
From implicit semantics towards
ontologies—practical considerations from the

INTER-IoT perspective
Maria Ganzha∗‡, Marcin Paprzycki∗, Wiesław Pawłowski†∗, Paweł Szmeja∗

Katarzyna Wasielewska∗, Carlos E. Palau§
∗ Systems Research Institute, Polish Academy of Sciences, Warsaw, Poland

† Faculty of Mathematics, Physics, and Informatics, University of Gdańsk, Gdańsk, Poland
‡ Warsaw University of Technology, Warsaw, Poland

§ Departamento de Comunicaciones, Universitat Politècnica de València, Valencia, Spain

Abstract—From the general SOA architectural pattern,
through distributed computing based on Grids and Clouds, to
the Internet of Things, the idea of collaboration between soft-
ware entities, independent from their vendors and technologies,
attracts much attention. This brings about a question: how to
achieve interoperability among multiple (existing and upcoming)
platforms/systems/applications. The context for the presented
research is provided by the INTER-IoT project, which deals with
different aspects of interoperability in the Internet of Things
(IoT). It aims at the design and implementation of an open
framework and associated methodology to provide interoper-
ability among heterogeneous IoT platforms, across a software
stack (devices, network, middleware, application services, data
and semantics). We focus on the data and semantics layer.
Specifically, the role of ontologies and semantic data processing,
as means of achieving interoperability. However, since the vision
of the Semantic Web remains mostly unfulfilled, semantics
remains implicitly “hidden” in data and in exchanged messages.
Therefore, we are particularly interested in establishing: what
methods and tools exist to create OWL ontologies from implicitly
expressed semantics. We focus on popular data formats i.e. XML,
JSON, RDF, Relational Databases and No-SQL Databases.

I. INTRODUCTION

The Internet of Things (IoT) [24], conceptualized as an
omnipresent network, consisting of physical and/or virtual
objects, equipped with sensing and actuating capabilities, can
be seen as an incarnation of, so called, ubiquitous com-
puting [38], [26]. With billions of “things”, combined into
domain-specific ecosystems, the vision of the hyper-connected
world is becoming a reality. Here, a problem of interoperability
becomes a serious issue. While the question, how to make
IoT platforms communicate, can be addressed on different
levels, we are interested in data and semantics interoperability,
which should enable “common understanding” of data and
information.

The problems to overcome originate from different seman-
tics used to describe domains of interest, and different data
formats used to persist and exchange information. Here, we as-
sume that there is only minimal incentive for “anyone” to make
changes in their own platforms to make them interoperable.
Moreover, we assume that more than two artifacts are to “work

together”. This makes approaches, based on building dedicated
1-to-1 solutions, unappealing (due to scalability problems).
Therefore, we propose that platforms will interoperate through
a “common semantics”, i.e. a model that takes into account
semantics of all participating systems (for more details of
proposed approach, see [28]).

For the time being, the vision of the Semantic Web remains
mostly a vision, and messages transmitted within and across
IoT systems are not linked to a machine-processable onto-
logical model. Therefore, typically, the semantics of existing
applications is only implicitly represented. This being the
case, the problem of finding relations between heterogenous
semantics, represented as OWL ontologies (W3C Web Ontol-
ogy Language [12]; discussed in [29]), becomes secondary.
First, one has to “extract” semantics from data representations
(data structures) used in applications (e.g. JSON, XML, RDF,
relational and non-relational databases). We call this process
“lifting” to OWL. Establishing what methods should be used
to achieve this goal and what tools are available for most
common data formats is the focus of this contribution. Finally,
let us note that our approach is very pragmatic. We are
interested only in existing and working tools and methods that
have been tried .

II. INTER-IOT USE CASE SCENARIOS

The INTER-IoT project’s main goal is to design and im-
plement a framework that will allow interoperability between
heterogeneous Internet of Things platforms, also across the
domain silos. To ground our work, let us briefly discuss a use
case scenarios based on a real world situation encountered
by the project partners. Among the application domains con-
sidered by INTER-IoT pilots are: transportation and logistics
(T&L) in a port domain, and mHealth. The aim of T&L use
cases is to facilitate interoperability between IoT systems,
operating in a large international port environment. Examples
of IoT artifacts that are to work together are: road haulier
platform, container terminal system, truck owner’s platform,
port management system, dynamic lighting platform, etc. The
mHealth domain use cases are focused on interoperability

http://www.inter-iot-project.eu/


between IoT platforms for patient monitoring. One of them
is based on a body sensor network, while the other works
with wearable and non-wearable devices. In both cases, IoT
artifacts are built using different technologies and use different
data formats for storage and communication. Moreover, they
use different semantics (encoded in data structures).

