
Alignment-based semantic translation of geospatial
data

Maria Ganzha∗‡, Marcin Paprzycki∗§, Wiesław Pawłowski†∗, Paweł Szmeja∗

Katarzyna Wasielewska∗
∗ Systems Research Institute, Polish Academy of Sciences, Warsaw, Poland

† Faculty of Mathematics, Physics, and Informatics, University of Gdańsk, Gdańsk, Poland
‡ Warsaw University of Technology, Warsaw, Poland
§ Warsaw Management Academy, Warsaw, Poland

Abstract—Recent years are characterized by a renewed interest
in semantic technologies. Growing number of data providers
and users facilitate production and consumption of semantically-
annotated resources. Unfortunately, this process does not go
hand-in-hand with “stabilization” (not to talk about standar-
dization) of a set of broadly accepted ontologies. As a matter
of fact, the number of ontologies being proposed/developed,
often “competing” with each other within the same domain,
systematically increases. This, in consequence, stimulates work
devoted to, various forms of, ontology “reconciliation”, such as:
establishing alignments and/or ontology merging.

In this context, in the Internet of Things (IoT), use of
semantic technologies materializes, among others, in the hand-
ling of messages exchanged between artifacts that constitute
IoT ecosystems. Here, some existing platforms (e.g. Open-IoT,
UniversAAL or VITAL) use serializations of RDF to transmit
messages, others (e.g. FIWARE or oneM2M) support ontologies,
even if they don’t use RDF. Thus, one of important unresolved
issues remains: how to facilitate understanding of messages
exchanged between artifacts founded on different ontologies (i.e.
establish semantic interoperability). In this paper, we focus on
semantic translations, based on ontology alignments. We discuss
the problem of identifying and representing alignments (using
geospatial data as the use case example), so that they can be
further used in the translation process.

I. INTRODUCTION

With the increasing popularity of the idea of the Internet of
Things (IoT), and related concepts of Web of Things (WoT),
Big Data, and Linked Data, problems related to exchanging,
storing and analyzing data originating from heterogeneous
(in terms of both syntax and semantics) data sources require
urgent actions. Even though, there exist multitude of standards
for data representation, there is not a single “leading approach”
that would dominate the others, and there does not seem to
be any materializing in the near future. As a matter of fact,
it is possible that D. Fensel was right, when he claimed1 that
he does not foresee a general “ontology of everything” to ma-
terialize. Rather, he expects multitude of small/local/domain
specific ontologies to be developed. Obviously, on the other
side of this discussion, there is a project CYC2, which for
more than 30 years attempts at developing a single/complete
ontology of the world. Let us remain agnostic as to who is

1Keynote presentation and follow-up discussion during “5th Business
Information Systems” conference, Poznan, Poland, April, 2002

2http://www.cyc.com/

right, and be pragmatic. IoT ecosystems of today that have to
bring together multiple platforms, applications, middlewares,
networks, sensors, etc., cannot wait for standardized ontologies
(on any level) to materialize and be agreed on. Therefore,
the key aspect of success for IoT deployments, consisting of
heterogeneous artifacts, is research that attempts to address the
problem of achieving interoperability between existing data
representations.

It is worth noting that interoperability, in the Internet of
Things, is considered in a number of European projects within
the Horizon2020 programme3. One of them, INTER-IoT [3]
provides context for the work presented in this paper. Its goal
is to provide tools and methods to achieve interoperability
at different layers of IoT technology stack (devices, network,
middleware, applications and services, data and semantics) and
across them. The work done within the data and semantics
layer includes, among others, designing and implementing
an Inter Platform Semantic Mediator (IPSM) component that
performs semantic translation of semantically-annotated data,
based on alignments to and from a deployment specific central
ontology (for details concerning the IPSM and the central
ontology, see [7], [6], [8]). In this context, in [9] a format
for representing alignments between ontologies has been pro-
posed. In this work, we discuss what information should be
included in the alignment, to be able to perform translation
of geospatial data. We also show what actual “help” can one
expect to obtain in establishing alignments between ontologies,
from two of the best tools available for ontology matching that
were initially selected in [10].

Use of geospatial information, as practical example of onto-
logy matching, provides context for a more general discussion
of issues that have to be confronted in real-world IoT deploy-
ments. Geospatial data was selected, because of its common
usage to describe observation from different domains, and
existence of several popular standards for data representation.
However, results presented here naturally generalize beyond
the geospatial case. Scenarios, in which different systems col-
lect (geospatial) data and store them in different formats; and
where such data later needs to be exchanged (and understood
by parties participating in the communication process), can

