
From relational databases to an ontology – practical
considerations

Rafał Tkaczyk∗§, Paweł Szmeja∗, Maria Ganzha†∗, Marcin Paprzycki‡∗, Bartłomiej Solarz-Niesłuchowski∗
∗Department of Intelligent Systems

Systems Research Institute Polish Academy of Sciences, Warsaw, Poland
Email: firstname.lastname@ibspan.waw.pl

†Department of Mathematics and Information Sciences
Warsaw University of Technology, Warsaw, Poland

Email: M.Ganzha@mini.pw.edu.pl
‡Department of Management and Technical Sciences

Warsaw Management Academy, Warsaw, Poland
§IT Systems Department, Vemco Co. Ltd., Sopot, Poland

Abstract—One of interesting problems, arising with deploy-
ment of large-scale systems, is integration of its nodes (systems /
devices). In this work, we discus how to apply semantic technolo-
gies, as a mechanism to support node integration and facilitate
interoperability within the developed ecosystem. We focus on
pragmatic aspects of the proposed solution, discussed from the
perspective of the Dependable Embedded Wireless Infrastructure
(DEWI) EU project. In this context, a brief analysis of typical
integration problems and reasons to apply solution based on
semantic technologies is presented. Moreover, the integration
procedure is outlined. Here, the key aspect that is discussed in
considerable detail, is conversion from the DEWI nodes (based
on a traditional relational database approach) towards universal
cooperative nodes, which use semantic technologies.

I. INTRODUCTION

One of key issues, concerning modern building automation
management systems, is co-existence of multiple subsystems,
introduced by various suppliers, and based on different tech-
nologies. As a result, applications, (sub-)systems, devices,
sensors, etc., work “in parallel” (i.e. separately), without coop-
eration or, even, simple communication (e.g. data exchange).
Since so many different entities (from different levels of
hardware-software stack) may co-exist in a building manage-
ment ecosystem and since, in large part of what follows, there
is no actual need to distinguish between them, in the remaining
part of this paper, unless a more specific term is needed, we
use the name node to represent each and every one of them.

One of very common problems, arising during system
integration, is considerable variety of technologies used for
data storage. Here, different systems may use standard/popular,
but different, databases. Moreover, within a single ecosystem,
both SQL (MySQL, PosgtreSQL, MS SQL, Oracle, etc.) and
NoSQL (MongoDB, Redis, CouchDB, Neo4j, etc.) databases
can be found. Note that, even in the case of the same database
model, e.g. relational, document or graph, different vendors
provide solutions that are, for all practical purposes, incompat-
ible. Separately, two systems, which use the same technology
(e.g. MySQL databases), can use different data model and
thus, again, remain incompatible. Even if the same relational

model is used, its implementation might differ because of
different SQL dialects and database capabilities. However, the
goal of deployment of an integrated ecosystem is to allow
its nodes to communicate. In this sense, from purely logical
perspective, as a result of integration, all sources of data in
the system should be “visible as a single distributed database”.
Henceforth, the real difficulty is to combine multiple sources
into one, consistent and logical whole.

Separately, it is worth noting that while the complexity
of an existing infrastructure plays an important role, com-
plications brought about by adding new nodes to the work-
ing system (modification of the infrastructure) need to be
considered as well. In this case, along with connecting yet
another technology (node), logistical difficulties of expanding
the infrastructure may materialize, e.g. the location of the
next wire to be placed in the infrastructure, or wireless
networks that start adversely affecting each other. Similarly,
when wireless infrastructure is considered it can be realized
using different technologies: Wi-Fi (IEEE 802.11), ZigBee,
Bluetooth (IEEE 802.15.1), NFC (ISO 15408 and ISO 14443/
ISO 15693), 6LoWPAN/ IPv6 (PFC 4919)). Furthermore,
different nodes may use different communication protocols
(e.g. TCP/IP Socket, WebSocket, HTTP, etc.), thus requiring
further work to establish some form of “gateways” between
them. Nevertheless, these considerations are out of scope of
our current work.

Issues raised thus far, illustrate multitude of aspects that
must be taken into account during integration of nodes into
and/or within an ecosystem, and when the size of the ecosys-
tem is increasing due to addition of new nodes. Observe that,
typically, such integration aims at allowing new/additional
forms of cooperation within the nodes, and thus introduce
new functionality into existing applications and/or develop-
ment of new applications based on them. Multiple projects
attempted at proposing solutions to the problem of integration
of nodes within an ecosystem, in general, and within a
building automation management system, in particular. One of
them was the Dependable Embedded Wireless Infrastructure

(DEWI) project [1]. Here, actual experiences from DEWI
provide the background for the proposed solution, and are the
source of issues that had to be solved during DEWI building
management system deployment.