In order to establish a common semantics, and to relate
semantics of each artifact to that of the others, we have
to represent them in the same language (e.g. OWL), and,
preferably, format (e.g. XML/RDF). This will allow us to
use methods discussed in [29] to create an alignment between
ontologies, or to merge them into a single ontology. Regardless
of the specifics of this step, before it is attempted, we have
to establish how to lift individual implicit semantics to their
explicit semantic representation. Here, let us note that in the
INTER-IoT project, we have decided to represent knowledge
with OWL ontologies expressed in the RDF format. However,
this decision has no effect on the generality of reported results.

III. LIFTING TO OWL ONTOLOGIES

Let us now discuss the methods and tools available for
lifting popular data formats to ontologies. We researched tools
that may assist us in obtaining an OWL ontology. Here,
an input is to be a data source or a schema, from which
the information about semantics is extracted. The resulting
ontology is “good” if the semantics of both input and output
of the lifting process are close (ideally, they are identical).
For other additional factors that refer to ontology quality
see e.g. [21], [1], [2]. In what follows, we consider widely
used data communication and storage formats including XML,
JSON, RDB, non-relational databases. As will be shown, each
format involves its own set of challenges and caveats.

A. XML

The XML is widely accepted human- and machine- readable
structured textual data format used for storage, but mostly
for exchange of information. Although it enables the sys-
tems to agree on a common syntax to effectively exchange
information, the information may be misinterpreted because of
different conceptualization of the modeled application domain.
The original method to define the XML document structure is
by using a Document Type Definition (DTD) that specifies
the legal building blocks of the XML document as a list
of elements and attributes along with their ordering and
nesting. Another method to model the document structure is by
using the XML Schema (XSD) that is written in XML, and
provides more powerful means to define the constructs and
their limitations (e.g. supports data-types and namespaces). It
can be easily observed that both the DTD and the XSD can
be mapped onto an OWL ontology with a conceptual model,
while XML instances can be mapped onto individuals build
on that ontology.

Some work has been devoted to the design and imple-
mentation of mechanisms for transformation of XSD into
OWL (specifically into the RDF/RDFS syntax). In [34],
JXML2OWL framework is discussed. It supports interactive

and manual mappings and transformation from the syntactic
data sources in the XML format, to a common shared global
semantic model defined in the OWL. Specifically, the tool
supports mappings between any XML schema (XSD or DTD)
to classes/properties of an OWL ontology. Based on these
mappings, the tool generates mapping rules as the XSLT
stylesheets that allow automatic transformation of the XML
data into instances of the mapped ontology. JXML2OWL
offers both a Java library and a GUI application, and provides
a valuable input to available methods. However, it requires
the existence of explicit XSD or DTD, to transform XML
instances. Moreover, mapping is done manually, which may
be problematic for large ontologies with complex structures.

In [17], authors present a tool for mapping XML to OWL
with an implementation based also on XSLT stylesheets —
complete translation from an XML instances document, over
a (possibly generated) XML Schema, to an OWL model with
OWL instances. When the XML Schema is present, it is
transformed to OWL. Otherwise, a schema generation from
the XML instances is proposed (also based on the XSLT
stylesheet). The transformation is based on rules for map-
ping XML element/attributes to ontology instances/properties
and respective XML structures to OWL constructs. The tool
XML2OWL is available online for testing, where it can be
run for sample XML documents. However, at the moment of
writing this paper (August, 2016), it is not working for any
provided sample.

In [20], a direct mapping from the XML Schema to OWL,
and from the XML to the RDF graph is proposed. However,
these mappings are independent, so the resulting instances
do not have to be consistent with the created ontology. Fur-
thermore, potentially problematic situations, e.g. preserving
order of XML elements, are not considered. Moreover, a tool
realizing this approach does not seem to be maintained.

In [30], a more elaborate solution, dealing with more com-
plex XML constructs (e.g. reuse of global types and elements),
is described. The XML Schema is automatically translated to
the ontology and mapping bridges are generated for translation
of XML entities and for query translation. Authors stress that
the second step (after running the algorithm), is a manual
refinement of obtained ontology and of the mapping bridges.
We have not found the described tool, however, we may treat
related publications as a source of knowledge on how complex
XML structures can be mapped onto OWL constructs.

In [16], a framework for generating OWL from a set of
XML Schemas, based on predefined complex transformation
patterns, is proposed. The tool is not available online, however
the authors include numerous transformation patterns that can,
for instance, be used for testing other solutions.