3Projects grouped within the IoT-EPI initiative http://iot-epi.eu/

http://iot-epi.eu/

be easily thought of. Even though, the syntax is different in
each case, the translation process should ensure that semantics,
of exchanged data, is preserved. For example, lets consider a
situation when data is send from sensor(s) placed on truck(s)
to the IoT platform of a haulier company. Each transmitted
observation is described with a device identifier, measured
property e.g. temperature, and the actual geographic location
of the truck. Another, analytic, IoT system may be subscribed
to this data stream, to receive observations from the haulier IoT
platform, to analyze truck route patterns. However, the analytic
system works with geospatial data represented in a different
standard/format. Let us now assume that the analytic platform
serves as a data source for other IoT artifacts, e.g. port IoT
system that deals with information about positions of trucks
(only) within the port area. Because of technical limitations,
and already existing formal agreements, the port system is not
going to be connected directly to the haulier company IoT
system. Here, it is quite possible that the port system uses yet
another representation of geospatial information. It should be
clear that, in this example, it would be necessary to perform
at least two translations of geospatial data (from the haulier
company platform to the analytic system and from the analytic
platform the the port platform), so that the sensor data would
be understood across the ecosystem. While this example may
seem somewhat unrealistic, existence of real-world need for
translation of geospatial data is real.

A. Alignments and their representations

To be able to discuss semantic interoperability, it is neces-
sary to introduce the concepts of ontology alignment, mat-
ching, mapping, and translation. These terms are interrelated
and sometimes used interchangeably (even if this may not be
the right thing to do). To properly distinguish their meaning,
we define them as follows (see, also, [5]).

Ontology alignment, refers to the process of finding cor-
respondences between two, or more, ontologies. The result
of this process consists of, one or more, captured correspon-
dences between particular entities, or groups of entities and
sub-structures. A correspondence can be either a predicate
about similarity, called a matching, or a logical axiom – a
mapping. Typically used mapping axioms are equivalences
and subsumptions. In practice, when ontology alignment tools
are used to specify alignments, they often state a degree of
confidence for every discovered/proposed correspondence. An
equivalence axiom, with a degree of confidence, is very close
in meaning to a predicate about similarity (a matching). Note
that, terms “mapping” and “matching” are often not properly
distinguished, in the terminology used by existing alignment
tools. Therefore, in the literature, and in practice, a set of
correspondences can be called “alignment”, “matching”, or
“mapping”. In what follows, we have chosen to use the most
widespread term – “alignment”.

Ontology translation, or, more precisely, semantics trans-
lation, is a process of changing the underlying semantics of
a piece of knowledge, meaning, describing the knowledge in
different terms, possibly coming from a different ontology.

The fundamental use case is translation of messages that
takes place during communication. In general, information
described semantically, in terms of a source ontology, is
transformed into information described in terms of a target
ontology. As a result, the source semantics (contained in the
translated message) is fully replaced with the target semantics.
Naturally, good quality translation should preserve as much of
the meaning of the translated content as possible (the ideal case
being a “lossless translation”).

Semantic translation is a natural case for application of
ontology alignment(s). Here, the goal is to enable one-way
(or two-way) “understanding” between software artifacts that
implement differing semantics. This is directly applicable,
among others, to the Internet of Things. For instance, IoT
ontologies: OpenIoT4, SAREF5, and oneM2M6, have similar
scope (see, also [8]). The goal of semantic translation would
thus be, for instance, allowing a platform that uses OpenIoT
to seamlessly communicate (one-way or bidirectionally) with
a platform that represents its data using SAREF.

Existing ontology alignment tools (for a comprehensive
summary of existing tools, see [10]) produce output in various
formats, including a very popular Alignment API format [2].
Alignment API format can be defined on several levels: 0
– where matched are entities identified by URIs, 1 – in
which matched are sets of entities identified by URIs (not
used7), 2 – where matched are more structured entities that
may be represented in RDF/XML. In case of level 2 it is
necessary to further identify the structure of source and target
entities. Results, returned by the researched tools, are usually
expressed on level 0, i.e. only simple URI-to-URI mappings
are considered. EDOAL [1] (which is on level 2), on the
other hand, is capable of expressing complex alignments,
i.e. mappings between complex descriptions with multiple
restrictions.

Here, it is perhaps worth stressing that the translation pro-
cedure is not “symmetric”. If one wants to translate messages
bidirectionally, two separate translation procedures need to be
defined. Hence, a pair of separate one-way alignments enables
two-way translation.

B. Geospatial data representation standards

As stated earlier, results presented in this paper are based
on examples of use of geospatial data in semantic translations.
Let us, therefore, briefly introduce selected standards for repre-
sentation of geospatial data. In what follows, when presenting
examples we use Turtlen notation8 as it seems widely accepted
as the most concise and readable serialization of RDF. For
completeness, the list of used prefixes can be found in the
Appendix section V. Here, let us start by introducing the

4https://github.com/OpenIotOrg/openiot
5https://sites.google.com/site/smartappliancesproject/ontologies/reference-o

ntology
6http://www.onem2m.org/technical/onem2m-ontologies
7Based on information provided by the authors of http://alignapi.gforge.in

ria.fr/format.html
8https://www.w3.org/TR/turtle/

https://github.com/OpenIotOrg/openiot
https://sites.google.com/site/smartappliancesproject/ontologies/reference-ontology
https://sites.google.com/site/smartappliancesproject/ontologies/reference-ontology
http://www.onem2m.org/technical/onem2m-ontologies
http://alignapi.gforge.inria.fr/format.html
http://alignapi.gforge.inria.fr/format.html
https://www.w3.org/TR/turtle/

most popular standards, available for representing geospatial
information:

• Basic Geo (WGS84 lat/long) Vocabulary9 – this is
the basic, W3C recommended, vocabulary for describing
points on the map, using latitude, longitude, and altitude
properties (parts of the WGS84 reference datum spe-
cification) and other information about spatially-located
“things”. The rdfs:range of the geo:lat, geo:long and
geo:alt properties are the XML Schema float datatypes.
Listing 1 shows an instance representing a point with
specified coordinates. Such an instance can be used as a
value for a measurement value property, for instance as
a part of the information about location of a truck, in the
above example.

[] a geo:Point ;
geo:lat "55.701" ;
geo:long "12.552" .

Listing 1. Example of geospatial data in Basic Geo Vocabulary

Note: from now on, we shall use the short name WGS84
to denote the Basic Geo (WGS84 lat/long) Vocabulary.

• GeoSPARQL10 – defines a vocabulary for representing
geospatial data in RDF, as well as an extension to the
SPARQL query language, introduced for processing geo-
spatial data. It allows representing a collection of complex
geometries and issue meaningful geospatial queries such
as, for example, how many objects are located within
3 km distance of the a selected location? Here, two
fundamental concepts are: Feature (an entity in the world,
with a spatial location) and Geometry (a geometric shape,
such as a point, polygon, or line; used as a representation
of a Feature’s spatial location). These two concepts are
related, via the hasGeometry property. For the Geometry
instances, coordinates can be specified using the asWKT
property. Listing 2 shows geospatial data, of a sample
instance, representing a Monument object, which is a
Feature. It has a geometry representing its location,
with specific WKT (Well Known Text11) coordinates.
Obviously, GeoSPARQL can also be used to represent
position of any other object (e.g. a truck within port
premises).

ex:PointOfInterest a owl:Class ;
rdfs:subClassOf geosparql:Feature .

ex:XYZMonument a ex:PointOfInterest ;
rdfs:label "XYZ Monument" ;
geosparql:hasGeometry ex:XYZPoint .

ex:XYZPoint a geosparql:Point ;
geosparql:asWKT "POINT(-70.12345

50.875382)"^^geo-sf:WKTLiteral .

Listing 2. Example of geospatial data in GeoSPARQL

• GeoRSS12 – Geographically Encoded Objects for RSS
Feeds format was designed as a lightweight, community

9https://www.w3.org/2003/01/geo/
10http://www.opengeospatial.org/standards/geosparql
11http://docs.opengeospatial.org/is/12-063r5/12-063r5.html
12http://www.georss.org/

driven, approach to extend existing feeds with geographic
information. There are two encodings of the GeoRSS:
Simple (which supports basic geometries, e.g. points,
lines, boxes, polygons, and covers the typical use cases,
when encoding locations), and GML (which supports a
greater range of features, and coordinate reference sys-
tems, other than the WGS84 latitude/longitude/altitude).
Besides GeoRSS definition as XML Schema, there exists
a Geo OWL ontology, which closely matches the GeoRSS
feature model, and utilizes the existing GeoRSS voca-
bulary for geographic properties and classes. Here, the
two main concepts are gml:_Feature and gml:_Geometry
(subclasses representing GML objects with corresponding
properties). They are related with the georss:where pro-
perty. Subproperties of georss:where represent GeoRSS
Simple and include, for instance the georss:Point. Each
of these properties takes a literal list of doubles as
their range, but they are equivalent, in definition, to
georss:where plus the corresponding GeoRSS GML class,
and its properties. Properties georss:lat and georss:long
are included as subproperties of georss:where, but are
treated together as the equivalent of: (i) georss:where
plus gml:Point with gml:pos, and (ii) georss:point. Lis-
tings 3 and 4 show two ways of representing the same
information, i.e. location of a Monument object. The first
one uses a property georss:point, to specify coordinates
in a textual format. The second one is similar to the
example from Listing 2, where an instance representing a
Monument object is declared as a gml:_Feature; however,
in the case of GeoRSS, it has georss:where property,
with value being an instance of the gml:Point class.
The gml:Point has specific coordinates, defined with the
gml:pos property. As above, this format of representing
geospatial information could be used also in the “truck +
analytics + port” example, introduced above.

ex:XYZMonument a georss:_Feature .

ex:XYZMonument dc:title "XYZ Monument" ;
georss:point "-70.12345 50.875382" .

Listing 3. Example of geospatial data in GeoRSS 1

ex:PointOfInterest a owl:Class ;
rdfs:subClassOf gml:_Feature .

ex:XYZMonument a gml:PointOfInterest ;
georss:where ex:XYZPoint ;
dc:title "XYZ Monument" .

ex:XYZPoint a gml:Point ;
gml:pos "-70.12345 50.875382" .