In this context, we proceed as follows. Section II contains
the general description of the DEWI project, including ar-
chitecture and an example scenario realized during the pilot
demonstration. Moreover, we present issues that arose during
the development process, and approaches used to solve them.
Next, we elaborate processes that were necessary to convert
an SQL database model into the ontological one (Section III)
and, later (in Section IV), use of this model to instantiate
a graph database. This allows us, in Section V, to describe
the integrated solution in action. Finally, in Section VI, we
summarize the main contributions of this paper.

II. NEED FOR DATA INTEGRATION IN THE DEWI PROJECT

Let us start from a brief description of the Dependable
Embedded Wireless Infrastructure (DEWI) project, which in-
volved use of wireless embedded systems in: aerospace/space
industry, car production, smart buildings and railways. In
general, DEWI had five main objectives (as shown on the
project website [2]):

• dependable, auto-configurable, optionally secure, short-
range communication,

• local energy-management: efficiency, harvesting, storage,
• localization of sensors and mobile devices, and
• smart composability and integration of wireless sensor

networks.
To reach these objectives, a DEWI architecture was proposed
(see [3] and [4], for details), which consisted of:

• DEWI Bubble (the core of the DEWI solution, a group
of nodes, gateways and users),

• DEWI Gateway (device supporting communication be-
tween DEWI Bubbles and also Internal/External users),

• DEWI Node (entity acting within the DEWI Bubble, e.g.
service, system, application, device, sensor, etc.),

• Internal User (user acting within the DEWI Bubble that
has access to any DEWI Service via the DEWI Gateway),
and

• External User (user acting outside the DEWI Bubble and
communicating with it via the DEWI Gateway, with very
limited access to DEWI services).

Each of these elements is described, in detail, in [5].
It was assumed that various nodes are to cooperate, within

the DEWI architecture, to achieve measurable benefits, in
the form of reduction of hardware infrastructure and wired
connections, improvement of energy management, optimiza-
tion of operations of (sub)systems, network flexibility, etc.
Hence, one of subgoals of the project can be stated as: to
integrate nodes running in the same environment (i.e. in a
separate subnet, called DEWI Bubble; see Figure 1) that have
to cooperate to achieve a “common goal”. In the project, it
was assumed that a single DEWI Bubble handles one domain,
e.g. a single building. The purpose of the developed solution

was to facilitate seamless cooperation of many systems (access
control, positioning, emergency, security, lighting, CCTV, etc.)
and devices (terminal, smoke sensor, camera, sensor, etc.),
installed within a single Bubble (building).

Fig. 1. Topology of DEWI wireless sensor subnetworks (Bubbles)

While the DEWI project pilots were instantiated in multi-
ple domains (i.e. aeronautics, automotive, rail, building and
interoperability), we will concentrate on building automation
management. This is a very good example to describe project
approaches, because of two reasons: (i) building domain is
a very popular and well-known (involving many approaches
to develop solutions, e.g. Internet of Things, Cyber Physical
Systems, Multi Agent Systems, etc.), and (ii) the final result
of the implementation of this part of the DEWI project was
a successful pilot deployment in Gdańsk, and one of the
authors participated directly in this pilot. Within the DEWI
homepage [6] five main objectives concerning application of
DEWI within building automation management can be found:

• to improve situation-awareness and access control in
buildings,

• to decrease energy consumption and reduce emissions in
buildings,

• to optimize facility operation and maintenance work,
• to easily deploy and maintain the WSN networks in

buildings, and
• to increase the performance and scalability of building

WSN solutions.
The pilot environment is a very good example of a DEWI
Bubble. It illustrates cooperation of variety of nodes in the
closed network (where the connection “from the outside” is
possible only via the gateways). The pilot architecture consists
of (see, Figure 2):

• Access Control System (ACS) – system managing the
restricted areas,

• Wireless Data Aggregator (WDA) – specific type of
gateway, developed for the DEWI project,

• Indoor Positioning System (IPS [7]) – objects and persons
localization system, and

• a prototype mobile terminal device.