Authors of [40], describe an approach that deals with
multiple XML data sources and design patterns, where the
schema can be automatically generated. The mapping is based
on the XML schema and the XML Schema Graph. We could
not locate the tool described in the publication, so this work
can be treated only as a source of theoretical knowledge.

Note that the problem with transforming “full” syntactic

https://www.w3.org/XML/
https://www.w3.org/XML/1998/06/xmlspec-report.htm
https://www.w3.org/XML/Schema
http://projects.semwebcentral.org/projects/jxml2owl/
http://xml2owl.sourceforge.net/index.php


specification from XML to OWL, has not been fully solved.
For instance, XML constructs such as sequence and choice
elements cannot be directly expressed in the OWL syntax.
As a result, the information captured in ontologies does not
always allow for the transformation of OWL descriptions to
XML documents valid with respect to a given schema. This
problem was addressed by authors of [36] where a framework
for bidirectional transformations based on XS2OWL mapping
model [37] is described. XS2OWL takes as input XSD and
produces: (i) main ontology that captures XSD semantics,
(ii) XML Schema with simple datatypes from the original
ontology, (iii) mappings of OWL ontology construct ids to
XSD construct names, and XSD constructs that cannot be rep-
resented in OWL. The XS2OWL XSLT stylesheet is available
online, however we could not localize the full framework. Note
that bidirectional translations are crucial to our work, which
makes this work of value; regardless, the “missing tool”.

Another very significant innitiative, described in [31], was
undertaken by National Institute of Standards and Technology
(NIST). A set of C++ software tools (part of them automat-
ically generated) for manipulating XSD and XML instance
files, and transforming them into OWL conceptual model files
and OWL instance files was proposed. Note that in the pro-
posed solution, XSD file needs to conform to some restrictions
for the transformation process to be efficient and to overcome
the problem of lack of full compatibility between XSD and
OWL. Unfortunately, it seems that the tools are not publically
available. Nevertheless, the paper contains throughout analysis
of the steps required to perform the translation and problems
that can arise.

Besides the aforementioned research, there are tools for
XSD and XML data transformation available online includ-
ing: Ontomalizer and ReDeFer. Ontomalizer allows automatic
conversion based on a set of predefined rules, even for very
large schemas, e.g. the HL7 CDA (one of the test cases).
ReDeFer is a set of utilities for different transformations, e.g.
XSD to OWL (based on the XSLT transform) and XML to
RDF, that can be tested in an online translation service. There
is also research devoted to transformation of DTD to OWL,
including [14].

B. JSON

The JavaScript Object Notation (JSON), designed by Dou-
glas Crockford, and defined in the IETF RFC 7159 [13], is a
lightweight key-value type data-interchange format. Inspired
by the JavaScript standard object literal syntax, it is currently
one of the most widely used data formats, closely behind the
decade-older XML.

Following the JavaScript dynamic object approach, JSON
does not itself provide any kind of schema-capabilities. Unlike
the XML, it does not currently have any standardized schema
language either. The most popular attempt to provide one, so
far, is the JSON Schema [27], [33]. Even though, it is still at
the IETF draft level, its usage and tool support is growing.
The JSON Schema, similarly to the XSD, uses the “object-
language”, i.e. JSON in this case, for defining schemas.

Regardless of its novelty, there are various tools supporting
the JSON Schema format, such as validators, data-parsing
libraries, and schema generators. Many of them have been
listed on the language’s main site [8]. Most interesting and
useful, from the semantic point of view, are the generators.
They allow to construct a schema, based on a single, or
multiple, JSON document(s). Among the available generators
let us mention: the highly configurable JSONSchema.net [9], a
group of Node.js based tools, including [5], [3], and a Python
based GenSon [6]. All of them analyze the structure of the
input JSON document(s) to establish names of attributes and
types of their values. The tools capable of accepting multiple
input documents can also detect the optional and required
attributes. Unfortunately, some of the more advanced features
of the JSON Schema format, such as validation keywords,
restricting the possible values of the attributes, are usually
not fully taken into account by the generators. An interesting
feature of the GenSon is that it can not only allows to input
multiple JSON documents, but also multiple JSON schemas.
All the input documents have to validate under the generated
schema. Moreover, any JSON which is valid for all the input
schemas must also validate against the generated one.