Listing 4. Example of geospatial data in GeoRSS 2

Notice that, in this paper, we are not interested in
comparison of different syntaxes that can be used in
the context of geospatial data representation, such as

https://www.w3.org/2003/01/geo/
http://www.opengeospatial.org/standards/geosparql
http://docs.opengeospatial.org/is/12-063r5/12-063r5.html

WKT13, GML14, KML15, GeoJSON16, and so on. We
focus exclusively on semantics. Moreover, for the sake
of brevity and clarity of examples, we chose the se-
mantics that are both popular and allow us to clearly
present our findings. Thus, other popular vocabularies
and ontologies that can be used to describe location,
such as schema.org17, DC terms18, VCard19, LOCN (ISA
Location core vocabulary)20 and others were not included.
Nevertheless, the following discussion, and the findings
naturally generalize also to these cases.

Even though the aforementioned geospatial data represen-
tation formats are quite straightforward to understand, and
mapping them onto each other seems natural (and, thus, easy to
achieve), defining formal translation rules is not that obvious.
Here, note that, in the IoT domain, it is quite often the case that
translation is performed not in the case of “isolated geospatial
data”, but includes also context information e.g. metadata
about the device that sends the geolocation data. Nevertheless,
we chose to use geospatial data as an example, to visualize
what problems arise for such a simple case of translation.
With more complex examples, the procedure gets even more
involved.

II. MATCHING GEOSPATIAL ONTOLOGIES USING
AVAILABLE TOOLS

Let us now show how existing tools, created to establish
alignments between ontologies, can be used with geospa-
tial data, represented using the, above summrized, standards.
When one would like to create an ontology alignment, to
be able to perform semantic translation, the first task is to
map concepts from the source ontology to the target ontology.
In [10], we have presented the results of our research on avai-
lable tools, which can be used for ontology matching. Here,
we are going to analyze the output produced by two of them:
LogMap and AgreementMakerLight, when applied to the
selected geospatial vocabularies. Out of the tools considered
in [10] these are the ones that not only actually work, but also
are still actively maintained, produce alignments, and accept
RDF and OWL as input. Here, our goal was to investigate
to what extent these tools can help producing an alignment
between two selected ontologies. The following cases have
been considered: i) mapping from WGS84 to GeoSPARQL,
ii) mapping from GeoSPARQL to GeoRSS iii) mapping from
GeoRSS to WGS84

Let us note that ontologies, introduced in Section I-B, are
more complex than the examples presented in forthcoming
Section III-B, where we focus only on translation of instances
of points described with coordinates. However, here we will

13http://docs.opengeospatial.org/is/12-063r5/12-063r5.html
14http://www.opengeospatial.org/standards/gml
15http://www.opengeospatial.org/standards/kml/
16http://geojson.org/
17http://schema.org/geo
18purl.org/dc/terms/Location
19https://www.w3.org/TR/vcard-rdf/#d4e239
20https://www.w3.org/ns/locn

deliberately focus on a rather simplistic use case, when we
want to translate only information about the coordinates of
a given point, e.g. in case of sharing information about a
position observation for a given device (i.e. sensor in a truck).
This information is to be shared, among IoT artifacts that are
using different ontologies to represent such information, as
it was briefly presented in Section I. Let us note, however
that, typically, with growing complexity and dissimilarity
of ontologies that are to be matched, success of automatic
matching decreases. Therefore, results from the simplistic use
case, considered here, provide an “optimistic” assessment of
actual usefulness of considered tools (in the context of the
introduced task).

Ideally, if the tools were able to match human knowled-
ge/expertise, the first case (mapping WGS84 7→ GeoSPARQL)
should result in a suggestion of mapping between Point
concepts from both ontologies. Specifically, values of the
WGS84 properties geo:lat and geo:long should be suitably
“concatenated”, to obtain the value of the geosparql:asWKT
property. In the second case (mapping GeoSPARQL 7→ Ge-
oRSS), the concepts of features, geometries and shapes, from
both ontologies, should be included in the mapping. The
geosparql:hasGeometry, geosparql:asWKT properties could
be indicated as equivalent to the georss:where and gml:pos
properties, respectively. In the latter case the equivalence
relation depends on geospatial encoding used, i.e. one should
distinguish between WKT and GML coordinates. In the third
case (mapping GeoRSS 7→ WGS84), concepts of a point,
and properties representing longitude and latitude, should be
indicated as potential match candidates.

LogMap21 – is an open-source tool that maps ontologies
and returns result in OWL, text, or in the OAEI Alignment
Format. The Alignment Format is at level 0 (alignments, in
which matched entities are identified by their URIs). Tests
were done with LogMap that is available at the University
of Oxford website 22, with mapping repair option turned on.
Listing 5 shows results from LogMap for the WGS84 7→
GeoSPARQL mapping. The result contains only one mapping,
for the concept of Point.