Fig. 2. Pilot architecture

The building automation pilot assumed two general scenar-
ios (consisting of multiple requirements). The first scenario
dealt with cooperation between the ACS and the IPS. The
purpose of the ACS is to feature information about the entities’
(person, thing or device) relation to the controlled areas. The
role of the IPS, is to facilitate information about positioning of
tracked objects. This information can be card read events from
ACS devices; information provided by identification devices,
like Jennic modules (a ZigBee [8] wireless microcontroller
module with a built-in antenna) or RFID cards; or other data
describing entities that appear within the monitored area.

The second scenario involved use of a mobile terminal (with
an embedded Jennic module) inside the building. The main
goal of this scenario was to support the visitor (one of the end
users of the ACS), moving inside the controlled areas. With
the ACS and a terminal, the user can register her/his visit to the
restricted area (using the ACS) and obtain permission to enter
(or be refused). Moreover, based on the data obtained from the
ACS and the IPS, the terminal can locate the position of an
object, which is sought by the user (e.g. person, thing, device)
or a place (e.g. a specific room). The result of this search is
not only the information about the object position, but also
a map displayed on the screen, including a directions to the
“target”.

A. Data integration in the DEWI project

Considering the goals of both scenarios, it is easy to see
the importance of data integration. In the project pilot, two
popular databases have been used. PostgreSQL was utilized in
the ACS, because it is a good solution for big database with
sophisticated architecture, adapted to run in a cross platform
environment. In the IPS, one of lighter database distributions
has been used, namely MySQL. The role of these databases,
in their respective applications, was as follows:

• PostrgreSQL, in the ACS, was used to support the access
control server applications (to handle end user requests
and device management), i.e. store information about
application users and entities (person, vehicle, object) and
their access rights, as well as information about areas of
the building, device infrastructure, events, etc.

• MySQL, in the IPS was used to store data about the
areas of the building and the Jennic modules (and their
positions) within them. Moreover, it gathered data about
the device infrastructure for the IPS visualization module.

Both ACS and IPS databases contain data that is relevant to
establishing cooperation with other systems /devices. For in-
stance, the ACS stores (among other) events generated within
the system, and consumes the entities’ positions, detected by
the IPS. The IPS, on the other hand, stores data about entities
position and uses data generated by the ACS (e.g. events).

It is worth noting that information, stored in the databases of
individual nodes, is not always logically separated (especially
in one domain). Very often it describes the same structures, e.g.
both ACS and IPS store data about the same areas, devices,
positions, etc. Here, the following problem materialized – “the
same” data was stored in two databases, albeit using different
structures. The building floor (level) is a simple example. In
the IPS SQL structure, it was described as a BuildingFloor
table (Figure 3) with rows: id, (primary key), id building
(unique id of a record), and additional fields to describe the
specific building floor. More information, related with the
floor geolocation is stored in the BuildingFloorCalibration
table. The BuildingFloor table was linked with the Building
table (defining the set of buildings in the system) to achieve
complete building definition (i.e. building consists of building
floors). In the ACS SQL structure, on the other hand, building
floor was described as a local standard floor number (an
integer). So, as we can see in Figure 4, when one wants to
set a floor, for example for the Area table, one does not need
to assign the foreign key of building floor. It is enough to set
an integer of the floor level. These differences, arose because
of the specific representation of the area structure in different
components. In the ACS, the area is described in more detail,
than in the IPS. Therefore, the ACS uses the Area table in the
database, with a number of fields, describing it (it is necessary
for management related functions). In the case of the IPS, the
BuildingFloor table contains all the necessary information to
describe the area, so the database does not contain any other
structure to define it (like in the ACS).

The next issue was that both systems use the WGS84
standard to describe geolocation. In this standard, data can
be represented in different ways: by separate fields (longitude
and latitude), single field (where longitude and latitude are
separated by a space), by GeoJson [9], etc. Both systems use
the separate latitude longitude option, to describe the position
within the area, but use different ways to define the area. The
IPS defines the area as a quadrangle and stores its “opposite
points” (vertices) in the database. The ACS uses the GeoJSON
format, which means, it stores all points of the polygonal area.