The JSON Schema documents can further be transformed
into the XML Schema (XSD) format, although the choice of
supporting tools is rather limited (e.g. [4], [10]). From the XSD
schema, any of the methods mentioned above can be used to
obtain an OWL ontology describing semantics of the data.
At the same time, there are almost no methods of “directly”
converting JSON Schema to OWL. One of the exceptions is an
approach, based on the idea of model-driven transformations,
presented in [39]. The authors have also created a prototype
implementation of the method, but it does not seem to be
available for the general use.

Note, that there is an intrinsic discrepancy between the
JSON Schema and the XML Schema, which any conversion
tool has to take into account. The latter describes a “closed
content” where instances can contain only items explicitly
allowed by the schema. The JSON Schema, on the other
hand, specifies an “open content”. Thus, schema instances—if
not explicitly forbidden—may contain items beyond the ones
requested by the schema. Therefore, while transforming the
JSON Schema to the the XSD, one needs to make it open
(e.g., by using the <any> element, wherever the JSON Schema
does not prohibit additional properties).

The JSON format has also been used for serialization of
linked data. The W3C JSON-LD recommendation can be seen
as effectively defining a JSON serialization of RDF, although
it allows some extensions, like blank nodes as predicates for
example (RDF predicates have to be IRIs). Fortunately, these
differences between the JSON-LD and the RDF can be treated
in a uniform way (some suggested solutions can even be
found in the recommendation), and standard tools like OWL
API [11], [7] are capable of converting JSON-LD documents
to RDF/XML, and hence also to OWL.

https://github.com/istavrak/XS2OWL
https://github.com/srdc/ontmalizer
http://rhizomik.net/html/redefer
https://www.w3.org/TR/json-ld/


C. Relational databases

Relational databases (RDB) are, by far, the most popular
way of storing data. Despite their legacy (or perhaps because
of it), relational database models can be expressed in a
variety of ways. Other than modeling artifacts, like Entity-
Relationship diagrams, relational models can be formally
written as a series of SQL statements. Unfortunately, SQL
implementations are vendor-specific, and, even though com-
mon standards are largely adhered to, crucial details may
not be compatible across different engines. Vendor-specific
statements are usually not taken into account and the common
SQL language base provides a relatively limited amount of
structural information (compared to an ontology).

Data, in RDBs, is stored in tables with typed-columns.
Entities in tables are identified by special subsets of columns
called primary keys. Inter-table relations are stored as foreign
keys, which contain information about direct one-to-one link
between a subset of columns from two tables. Foreign keys
do not need to be named (i.e. labeled). More precisely,
explicit declaration of primary and foreign keys is usually
optional. This means that it is very likely that a database will
not contain any formal information about inter-relationships
of entities stored within it. Also of note is the fact that
relational databases do not declare any hierarchy of tables
(an “approximation” of a taxonomy). In comparison, OWL
individuals are identified by a globally unique URI and often
have multiple types. Relations are always named, and tax-
onomies are often deep and wide. Ontologies form rich graphs
of densely interlinked entities.

The characteristics of RDBs make the relational models
distinctly different from OWL and, thus, difficult to convert
in a way that is not only formally correct, but also yields
useful and high quality ontologies. Nevertheless, a number of
approaches exists that attempt to solve this problem. Even if
the resulting ontology is not up to par, it can be a good starting
point in conversion of relational model into an OWL ontology.

DB2OWL [19] is a tool for automatic construction of OWL
DL ontologies from relational databases. It inspects the basic
structure of a database (i.e., tables, columns, foreign and
primary keys) and builds correspondences between those and
the OWL elements, based on a predefined set of assumptions.
Every table name is considered an equivalent to an OWL class.
Columns that are not part of keys, are converted to datatype
properties with corresponding xsd data types. Columns that
are foreign keys, are converted to object properties, with
appropriate range and domain. Primary keys are converted
either to object properties (like foreign keys), or to is-a
relations. The authors have identified a few special cases that
help to increase the quality of the resulting ontology. For
instance, tables that contain only two foreign keys (and no
other columns) are converted to an object property, instead of
a class. Tables that have columns that are both primary keys
and foreign keys pointing to a primary key in another table
are considered to be in a subsumption relation. If the keys are
not present, the method simply does not work as intended, i.e.

it only produces simple classes, with restrictions on datatype
properties, and no object properties or is-a relations.

Construction of a taxonomy is the most sensitive part of this
solution. Unfortunately, judging by the ontology engineering
standards, the constructed taxonomy is very “flat”, i.e. has
very few relations. Since the meaning of data is lost in a
database, any columns that serve only to identify a virtual
entity in a relational database are not required in other storage
types (e.g. graph and object databases have identifiers separate
from other properties or fields of data objects). In the resulting
ontology they have the same relevance as any other property,
even though they may be deemed unnecessary by an ontology
engineer (OWL entities have globally unique URIs, so other
identifiers are gratuitous). N-ary relationships are also not
considered specifically.