<map><Cell>
<entity1 rdf:resource="http://www.w3.org

/2003/01/geo/wgs84_pos#Point"/>
<entity2 rdf:resource="http://www.opengis.net/

ont/sf#Point"/>
<measure rdf:datatype="xsd:float">0.78</measure>
<relation>=</relation>

</Cell></map>

Listing 5. LogMap result: WGS84 7→ GeoSPARQL

Listing 6 shows results from LogMap for the GeoSPARQL
7→ GeoRSS mapping. The results contain correct suggestions
for concept matches (e.g. Geometry, Feature, Point), however
no suggestions for properties (e.g. hasGeometry) are returned.

<map><Cell>
<entity1 rdf:resource="http://www.opengis.net/

ont/geosparql#Geometry"/>

21https://www.cs.ox.ac.uk/isg/tools/LogMap/
22http://krrwebtools.cs.ox.ac.uk/logmap/

http://docs.opengeospatial.org/is/12-063r5/12-063r5.html
http://www.opengeospatial.org/standards/gml
http://www.opengeospatial.org/standards/kml/
http://geojson.org/
http://schema.org/geo
purl.org/dc/terms/Location
https://www.w3.org/TR/vcard-rdf/#d4e239
https://www.w3.org/ns/locn
https://www.cs.ox.ac.uk/isg/tools/LogMap/

<entity2 rdf:resource="http://www.opengis.net/
gml/_Geometry"/>

<measure rdf:datatype="xsd:float">0.8</measure>
<relation>=</relation>

</Cell></map>
<map><Cell>
<entity1 rdf:resource="http://www.opengis.net/

ont/geosparql#Feature"/>
<entity2 rdf:resource="http://www.opengis.net/

gml/_Feature"/>
<measure rdf:datatype="xsd:float">0.7</measure>
<relation>=</relation>

</Cell>
<map><Cell>

<entity1 rdf:resource="http://www.opengis.net/
ont/gml#Point"/>

<entity2 rdf:resource="http://www.opengis.net/
gml/Point"/>

<measure rdf:datatype="xsd:float">0.62</measure>
<relation>=</relation>

</Cell></map>
<map><Cell>
<entity1 rdf:resource="http://www.opengis.net/

ont/sf#Point"/>
<entity2 rdf:resource="http://www.opengis.net/

gml/Point"/>
<measure rdf:datatype="xsd:float">1.0</measure>
<relation>=</relation>

</Cell></map>

Listing 6. LogMap result: GeoSPARQL 7→ GeoRSS

Listing 7 shows results from LogMap for the GeoRSS 7→
WGS84 mapping. Here, again only the concept of a Point was
mapped.

<map><Cell>
<entity1 rdf:resource="http://www.opengis.net/

gml/Point"/>
<entity2 rdf:resource="http://www.w3.org

/2003/01/geo/wgs84_pos#Point"/>
<measure rdf:datatype="xsd:float">0.5</measure>
<relation>=</relation>

</Cell></map>

Listing 7. LogMap result: GeoRSS 7→ WGS84

In listing 7, concepts are also matched, but the measure
of reliability of the result is only 0.5, and properties are not
matched. Overall, this is not a surprising result, considering
that LogMap matches lexically, inspecting URIs and rdfs:label
property values. For properties, such as geosparql:asWKT, lex-
ical match with other, similar, properties would be surprising,
because its name is unique and dissimilar to, for instance,
gml:pos.

AgreementMakerLight23 – is open source and extensible
matching system, with results produced in Alignment API for-
mat at level 0. Tests were performed on AML implementation
available in GitHub24. Default settings were used, but with
WordNet check turned off for the Background Knowledge
Matcher (checks against DOID and UBERON were done).
This was done because WordNet check returned an execution
error and we have decided to not to “dig into this issue”
to find the reason why (it was not crucial to this contribu-
tion). Matchers turned on by default included: background

23http://alignapi.gforge.inria.fr/
24https://github.com/AgreementMakerLight/AML-Jar

knowledge matcher, string matcher, word matcher, structural
matcher, property matcher, cardinality matcher and coherence
matcher.

Listing 8 shows a result from the AML for the WGS84
7→ GeoSPARQL mapping. It contains a mapping between
concepts representing points in both ontologies.

<map><Cell>
<entity1 rdf:resource="http://www.w3.org

/2003/01/geo/wgs84_pos#Point"/>
<entity2 rdf:resource="http://www.opengis.net/

ont/sf#Point"/>
<measure rdf:datatype="http://www.w3.org/2001/

XMLSchema#float">0.9801</measure>
<relation>=</relation>

</Cell></map>

Listing 8. AML result: WGS84 7→ GeoSPARQL

Listing 9 shows a result from the AML for the GeoSPARQL
7→ GeoRSS mapping, with selected mappings between concept
in the ontologies. In this case, aforemenioned settings were
used but without property matcher that returned an execution
error (here, again, we have not investigated the reason for this
behavior).