The last example of mutual data structure is device repre-
sentation. In both systems it is similar, but the most important
difference is the device type description. The IPS uses the
dictionary table DeviceType and many-to-many relation with
the Infrastructure table (device). In the ACS, it is also the
DeviceType table, but it is not just a dictionary. It contains
other properties, related with the device configuration (it was

Fig. 3. IPS extracted data architecture

not depicted in the diagram, because it was not relevant for
the pilot implementation, i.e. nodes cooperation). Moreover,
the ACS Device table contains more properties, describing the
device and is connected with Entity table, while in IPS, the
entity is not relevant (the IPS system estimates the position of
Jennic modules, the ACS links this device with the entity).

These examples describe how many aspects must be take
into account during the data integration process. After liter-
ature research ([10], [11], [12], [13], [14]) and on the basis
of the example of other EU projects ([15], [16], [17], [18],
[19], etc.) we came to the conclusion that use of semantic
technologies is worthy of exploration, as a way of integrating
heterogeneous data sources and their divergent data models.
Using an ontology (see, for instance, [20]) is a very convenient
way of data unification, because (i) ontology is easy to expand,
(ii) is easy and quick in search, (iii) it’s easy to create a
new relationships by describing object properties, (iv) allows
capture data objectives to create new structure types, etc. Here,
note that these features point out how useful an ontology
can be not only in the case of initial system integration, but
also in subsequent modifications to the “working ecosystem”.
Moreover, use of semantics provides tools for storing large
amounts of data (triple stores) and run processing actions
on them, (e.g. SPARQL [21] queries, reasoning, etc.). Since
DEWI requirements assumed interoperability of nodes within
the DEWI Bubbles (oriented towards specific domain) and also

the cooperation across all the Bubbles, it was proposed to use
a domain ontology in order to unify the data within the DEWI
Bubble. Note that work on developing a meta-level ontology
for cooperation between DEWI Bubbles is out of scope of this
contribution.

III. CONVERTING AN SQL STRUCTURE INTO AN
ONTOLOGY (OWL)

Since it was decided that the main vehicle for data integra-
tion will be use of semantic technologies, the first problem
that had to be addressed was lack of semantic data models in
DEWI subsystems. Therefore, it was necessary to develop a
common semantic representation (i.e. an OWL ontology) of
data used across the system. Here, let us note that in [22]
it was established, that lifting semantics of a database to an
ontology faces the problem that the internal representation,
within the database, is geared towards efficiency, rather than
towards conceptual representation of the domain.

Therefore, the first step of establishing the ontological
representation of data used across the DEWI Bubble was to
pinpoint the pertinent elements of the pilot databases. Here,
only the necessary tables were selected, i.e. data needed
for cooperation / communication with other nodes. It was
also important to predict, which data could be relevant for
cooperating nodes in the future. The most laborious was the
ACS data structure (Figure 4), because this system has the
most complex database, containing variety of information,
useful for many nodes. In general, the ACS part consisted
of: Entity (three types: person, vehicle, thing), Event (a few
types of access control events, e.g. door open, breaking door,
door too long open, etc.), Area (restricted areas managed by
ACS), Device (infrastructure of ACS), etc. Although, an IPS is
a very complex system, the data it distributes is quite simple,
i.e. it consists of information about infrastructure and (the most
important) positions of objects (entities equipped with Jennic
modules).

On the basis of the data structure, the entity relationship
diagram (ERD; prepared using Dia Diagram Editor1) was
obtained (see, Figure 4 and Figure 3). The next step was
to use this diagram to instantiate an ontology. To design it,
Protege (v5.0.0)2 was used, while the final ontology file was
in the OWL format. There were three main steps of creating
an ontology graph.

• Creating class hierarchy, on the basis of the SQL tables
names.

• Creating object properties, on the basis of relations (for-
eign keys) between tables.

• Creating data properties, on the basis column types and
dictionary values in SQL tables.

During this stage, few problems were encountered. First, the
most difficult of them, was the diverse representation of the
same data in the systems. As described in Section II-A, the

1(2017) Dia Diagram Editor Homepage. [Online]. Available: http://
dia-installer.de

2(2017) Protege Homepage. [Online]. Available: http://protege.stanford.edu/
products.php

Fig. 4. ACS extracted data architecture

ACS and the IPS systems store data in a different way. Second
problem was to convert the SQL dictionary tables into the
ontology structure (e.g. describing events, or types of devices).
Many dictionary symbols and names were described in a
non unified way, depending on the internal nomenclature, e.g.
Jennic module had symbols Jennic and JEN , or RFID card
reader has a symbol READER V and RFID R.