Besides the ontology, DB2OWL [15] produces a mapping
between the database and the ontology in the R2O format.
It contains a full description of the database schema and
correspondences between the schema and the ontology. Un-
fortunately, according to our best knowledge, the DB2OWL
has not seen any meaningful improvements since 2008, when
the prototype was implemented. The software tool is not
readily available online. Resulting ontologies are burdened
by characteristics of relational database models. They are
specific to the database, with no links to other ontologies, and
have somewhat “flat” taxonomies. Following the DB2OWL
algorithm, the classes necessarily need to have direct instances
(database entities), and no class without instances is created,
which is not in line with the OWL models.

The RDBToONTO [18], is a solution similar to the
DB2OWL. It offers an open-source implementation of an
automatic algorithm that constructs OWL ontologies from
relational databases. A useful feature of the RDBToONTO is
the responsive user interface that displays results and allows a
certain degree of control over processing. Specifically, a user is
able to add constraints that include table inclusion/exclusion,
class and relation naming patterns, and taxonomy creation
rules. Because the results of the constrained process are
displayed to the user, the tool allows for a pseudo-iterative
process of adjusting constraints and re-running the algorithm
in order to improve the resulting ontology. The RDBToONTO
is also able to populate the ontology with individuals, name
patterns of which are user-defined. As a result, the OWL file
is a good representation of the model and contents of the
relational data. We have found that ontologies generated by
the RDBToONTO are of moderate quality, which is the best
result when it comes to automatic generation of OWL files
from the relational databases.

Let us also mention that there are other tools, such as
mapping languages (e.g. D2RQ, R2RML, RDB2OWL), and
data integration tools (e.g. KARMA, Virtuoso). These kinds
of software can assist in extracting explicit semantics from
RDB (and other formats), but, generally, does not produce an
ontology (or a EDB to OWL mapping) automatically, without
user input.

https://sourceforge.net/projects/rdbtoonto/
http://d2rq.org/d2rq-language
https://www.w3.org/TR/2012/REC-r2rml-20120927/
http://rdb2owl.lumii.lv/
http://usc-isi-i2.github.io/karma/
http://virtuoso.openlinksw.com/


D. Non-relational databases and other data formats

Let us now make few observations about data formats
not considered thus far. All of them, for different reasons,
“deserve” to be mentioned. Let us start from the RDF, which
is a special data format in our context, because OWL uses
RDF and RDFS tags directly and can be stored in the RDF
format. Moreover, some key tags in RDF and RDFS are direct
superclasses of OWL tags (e.g. owl:Class is a subclass of
rdfs:Class, owl:Property is a subclass of rdf:Property). OWL-DL,
the reasoner-enabled OWL profile, imposes some restrictions
on the RDF tags that are consistent with the language defi-
nition, e.g. an entity cannot be at the same time an owl:Class
and an owl:Individual. OWL Full relaxes those restrictions and
can store any RDF tag, making the conversion from RDF
trivial. However, because of its limited practical usability,
we are not interested in OWL Full in our context. Overall,
relations between RDF, RDFS, and various OWL profiles are
very intricate and beyond the scope of this work.

Next, let us look at non-relational databases. In recent years,
NoSQL databases have reached some level of maturity, and
are utilized across many industries and applications. However,
it has to be immediately observed that the NoSQL is a
term that spans multiple technologies and implementations.
These include document, graph, object, key-value, triplestore,
multi-paradigm and other types of databases. Even within
one paradigm, such as graph databases, implementations and
models vary greatly between vendors. In some cases, such as
triple-stores, and some graph databases, RDF is stored directly,
so the problem is reduced to lifting from RDF. For the sake
of completeness, let us mention that there are also NoSQL
solutions that are designed for OWL specifically (e.g. Stardog).