<map><Cell>
<entity1 rdf:resource="http://www.opengis.net/

ont/geosparql#Feature"/>
<entity2 rdf:resource="http://www.opengis.net/

gml/_Feature"/>
<measure rdf:datatype="http://www.w3.org/2001/

XMLSchema#float">0.99</measure>
<relation>=</relation>

</Cell></map>
<map><Cell>

<entity1 rdf:resource="http://www.opengis.net/
ont/sf#Geometry"/>

<entity2 rdf:resource="http://www.opengis.net/
gml/_Geometry"/>

<measure rdf:datatype="http://www.w3.org/2001/
XMLSchema#float">0.9801</measure>

<relation>=</relation>
</Cell></map>
<map><Cell>

<entity1 rdf:resource="http://www.opengis.net/
ont/sf#Point"/>

<entity2 rdf:resource="http://www.opengis.net/
gml/Point"/>

<measure rdf:datatype="http://www.w3.org/2001/
XMLSchema#float">0.9801</measure>

<relation>=</relation>
</Cell></map>

Listing 9. AML result: GeoSPARQL 7→ GeoRSS

In listing 10 showing the results of GeoRSS 7→ WGS84
mapping, one can see that, once more, properties have not
been matched, only concepts matching was suggested. Here,
again, the property matcher was turned on.

<map><Cell>
<entity1 rdf:resource="http://www.opengis.net/

gml/Point"/>
<entity2 rdf:resource="http://www.w3.org

/2003/01/geo/wgs84_pos#Point"/>
<measure rdf:datatype="http://www.w3.org/2001/

XMLSchema#float">0.99</measure>
<relation>=</relation>

</Cell></map>

Listing 10. AML result: GeoRSS 7→ WGS84

http://alignapi.gforge.inria.fr/

In summary, when in need to find suggestions for mappings
between ontologies, the selected tools did not turn out to be
very useful. This statement is, obviously, based on a rather
weak foundation. Nevertheless, it provides a warning for those
who plan to use these tools in practice.

III. INTER-IOT APPROACH TO ALIGNMENT
REPRESENTATION

Let us now proceed to the question, how can we represent
more complicated alignments than the ones that the tools dis-
cussed in the previous section were able to construct/produce.

A. INTER-IoT Alignment Format

As mentioned above, in the INTER-IoT project, it was
assumed that semantic interoperability will be based on use of
ontology alignments [6], [9]. This being the case, in the context
of this contribution, it is crucial to specify how alignments will
be represented. Results produced by the tools, presented in
Section II, are given in the Alignment API format, at level 0.
Even in such a simple case, as geospatial data translation,
level 0 turns out to be insufficient. There is no property
matching, and no rules are/can be defined for coordinates
transformation (for instance, concatenating values of two pro-
perties into a single string, splitting the property value into
two target properties values). If the Alignment API format was
to be used, then it should be considered at level 2. However,
unfortunately, at this level it is very extensive and no tools that
can parse and execute translations, specified using it, exist (to
the best of our knowledge). Therefore, we have developed our
own format, with an XML representation (defined in XSD),
based on the Alignment API [4] and inspired, to some extent,
by the EDOAL [1].

Listing 11, presents the general structure of the INTER-IoT
alignment format (also called IPSM alignment format). The
format is used by the, mentioned above, IPSM component
that performs semantic translations. In principle, the alignment
element describes a uni-directional set of translation rules
comprised of independent mapping cells, each of which has an
“input” and “output” entity descriptions. Elements <onto1>
and <onto2> describe the “source” and “target” ontologies
of the alignment, by giving their URIs and specifying the
formalism used for their definition (e.g., OWL 2.0). The
sample structure of an alignment is presented in listing 11.

<Alignment id="align_id" version="align_version"
creator="align_creator" description="
align_desc">

<onto1> { source ontology info } </onto1>
<onto2> { target ontology info } </onto2>
<steps>

<step order="1" cell="cell_k"/>
{ more steps }

</steps>
<map>
<Cell id="cell_id">
<entity1> { source RDF pattern } </entity1>
<entity2> { target RDF pattern } </entity2>
<transformation>
{ functional constraints }

</transformation>
<filters> { datatype constraints } </filters>

<typings> { typing info } </typings>
</Cell>
{ more Cells }

</map>
</Alignment>

Listing 11. INTER-IoT alignment format – general structure

In Listing 11, the <steps> element defines the (default)
order, in which cells of the alignment will be subsequently
applied in the message transformation process (each <step>
refers to a cell identifier, as given by the id attribute of
the <Cell> element). Each cell represents a match from
<entity1> into <entity2>. Both entities should be va-
lid RDF graphs (presented in the RDF/XML serialization),
possibly containing special-purpose nodes “variables”, which
are to be bound and referenced within the transformation.