Another aspect of problems with the dictionary was variety
of possible methods for creating an ontological representa-
tion. During implementation, two options were considered.
First, one can create object property hasType (Event hasType
exactly 1 EventType). Next, instances of the EventType
class for each type of event (e.g. http://DEWI.org/ACS.owl#
AcknowledgehasType:EventType) are to be created. Finally,
an e1 instance of the event type (i.e. e1 hasEventType: http:
//DEWI.org/ACS.owl#Acknowledge) is assigned. The second
option is to create subclasses of the Event class (e.g. Acknowl-
edgeEvent subClassOf: Event). In the following step, e1 in-
stance of the event type is assigned as a class (i.e. e1 hasType:
AcknowledgeEvent). Finally, the second approach was chosen,

because the queries are easier (due to the taxonomic structure).
However, it should be noted that this is an example of a
much broader issue related to possibility developing a uniform
semantic representation (of any domain).

The next step to create the pilot ontology (with the help
of the ERD diagram) was to search existing standardized
ontologies, which could be used to describe key ontolog-
ical entities, and serve as an upper, or domain, ontology.
To complete the pilot scenarios, two basic areas had to be
described: sensor/device and geolocation. For the sensor/de-
vice ontology three options were considered: SSN [23], IoT-
Lite [24] and OpenIoT [25]. Upon further analysis, the IoT-
Lite has been chosen, because it is relatively small and well-
focused. Furthermore, it contains more device classes than,
e.g. the SSN. Specifically, in the context of the project, the
most important were the following classes: (i) Device (with
subtypes Sensor, Actuator and Tag Device) – to define the
DEWI Bubble infrastructure, i.e. WDA, Jennic modules, area
controllers, readers, cameras, detectors, etc., (ii) Service and
Attribute – to define nodes’ services and parameters; and

(iii) Entity – to define the entities managed by the platform,
i.e. Person, ThingEntity, Vehicle. Of course, additional classes
had to be added, e.g. Event, which can describe all kind
of events generated by any node, e.g. ACS (CardReadEvent,
DoorsClosedEvent, DoorsOpenedEvent, BreakingDoorsEvent,
etc.), Building (to define buildings), Card (to define access
cards, e.g. RFID card), VehicleType (as a dictionary to extend
the Vehicle entity). Here, note that the choice of the IoT-Lite
ontology rooted our model in the standardized IoT space.

The W3C Basic Geospatial Vocabulary was used to describe
the positions, because this ontology can be used, in an easy
way, to depict many types of objects (from a single point to
a complex polygon), and it uses the WGS84. It is important
in the building domain, because it is necessary to describe
variety of areas, and the device infrastructure (including mo-
bile devices, e.g. Jennic module or terminal). In the project,
geospatial ontology was extend by three important (for the
pilot) elements. First one, is an Area to describe the areas
managed by the systems. It uses the polygon class to define
the position and, moreover, contains such data properties as
floor (xsd:int), hasName (xsd:string), hasSymbol (xsd:string),
isInBuilding. Next added element was the GeoLocation, to
define the entity position (point), within the area. Moreover,
the GeoLocation has a subclass for storing the history of entity
positions (e.g. in the case of mobile device).

To sum up, the final pilot ontology (depicted in the Figure 5)
imports two general ontologies IoT-Lite and W3C Geospatial
Vocabulary, which were extended by structures more specific
to the domains of operation of the ACS and the IPS.

IV. CREATING ONTOLOGICAL DATABASE

Following creation of OWL ontology, it was necessary to
instantiate a database that uses it in its model. The first
step to achieve this goal was the selection of the database
model. There are a few possibilities of database models, which
we can split into three main types. First, a typical semantic
solution: RDF store, with embedded semantic mechanism,
like SPARQL, reasoning, etc. (e.g. Jena [26], Algebraix [27],
4store [28], Redland [29], AllegroGraph [30], Stardog [31],
Blazegraph [32], etc.), Second, Graph DBMS, sometimes
with partial RDF support (e.g. OrientDB [33], Neo4j [34],
Titan [35], ArangoDB [36], etc.). Because of graph based
structure, this type is also natural to be used as an ontological
store, but this approach requires additional data management
modules (to handle the RDF structure). Finally, another model
types, including SQL and NoSQL, but they also require extra
supporting modules, more complex (and usually less efficient)
than in the case of Graph DBMS.