In other cases, conversion of a database specific model, used
in a given database, to OWL requires a tailor-made solution,
designed for a given database engine. Even the graph model,
which at a glance seems to naturally fit the OWL, is (in
practice) realized through a large diversity of completely dis-
parate implementations (both for data persistence and database
queries). The existing differences in models and query lan-
guages result in lack of a general solution to “lifting” NoSQL
models to OWL. As a matter of fact, literature search did not
reveal any serious attempts of proposing approaches to solving
this problem even for specific databases. Therefore, at present,
in order to solve this problem, one is required to write scripts
or programs customized to both the problem at hand and the
specific database engine. As an illustration, let us consider
three popular databases—MongoDB, Neo4j and OrientDB.
Data formats they use are called BSON (JSON-like format
with dynamic schemas); Cypher graph (with nodes, edges and
attributes); and Orient graph (with edges, optionally typed
vertices, documents, relationships and others); respectively.
Those models are accessed with vendor-specific languages,
such as OrientSQL, or CQL (Cypher Query Language; for
Neo4j). Devising a mechanism to lift any of these models to
OWL is not possible without a deep understanding of each
of these models (and languages), and the differences between

them might make development of a global solution impossible.
Implementation of a solution for a particular database needs to
use a respective query language. The implementation problem
can be somewhat mitigated by the use of a language commonly
supported across databases, such as the Gremlin (compatible
with both Neo4j and OrientDB, but not with MongoDB).

Let us finally mention the general class of “other tech-
nologies” of data persistence and/or communication. As an
example let us use software agents. Here, we see, for instance,
the KQML [22] and ACL [32] communication languages and
the FIPA SL Content Language (which may serve as an OWL
wrapper [35] in communication). We mention these technolo-
gies specifically, because software agents naturally materialize
in the context of the Internet of Things (see, for instance, [23],
[25]). Also note that those are examples of domain-specific
communication mechanisms, which were thought through to
match the needs of the domain itself. They have been also
elevated to the level of standardization (ACL and FIPA SL).
Nevertheless, these communication mechanisms do not have
an OWL based representation.

KQML, ACL and FIPA ACL represent a class of problems
not uncommon in contemporary software. The standardized
schemas are stored and represented exclusively in human-
readable files, such as documents with text descriptions and
diagrams. Even if the information is structured, e.g. in one of
standardized UML representations, it’s semantics is implicit.
In other words, lifting to OWL requires manual labor and
depends on understanding of the documentation. In this class
of problems there are no tools whatsoever to support an
ontology engineer in lifting the implicit semantics of the
software communication mechanism or data model to OWL,
despite complete documentation.

IV. CONCLUDING REMARKS

After the analysis of methods and tools available for “lifting
to OWL” we have concluded that each of the researched data
formats calls for a slightly different approach.

For the XML instances and the XML Schema, there exist
dedicated tools (some of them available online), however
there are special XML constructs that cannot be immediately
represented in OWL, and should be considered separately, e.g.
by manually adding a meta-ontology.

In case of JSON, the procedure for extracting semantics
differs depending on the presence or absence of the JSON
Schema. If it is available, then there are tools that can convert
it to the XSD, and then tools for the XSD conversion can be
applied. In case of no schema, full documentation is required.
Unfortunately, no tools for direct conversion of the JSON
Schema to the OWL ontology are available.

For relational database schemas there exist tools for gen-
erating OWL ontologies, however the database itself may not
have semantics “embedded” even in an implicit format, as
it is designed with different objectives. Therefore, an iterative
process involving a human may be necessary, with extra effort
in case of no-semantic-carrying labels.

http://stardog.com/
https://www.mongodb.com/
https://neo4j.com/
http://orientdb.com/orientdb/
http://tinkerpop.apache.org/
http://www.fipa.org/specs/fipa00008/SC00008I.html


RDF and RDFS files are, in principle, easy to convert to
OWL, but their inherent high expressivity (compared to OWL)
may not translate into good ontologies.

Other data communication formats and various variants of
NoSQL databases require dedicated handling since there are
no tools available.

Overall, it has to be stressed that, despite the source data
format, the produced ontologies need to be verified by an
ontology engineer before use. In other words, automated tools
cannot (yet?) replace an ontology engineer. On the other hand,
the ontology engineer can find a degree of support in relevant
software, and is not alone in the process of lifting to OWL. In
any case, the last step in the process should always be quality
control performed by a human.

ACKNOWLEDGMENT

This research was partially supported by the Euro-
pean Union’s “Horizon 2020” research and innovation pro-
gramme as part of the “Interoperability of Heterogeneous
IoT Platforms” (INTER-IoT) project under Grant Agreement
No. 687283.

REFERENCES

[1] http://ontologydesignpatterns.org/wiki/Odp:WhatIsAnExemplaryOntol
ogy.

[2] http://wiki.opensemanticframework.org/index.php/Ontology_Best_Pract
ices.