Variables from <entity1> can be used in <entity2>,
which denotes making a simple copy of whatever value, or
entity, is stored in the variable at the runtime. To give a
“deeper” meaning to the “variable” elements, it is necessary
to add some constraints, which would define them in terms of
values of other variables, or simple values (e.g. as a result
of concatenation). This is the role of the cell’s (optional)
<transformation> element. The content of this element is
a sequence of functional constraints (given by <function>
elements). Each constraint is of the form

fun(arg1, ..., argN) = res

where fun is a SPARQL function, referenced by the about
attribute of the <function> element, arg1, . . . , argN are
arguments (described by the <param> elements), and res
(given by the <return> element) is the result of executing
the function with given arguments. Both these arguments, and
the result, might refer to the “variable” elements.

The (optional) <filters> and <typings> elements,
add datatype information to the variable elements, from the
source and the target RDF graph patterns, respectively.

B. Alignments between geospatial data standards

Let us now present how alignments, between simple coor-
dinate representations, in different standards (summarized
above), look like. Note that these alignments were prepared
by hand.

In Listing 12 an alignment, in the IPSM format that can be
used for translating, from the WGS84 to the GeoSPARQL, is
presented.

<Cell id="cell_1">
<entity1>

<sripas:node_CTX>
<geo:lat>

<sripas:node_x/>
</geo:lat>
<geo:long>

<sripas:node_y/>
</geo:long>

</sripas:node_CTX>
</entity1>
<entity2>

<sripas:node_CTX>
<geosparql:asWKT>

<sripas:node_z/>
</geosparql:asWKT>

</sripas:node_CTX>
</entity2>
<relation>=</relation>
<transformation>
<function about="str">
<param order="1" about="&sripas;node_x"/>
<return about="&sripas;node_sx"/>

</function>
<function about="str">
<param order="1" about="&sripas;node_y"/>
<return about="&sripas;node_sy"/>

</function>
<function about="concat">
<param order="1" val="Point("/>
<param order="2" about="&sripas;node_sx"/>
<param order="3" val=" "/>
<param order="4" about="&sripas;node_sy"/>
<param order="5" val=")"/>
<return about="&sripas;node_z"/>

</function>
</transformation>
<filters>
<filter about="&sripas;node_x" datatype="&xsd;

float"/>
<filter about="&sripas;node_y" datatype="&xsd;

float"/>
<filter about="&sripas;node_sx" datatype="&xsd

;string"/>
<filter about="&sripas;node_sy" datatype="&xsd

;string"/>
<filter about="&sripas;node_z" datatype="&geo-

sf;wktLiteral"/>
</filters>
<typings>
<typing about="&sripas;node_z" datatype="&geo-

sf;wktLiteral"/>
</typings>

</Cell>

Listing 12. Alignment: WGS84 7→ GeoSPARQL

In the listing, in <entity1> and <entity2>, source
and target structures, presented in RDF/XML, are defined.
Note that variable nodes are used, to indicate subjects and
objects of RDF triples. In this case, all instances that have
properties geo:lat and geo:long (with values denoted by
variables <node_x> and node_y bound to float data type)
will be translated. The translated RDF graph will contain
the same instance (preserved URI) with the geosparql:asWKT
property, with value constructed from the concatenated source
properties’ values. The datatype of the resultant text should
be wktLiteral, and this is indicated in the <typing> ele-
ment. Observe also that the possibility to nest functions is
represented. Specifically, the STR function is called first, to
cast float values to strings and, as the result of the call,
the “intermediate” variables <node_sx> and node_sy are
defined. They should be, as any variable, and have datatype
indicated in the <filters>.

Moving ahead, in listing 13, an alignment translating data
from the GeoSPARQL to the GeoRSS is presented.

<Cell id="cell_1">
<entity1>
<sripas:node_CTX>

<geosparql:asWKT>
<sripas:node_x/>

</geosparql:asWKT>

</sripas:node_CTX>
</entity1>
<entity2>

<sripas:node_CTX>
<georss:Point>
<sripas:node_z/>

</georss:Point>
</sripas:node_CTX>

</entity2>
<relation>=</relation>
<transformation>

<function about="str">
<param order="1" about="&sripas;node_x"/>
<return about="&sripas;node_sx"/>

</function>
<function about="replace">
<param order="1" about="&sripas;node_sx"/>
<param order="2" val="Point\\((\\d+\\.\\d+)

\\s+\\d+\\.\\d+\\)"/>
<param order="3" val="$1"/>
<param order="4" val="i"/>
<return about="&sripas;node_rx"/>

</function>
<function about="replace">
<param order="1" about="&sripas;node_sx"/>
<param order="2" val="^Point\\(\\d+\\.\\d+\\

s+(\\d+\\.\\d+)\\)$"/>
<param order="3" val="$1"/>
<return about="&sripas;node_ry"/>

</function>
<function about="concat">
<param order="1" about="&sripas;node_rx"/>
<param order="2" val=" "/>
<param order="3" about="&sripas;node_ry"/>
<return about="&sripas;node_z"/>

</function>
</transformation>
<filters>

<filter about="&sripas;node_x" datatype="http:
//www.opengis.net/def/sf/wktLiteral"/>

<filter about="&sripas;node_sx" datatype="&xsd
;string"/>

<filter about="&sripas;node_y" datatype="&xsd;
string"/>

<filter about="&sripas;node_rx" datatype="&xsd
;string"/>

<filter about="&sripas;node_ry" datatype="&xsd
;string"/>

</filters>
</Cell>

Listing 13. Alignment: GeoSPARQL 7→ GeoRSS

Here, <entity1> defines the pattern for the source RDF
graph, where all instances with the geosparql:asWKT property
are selected (naturally, they will be instances of the geos-
parql:Geometry class). Once more, using nested function calls,
the values of coordinates are parsed from the wktLiteral, and
concatenated, once more, to produce value for variable node_z
that will become an instance of the georss:Point property
value.