Completed analysis revealed that graph database would be
the best to realize all objectives, desired in the pilot, because
there is no need to use very complex semantic processing (i.e.
reasoning). Moreover, graph database seems to be a good fit
for storage of ontological data, because of the universality of
graph representation, with respect to RDF. To develop the pilot
prototype, the graph database OrientDB has been selected. It
is an open distribution, which contains many useful features

(in many cases not offered by the competition). For instance,
it offers multi-master replication and sharding (database parti-
tioning), which is a big advantage in a distributed architecture.
Other than the standard graph search methods, OrientDB
allows to use an SQL-like language (OSQL). Next advantage
is related to user and role and record level security. Moreover,
it offers elastic scalability.

After choosing the database engine, the next step was to
represent the previously generated ontology. To create an
OrientDB database structure, special script in JavaSE was
developed, which generated all the necessary OSQL scripts.
It contained three main operations, for mapping OWL struc-
tures into the OrientDB structure: (i) mapping the classes
into the Vertex class elements (while preserving class in-
heritance), (ii) mapping the Data properties into the vertex
Property elements (including data types – Ranges in OWL),
and (iii) mapping the Object properties into the Edge class
elements. Moreover, the OWL file contained also an additional
information (in Annotations, tagged with OrientDB:validator),
which was taken into account during the mapping process.
For instance, abstract annotation meant to create an abstract
OrientdDB class (Vertex or Edge).

Utilization of ontologically based graph database, allows to
use it, in a simple way, for data fusion and processing opera-
tions. Specifically, data that is important from the point of view
of other (cooperating) nodes, or data analyzing modules (e.g.
a Business Rule Engine) is gathered in this graph database.
Data subscription module allows receiving the actual data on-
the-fly.

Note that messages in DEWI are in the JSON-LD [37]
format (see Figure 6). This has been decided because of two
reasons. In general, JSON format is one of a DEWI com-
munication standards ([38]). Moreover, using RDF (of which
JSON-LD is a serialization) to describe data and sending
messages is also a standard in the semantic communication
approaches. The natural way of combining those two issues
is JSON-LD. The message structure (Listing 1) is actually a
batch of graph vertices, linked to each other by edges (object
properties). The variables (in <> brackets) are as follows:

• vertex name – unique name of an individual (vertex),
valid only within the message content (vertices batch);
it is necessary to recognize the vertex,

• individual class – type of an individual (an ontological
class name),

• individual property – name of a data property (property
in the graph database and a data property in the ontology),

• property value – value of a property,
• edge name – name of an object property, i.e. link/edge

to another individual (an edge in the graph database and
an object property in the ontology),

• vertex in name – name of an individual (vertex), which
is linked with this individual by the object property.

Listing 1. WDA message structure
[{

”@id” : ”<ver tex name >” ,

Fig. 5. DEWI pilot ontology class structure

Fig. 6. Communication with WDA

” @type ” : [” Named Ind iv idua l ” ,
”< i n d i v i d u a l c l a s s >”]

”< i n d i v i d u a l p r o p e r t y >” : [{
” @value ” : ”<p r o p e r t y v a l u e >”

}] ,
”<edge name>” : [{

”@id” : ”<ve r t ex in name >”
}]

}]

This solution offers easy graph database operations and also
simple iteration and conversion to any data structure within
the node side (i.e. node connecting with the WDA OrientDB
management module).

V. USING THE ONTOLOGICAL DATABASE FOR DEWI
SUBSYSTEMS INTEGRATION

To illustrate how the developed solution works, we will
describe how it was implemented in the pilot. The core of the
idea is the Wireless Data Aggregator (WDA), which can work
as a DEWI gateway. The WDA functionality comprises: access
control management, area controller, etc. Furthermore, WDA
is responsible for data fusion, aggregation and distribution.
Logically, WDA is one of the nodes. It can be an independent
device, or an element of a (sub-)system, e.g. the ACS. It
enables direct communication between nodes (regardless of

technology), since it supports multiple communication inter-
faces (wired and wireless, e.g. Wi-Fi, ZigBee, Bluetooth, etc.).
The main reason for creation of the WDA is integration of
different systems within a single domain (e.g. a building). The
WDA device deals with:

• data fusion (considering all communication interfaces
used in the project),

• distribution of data (relevant from the point of view of
different subsystems),

• registration of nodes in the WSN network, and of services
they provide,

• defining business rules associated with gathered data,
fulfillment of which is to trigger specific actions (e.g.
alert detection),

• as quickly and efficiently as possible, obtaining informa-
tion (e.g. in the ACS), and

• running the internal software modules (e.g. system con-
trol, area controller, etc.).