[3] https://github.com/krg7880/json-schema-generator.
[4] http://www.altova.com/xmlspy/json-schema-editor.html.
[5] Generate schema. https://github.com/Nijikokun/generate-schema.
[6] Genson. https://github.com/wolverdude/GenSON/.
[7] JSON-LD support for OWL API. https://github.com/stain/owlapi-jsonld.
[8] JSON Schema. http://json-schema.org/.
[9] JSON Schema Net. http://jsonschema.net/.

[10] Jsons2xsd. https://github.com/ethlo/jsons2xsd.
[11] OWL API. https://github.com/owlcs/owlapi.
[12] Owl web ontology language guide. https://www.w3.org/TR/owl-guide/.
[13] Internet engineering task force (IETF). the JavaScript Object Notation

(JSON) data interchange format. https://tools.ietf.org/html/rfc7159,
March 2014.

[14] Mehdi Bahrami, Mokhtaria Hacherouf, and Safia Nait Bahloul. Proc.
of the 2015 international conference on soft computing and software
engineering (SCSE’15) DTD2OWL2: A new approach for the transfor-
mation of the DTD to OWL. Procedia Computer Science, 62:457–466,
2015.

[15] Jesús Barrasa, Óscar Corcho, and Asunción Gómez-pérez. R2o, an
extensible and semantically based database-to-ontology mapping lan-
guage. In in In Proc. of the 2nd Workshop on Semantic Web and
Databases(SWDB2004, pages 1069–1070. Springer, 2004.

[16] I. Bedini, C. Matheus, P. F. Patel-Schneider, A. Boran, and B. Nguyen.
Transforming XML schema to OWL using patterns. In Semantic
Computing (ICSC), 2011 Fifth IEEE International Conference on, pages
102–109, Sept 2011.

[17] Hannes Bohring and Sören Auer. Mapping XML to OWL ontologies. In
Leipziger Informatik-Tage, volume 72 of LNI, pages 147–156. GI, 2005.

[18] Farid Cerbah. Learning highly structured semantic repositories from
relational databases. In European Semantic Web Conference, pages 777–
781. Springer, 2008.

[19] Nadine Cullot, Raji Ghawi, and Kokou Yétongnon. Db2owl: A tool for
automatic database-to-ontology mapping, 2007.

[20] Matthias Ferdinand, Christian Zirpins, and D. Trastour. Lifting XML
Schema to OWL. In Nora Koch, Piero Fraternali, and Martin Wirsing,
editors, Web Engineering - 4th International Conference, ICWE 2004,
Munich, Germany, July 26-30, 2004, Proceedings, pages 354–358.
Springer Heidelberg, 2004.

[21] Miriam Fernández, Chwhynny Overbeeke, Marta Sabou, and Enrico
Motta. What makes a good ontology? a case-study in fine-grained
knowledge reuse. In Asian Semantic Web Conference, pages 61–75.
Springer, 2009.

[22] Tim Finin, Richard Fritzson, Don McKay, and Robin McEntire. Kqml
as an agent communication language. In Proc. of the 3rd International
Conference on Information and Knowledge Management, pages 456–
463. ACM, 1994.

[23] Giancarlo Fortino, Antonio Guerrieri, Michelangelo Lacopo, Matteo
Lucia, and Wilma Russo. An Agent-Based Middleware for Cooperating
Smart Objects, pages 387–398. Springer Berlin Heidelberg, Berlin,
Heidelberg, 2013.

[24] Giancarlo Fortino, Antonio Guerrieri, Wilma Russo, and Claudio
Savaglio. Middlewares for Smart Objects and Smart Environments:
Overview and Comparison, pages 1–27. Springer International Pub-
lishing, Cham, 2014.

[25] Giancarlo Fortino, Antonio Guerrieri, Wilma Russo, and Claudio
Savaglio. Middlewares for Smart Objects and Smart Environments:
Overview and Comparison, pages 1–27. Springer International Pub-
lishing, Cham, 2014.

[26] Michael Friedewald and Oliver Raabe. Ubiquitous computing: An
overview of technology impacts. Telematics and Informatics, 28(2):55–
65, 2011.

[27] Francis Galiegue, K Zyp, and Gary Court. Internet engineering task
force (IETF). JSON Schema: core definitions and terminology. https:
//tools.ietf.org/html/draft-zyp-json-schema-04, August 2013.

[28] Maria Ganzha, Marcin Paprzycki, Wiesław Pawłowski, Paweł Szmeja,
and Katarzyna Wasielewska. Towards semantic interoperability between
Internet of Things platforms. Springer, submitted for publication, 2016.

