5.3 (50%)

80% 2.3 (25%) 6.6 (57%) 4.6 (55%)
_

Table 12
Computing the spectrum.

_

n = 2000 Reduction Eig. Total General Hermitian
DEC 848 (28%) 30 (440%) 378 (44%) 3.1 0.6
SGI 1062 (23%) 54 (252%) 1116 (34%) 2.8 0.6
SGI2 1120 (22%) 20 (718%) 1140 (34%) 2.4 0.6

performance decreases by 7% for SGII and by 14% for SGI2 (see table 10 above).

Overall, these results indicate how inconsistent superscalar machines can be and
how performance of such machines may depend on the implementation details. We
may also conclude that the Cray vector machine significantly outperforms the super-
scalar machines, and this is quite surprising in view of the higher peak performance
of the RISC machines on matrix multiplication. We also observe that on the RISC
machines the speedup of the Hermitian eigensolver has been greatly reduced, as com-
pared to that on the Cray (see tables 1 and 2), suggesting that the latter is implemented,
using level 3 BLAS, more efficiently.

4.2. The new algorithm

We 1llustrate the performance of the new algorithm for matrices of order n = 2000
In tables 12-14. In table 12, we present the time for the reduction stage and for the
calculation of the eigenvalues stage, and the corresponding speedup with respect to
the general and Hermitian eigensolver. As before, we also report (1n parentheses) the
etficiency of the new algorithm with respect to the Cray. In table 13, we present the
results for computing the complete eigensystem (the results in parentheses represent
the efficiency as compared to the Cray). Finally, table 14 contains the speedup of com-
puting a partial eigensystem set, with respect to computing the complete eigensystem
set for the general eigensolver and the partial eigensystem set of the same size for the
Hermitian eigensolver (in parentheses).

We note that SGI2 significantly outperforms SGI1 in the middle stages, dealing
with the diagonalization of the complex symmetric tridiagonal matrix. This could be
explained 1n terms of the improved scalar architecture introduced into the Power Chal-

lenge 10000, and the fact that the routines CMTQL1 and INVERMI1 are implemented
using a plain scalar code. At the same time, when the complete solution process is con-

Table 13

Complete eigensystem in sec.

n = 2000 Vec. Recover Total General Hermitian
DEC 34 (376%) 2104 (17%) 3016 (29%) 2.4 1.0
SGI1 52 (246%) 2136 (17%) 3304 (27%) 2.7 0.8
SGI2 24 (534%) 2854 (13%) 4018 (22%) 1.7 0.8

-
Table 14
Speedup for partial calculation of the eigensystem set.
n = 2000 DEC SGI SGI2
20% 5.1(0.6) 6.3 (0.5) 4.3 (0.5)
40% 4.1(0.8) 4.7(0.5) 3.3(0.5)
60% 3.3(1.0) 4.1(0.5) 2.7(0.5)
80% 2.8(1.2) 3.3(0.5) 1.8(0.4)

sidered the SGI1 uses only 82% of the time required by the SGI2. Both SGI machines
are slower than the DEC computer.

All three superscalar machines considerably outperform the Cray J-932 in the
middle stages, indicating their superiority in terms of scalar operations. However,
since the most time consuming stages of the algorithm, the reduction and recovery
transformations, employ vector operations, the Cray remains considerably faster than
the other machines. We finally note that in all cases the new code outperforms the
general solver and that further improvement may be anticipated when implementing
the new code using the level 3 BLAS routines.

S. Concluding remarks

We have presented in this paper some performance results for standard LAPACK
routines for computing the eigensystem of complex general and Hermitian matrices
on some state of the art supercomputer machines. We observed that performance, es-
pecially on the superscalar machines, may be significantly affected by the use of the
different levels of the BLAS routines. Our experience suggests that for their better
usage, software packages such as LAPACK should also indicate the expected perfor-
mances of their routines.

We have further presented the performance of the new algorithm for computing
the eigensystem of large and dense complex symmetric matrices that substantially
outperforms the general eigensolver of LAPACK, the currently available routine for
this problem. Our results indicate also that, for the time being, the vector processing
Cray 1s the best choice for this type of problems.

Our future research will address a number of questions. First, the usage of block-
Ing techniques will be investigated. This technique should improve the performance
of the code primarily on the RISC-based computers. Second, the etficiency of diago-

nalization of complex symmetric tridiagonal matrices on the Cray needs to be studied.

Finally, additional work may focus on the efficient implementation of the new code
on parallel machines.

Acknowledgements

A computer time grant from NCSA in Urbana-Champaign, and from the Depart-

ment of Chemistry in the Technion, Israel, is kindly acknowledged. We also thank
Prot. Ian Gladwell for very helpful comments.

References

[1]

[2]
[3]
[4]
(]
[6]
[7]

(3]
(9]

[10]

[11]
[12]

[13]
[14]

[15]
[16]

[17]

E. Anderson, Z. Bai, C. Bischoft, J. Demmel, J. Dongarra, J.D. Croz, A. Greenbaum, S. Hammarling,
A. McKenney, S. Ostrouchov and D. Sorensen, LAPACK Users’ Guide (SIAM, Philadelphia, PA.
1992).

E. Balslev and J. Combes, Spectral properties of many body Schrédinger operators with dilation
analytic interactions, Commun. Math. Phys. 22 (1971) 280-294.

. Bar-On and M. Paprzycki, An efficient algorithm for finding eigenvalues of complex symmetric
matrices, Comput. Assisted Mech. Engrg. Sci. (1997).

[. Bar-On and V. Ryaboy, Fast diagonalization of large and dense complex symmetric matrices, with
applications to quantum reaction dynamics, SIAM J. Sci. Comput. 18 (1997).

J.K. Cullum and R.A. Willoughby, Lanczos Algorithms for Large Symmetric Eigenvalue Combura-
tions (Birkhaduser, Boston, 1983).

J.K. Cullum and R.A. Willoughby, A QL algorithm for complex symmetric matrices, SIAM .
Matrix Anal. Appl. (1996).

R.W. Freund, G.H. Golub and N.M. Nachtigal, Iterative solution of linear systems, Acta Numer.
(1992) 144,

F.R. Gantmacher, The Theory of Matrices, Vols. 1,2 (Chelsea, New York, 1959).

G.H. Golub and C.E.V. Loan, Matrix Computations (Johns Hopkins Univ. Press, Baltimore, MD,
1989).

N. Moiseyev, Resonances, cross-sections and partial widths by the complex coordinate method, Isr.
J. Chem. 31 (1991) 311-322.

B.N. Parlett, The Symmetric Eigenvalue Problem (Prentice-Hall, Englewood Cliffs, NJ, 1980).
B.N. Parlett, D.R. Taylor and Z.A. Liu, A look-ahead Lanczos algorithm for unsymmetric matrices,
Math. Comp. 44 (1985) 105-124.

W. Reinhardt, Complex coordinates in the theory of atomic and molecular structure and dynamics,
Ann. Rev. Phys. Chem. 33 (1982) 223-255.

V. Ryaboy and N. Moiseyev, Three dimensional study of predissociation resonances by the complex
scaled discrete variable representation method: HCO/DCO, J. Chem. Phys. 103 (1995).

Y. Saad, Numerical Methods for Large Eigenvalue Problems (Halsted Press, New York, 1992).

J. Simon, Quadratic form techniques and the Balslev-Combes theorem, Commun. Math. Phys. 27
(1972) 1-9.

J. Simon, Resonances in n-body quantum systems with dilation analytic potentials and the founda-
tions of time dependent perturbation theory, Ann. Math. 97 (1973) 247-274.