The WDA data management mechanisms is based on the
ontological database, described in Section IV. In order to
use WDA modules (data fusion, distribution, subscription,
etc.), a REST API was exposed. It contains three main meth-
ods: (i) /oriendb/aggregate (POST/PUT/DELETE/GET), to
use the database management module, (ii) /oriendb/aggregate/
subscription (POST/DELETE), to join the data subscription,
(iii) /oriendb/aggregate/rules (POST/DELETE), to set a busi-
ness rule.

The graph database is the core of the WDA. All scenarios,
described in Section II, use this entity to cooperate. Every
node can use WDA to store the data (in order to share it with
other entities), or to read the data to “work with it” to achieve
its purpose. Note that the second scenario shows that a device
can also be a consumer of data gathered by other nodes, e.g. a
mobile terminal imports data about entities (from the ACS) and

their positions (from the IPS) to present them to the user, or to
bring about additional functionality (e.g. defines the transition
path between two restricted areas, or to locate given device
and show it on the map).

In the pilot, process of integration of new nodes was
simplified, and is managed by network administrator, who
has three responsibilities. First, is adding the node (system
or device) to the network. Second, setting access rights in
the WDA database, to allow (or prohibit) use of the data
management module. Moreover, information describing a new
element must be added to the database, e.g. the id (an individ-
ual symbol within the network), type (system or specific kind
of device), address (IP, MAC, IPv6, type dependent), offered
services, consumed services, etc. Third, if it is necessary to
expand the pilot ontology, (s)he must add new classes and
properties. In the future, implementation of more sophisticated
automatic node registration mechanisms is planned. It will be
the WDA node registration module that will receive the node’s
registration notification. This module will verify the node (its
technical parameters and services) and will permit it to join
the ecosystem (or deny it). However, the details of this process
have not been finalized.

VI. CONCLUDING REMARKS

Many projects considered integration of heterogeneous
nodes to form an ecosystem. One of them is DEWI, which
shows that one of the effective solutions to node interop-
erability is use of semantic technologies. However, in real
life, most nodes use non-semantic data. Hence, it is necessary
to convert their data models into ontological representations.
In this paper, we have described in detail conversion of the
(popular) relational model into the OWL format, and used it
to instantiate a graph databases on gateway devices, in order
to create an embedded cooperation support infrastructure.
Showing the pilot demonstrator solutions, we proved that the
semantic approach works. We are in the process of evaluating
its efficiency.

ACKNOWLEDGMENT

A part of the research leading to results presented in
this paper has been conducted within the DEWI project
(FP7/ARTEMIS, 2014-2017, grant no. 621353). This research
was also partially supported by the European Union’s “Hori-
zon 2020” research and innovation programme as part of the
“Interoperability of Heterogeneous IoT Platforms” (INTER-
IoT) project under Grant Agreement No. 687283.

REFERENCES

[1] (2017) DEWI Project Homepage. [Online]. Available: http://www.
dewiproject.eu

[2] (2017) DEWI Project Homepage - Objectives. [Online]. Available: http:
//www.dewiproject.eu/the-project-2/objectives

[3] (2017) DEWI Deliverable - D405.002 Requirements analysis/technol-
ogy evaluation. [Online]. Available: http://www.dewiproject.eu/download/
d405-002-requirements-analysis-technology-evaluation

[4] (2017) DEWI Use Cases. [Online]. Available: http://www.dewiproject.eu/
wp-content/uploads/2016/06/DEWI A5 final web.pdf

[5] (2017) DEWI Deliverable - Global Glossary. [Online]. Available: http:
//www.dewiproject.eu/download/d102-005-dewi-gobal-glossary

[6] (2017) DEWI Project Homepage - Building Domain description. [Online].
Available: http://www.dewiproject.eu/domains/building

[7] K. Górski, M. Groth, and L. Kulas, “A multi-building WiFi-based indoor
positioning system”, 2014 20th International Conference on Microwaves,
Radar and Wireless Communications (MIKON).

[8] (2017) ZigBee Homepage. [Online]. Available: http://www.zigbee.org
[9] (2017) GeoJSON homepage. [Online]. Available: http://geojson.org
[10] M. Ganzha, M. Paprzycki, W. Pawlowski, P. Szmeja, and K.