[29] Maria Ganzha, Marcin Paprzycki, Wiesław Pawłowski, Paweł Szmeja,
Katarzyna Wasielewska, and Giancarlo Fortino. Tools for ontology
matching—practical considerations from INTER-IoT perspective. In
Proc. of the 8th Int. Conference on Internet and Distributed Computing
Systems, volume 9864 of LNCS, pages 296–307. Springer, 2016.

[30] Raji Ghawi and Nadine Cullot. Building ontologies from XML data
sources. In Proc. of the 20th International Workshop on Database and
Expert Systems Application, DEXA ’09, pages 480–484, Washington,
DC, USA, 2009. IEEE Computer Society.

[31] Thomas R. Kramer, Benjamin H. Marks, Craig I. Schlenoff, Stephen B.
Balakirsky, Zeid Kootbally, and Anthony Pietromartire. Software
tools for XML to OWL translation. Technical report, NIST Intera-
gency/Internal Report (NISTIR) – NIST IR 8068, July 2015.

[32] Yannis Labrou, Tim Finin, and Yun Peng. Agent communication
languages: The current landscape. IEEE Intelligent systems, 14(2):45–
52, 1999.

[33] Felipe Pezoa, Juan L. Reutter, Fernando Suarez, Martín Ugarte, and
Domagoj Vrgoc. Foundations of JSON schema. In Proc. of the 25th
International Conference on World Wide Web, WWW 2016, Montreal,
Canada, April 11 - 15, 2016, pages 263–273, 2016.

[34] Toni Rodrigues, Pedro Rosa, and Jorge Cardoso. Mapping XML to
Existing OWL Ontologies. In Pedro Isaías, Miguel B. Nunes, and In-
maculada J. Martínez, editors, International Conference WWW/Internet
2006, pages 72–77, 2006.

[35] Bernhard Schiemann and Ulf Schreiber. Owl dl as a fipa acl content
language. In Proc. of the Workshop on Formal Ontology for Commu-
nicating Agents (FOCA), 18th European Summer School of Language,
Logic and Information, pages 73–80, 2006.

[36] Chrisa Tsinaraki and Stavros Christodoulakis. Interoperability of XML
Schema Applications with OWL Domain Knowledge and Semantic Web
Tools, pages 850–869. Springer Berlin Heidelberg, Berlin, Heidelberg,
2007.

[37] Chrisa Tsinaraki and Stavros Christodoulakis. XS2OWL: A Formal
Model and a System for Enabling XML Schema Applications to In-
teroperate with OWL-DL Domain Knowledge and Semantic Web Tools,
pages 124–136. Springer Berlin Heidelberg, Berlin, Heidelberg, 2007.

[38] Mark Weiser. The computer for the 21st century. Scientific American,
265(3):66–75, January 1991.

[39] Martin Wischenbart, Stefan Mitsch, Elisabeth Kapsammer, Angelika
Kusel, Stephan Lechner, Birgit Pröll, Werner Retschitzegger, Johannes
Schönböck, Wieland Schwinger, and Manuel Wimmer. Automatic data
transformation: Breaching the walled gardens of social network plat-
forms. In Proc. of the APCCM’13, pages 89–98. Australian Computer
Society, Inc., 2013.

[40] Nora Yahia, Sahar A. Mokhtar, and AbdelWahab Ahmed. Auto-
matic generation of OWL ontology from XML data source. CoRR,
abs/1206.0570, 2012.

http://ontologydesignpatterns.org/wiki/Odp:WhatIsAnExemplaryOntology
http://ontologydesignpatterns.org/wiki/Odp:WhatIsAnExemplaryOntology
http://wiki.opensemanticframework.org/index.php/Ontology_Best_Practices
http://wiki.opensemanticframework.org/index.php/Ontology_Best_Practices
https://github.com/krg7880/json-schema-generator
http://www.altova.com/xmlspy/json-schema-editor.html
https://github.com/Nijikokun/generate-schema
https://github.com/wolverdude/GenSON/
https://github.com/stain/owlapi-jsonld
http://json-schema.org/
http://jsonschema.net/
https://github.com/ethlo/jsons2xsd
https://github.com/owlcs/owlapi
https://www.w3.org/TR/owl-guide/
https://tools.ietf.org/html/rfc7159
https://tools.ietf.org/html/draft-zyp-json-schema-04
https://tools.ietf.org/html/draft-zyp-json-schema-04

	Introduction
	INTER-IoT use case scenarios
	Lifting to OWL ontologies
	XML
	JSON
	Relational databases
	Non-relational databases and other data formats

	Concluding remarks
	References