Wasielewska, “Semantic Technologies for the IoT - An Inter-IoT Per-
spective”, 2016 IEEE First International Conference on Internet-of-Things
Design and Implementation (IoTDI), Berlin, 2016, pp. 271–276.

[11] J. Angele and M. Gesmann, “Data Integration using Semantic Tech-
nology: A use case”, 2006 Second International Conference RuleML’06,
Athens, GA, 2006, pp. 58–66.

[12] C. Batini, M. Lenzerini, and S.B. Navathe, “A Comparative Analysis
of Methodologies for Database Schema Integration”, ACM Computing
Surveys (CSUR), Volume 18 Issue 4, Dec. 1986, Pages 323–364.

[13] M. Kifer and E. L. Lozinskii, “A framework for an efficient implemen-
tation of deductive databases”, In Proceedings of the 6th Advanced Data
base Symposium, Tokyo, August (1986) 109–116.

[14] R. Ramakrishnan and D. Ullman, “A survey of deductive database
systems”, The Journal of Logic Programming, Volume 23, Issue 2, May
1995, Pages 125–149.

[15] (2017) ACCUS Project Homepage. [Online]. Available: https://
artemis-ia.eu/project/50-accus.html

[16] (2017) OpenIoT Open Source cloud solution for the Internet of Things.
[Online]. Available: http://www.openiot.eu

[17] (2017) Vital — The future of Smart Cities. [Online]. Available: http:
//vital-iot.eu/

[18] (2017) FIESTA-IOT – Federated Interoperable Semantic IoT Testbeds
and Applications. [Online]. Available: fiesta-iot.eu/

[19] (2017) symbIoTe Symbiosis of smart objects across IoT environments.
[Online]. Available: https://www.symbiote-h2020.eu/

[20] S. Staab and R. Studer, “Handbook on Ontologies”, 2nd ed. Springer–
Verlag, 2009.

[21] (2017) SPARQL Query Language for RDF. [Online]. Available: https:
//www.w3.org/TR/rdf-sparql-query

[22] M. Ganzha, M. Paprzycki, W. Pawlowski, P. Szmeja, K. Wasielewska,
and G. Fortino, “Tools for Ontology Matching - Practical Considerations
from INTER–IoT Perspective”, Internet and Distributed Computing Sys-
tems: 9th International Conference, IDCS 2016, Wuhan, China, Septem-
ber 28-30, 2016, Proceedings, Pages 296–307.

[23] (2017) Semantic Sensor Network Ontology Homepage. [Online]. https:
//www.w3.org/2005/Incubator/ssn/ssnx/ssn

[24] (2017) IoT-Lite Ontology Homepage. [Online]. Available: https://www.
w3.org/Submission/2015/SUBM-iot-lite-20151126

[25] (2017) OpenIoT Ontology. [Online]. Available: http://openiot.eu/
ontology/ns

[26] (2017) JENA Homepage. [Online]. Available: http://jena.apache.org/
index.html

[27] (2017) Algebraix Data – Optimizing Spark for Big Data Analytics.
[Online]. Available: https://algebraixdata.com

[28] (2017) 4store – an efficient, scalable and stable RDF database. [Online].
Available: https://github.com/4store/4store

[29] (2017) Redland RDF Libraries. [Online]. Available: http://librdf.org
[30] (2017) AllegroGraph – Semantic Graph Database. [Online]. Available:

https://allegrograph.com/allegrograph
[31] (2017) Stardog: the Enterprise Knowledge Graph. [Online]. Available:

http://www.stardog.com
[32] (2017) Blazegraph – Graph Database. [Online]. Available: https://www.

blazegraph.com
[33] (2017) OrientDB Homepage. [Online]. Available: http://orientdb.com
[34] (2017) Neo4j – Graph Database. [Online]. Available: https://neo4j.com
[35] (2017) Titan: Distributed Graph Database. [Online]. Available: http://

titan.thinkaurelius.com
[36] (2017) ArangoDB – highly available multi–model NoSQL database.

[Online]. Available: https://www.arangodb.com
[37] (2017) JSON–LD – JSON for Linking Data. [Online]. Available: https:

//json-ld.org
[38] A. Iivari and J. Koivusaari, “A RESTful Sensor Data Back-end for

the Internet of Things”, INFOCOMP 2016, The Sixth International
Conference on Advanced Communications and Computation, pp.51–55.