Let us notice that, even though the geospatial data is quite
a trivial example for semantic translation, defining alignment
cells requires some knowledge, e.g. about SPARQL functi-
ons. Overall, this process should be supported by a well
documented procedure e.g. due to the complexity of defined
transformations.

IV. CONCLUDING REMARKS

Even though there are tools available that simplify “under-
standing” of ontologies and help to identify their concepts
that can be mapped onto each other, the analysis and design
of rules, required to facilitate semantic translation is still
a complex task. The crucial step, here, is to formalize the
translation as an alignment. The alignment format specified in
the INTER-IoT project allows to express simple RDF graph
transformations, as well as more complex ones that can involve
calling a function on defined input variables. Unfortunately, as
a side effect of this generic method of alignment representa-
tion, even in such simple cases as translation of geospatial
data, the alignment is quite extensive. On the other hand, the
great advantage of the INTER-IoT alignment format is the
fact that it is read and executed by the IPSM component.
This cannot be claimed about EDOAL that is very expressive,
however, we have not found any tool that is able to “produce”,
or “consume” and execute defined translations. Note that, the
original level 0 Alignment API format can be easily translated
to ITER-IoT alignment format, because of the similarity in
structure.

The examples we have presented expose the truth about
automatic alignment methods. We conclude that they are not
developed to the extent that is needed to produce alignments
usable in our use case. Instead, their outputs may be considered
as a first (and very rough) approximation, or a guideline for
making a more advanced alignment that can be applied in
actual semantic translation. In a broader sense, we cannot rely
on currently existing automated methods to find the align-
ments that would be useful in real-world practice. The simple
example of geolocation (i.e. Point information in different
ontologies) shows that automatically generated alignments are
not sufficient when one needs to establish interoperability
between different semantics. What follows, is that the dream
of fully interoperable Linked Data that makes use of varied
ontologies to describe overlapping domains will still, for some
time, be a challenge.

V. PREFIXES

The declarations for prefixes used in the paper:

@prefix geo: <http://www.w3.org/2003/01/geo/
wgs84_pos#>.

@prefix geosparql: <http://www.opengis.net/ont/OGC
-GeoSPARQL/1.0/>.

@prefix geo-sf: <http://www.opengis.net/def/
dataType/OGC-SF/1.0/>.

@prefix owl: <http://www.w3.org/2002/07/owl#>.
@prefix ex: <http://example.org/PointOfInterest#>.
@prefix dc: <http://purl.org/dc/elements/1.1/>.
@prefix gml <http://www.opengis.net/gml/>.
@prefix georss: <http://www.georss.org/georss/>.
@prefix rdf: <http://www.w3.org/1999/02/22-rdf-

syntax-ns#>.
@prefix rdfs: <http://www.w3.org/2000/01/rdf-

schema#>.
@prefix sripas: <http://www.inter-iot.eu/sripas#>.

Listing 14. Prefixes used

ACKNOWLEDGMENT

This research was partially supported by the Euro-
pean Union’s “Horizon 2020” research and innovation pro-
gramme as part of the “Interoperability of Heterogeneous
IoT Platforms” (INTER-IoT) project under Grant Agreement
No. 687283.

REFERENCES

[1] EDOAL: Expressive and declarative ontology alignment language. http:
//alignapi.gforge.inria.fr/edoal.html.

[2] A format for ontology alignment. http://alignapi.gforge.inria.fr/format.
html.

[3] INTER-IoT Project. http://www.inter-iot-project.eu.
[4] Jérôme David, Jérôme Euzenat, François Scharffe, and Cássia Tro-

jahn dos Santos. The Alignment API 4.0. Semantic Web, 2(1):3–10,
jan 2011.

[5] Jérôme Euzenat and Pavel Shvaiko. Ontology Matching. Springer, 2
edition, 2013.

[6] Maria Ganzha, Marcin Paprzycki, Wiesław Pawłowski, Paweł Szmeja,
and Katarzyna Wasielewska. Semantic interoperability in the Internet of
Things: an overview from the INTER-IoT perspective (in press). Journal
of Network and Computer Applications, 2016.

[7] Maria Ganzha, Marcin Paprzycki, Wiesław Pawłowski, Paweł Szmeja,
and Katarzyna Wasielewska. Towards semantic interoperability between
Internet of Things platforms (submitted for publication). Springer, 2016.

[8] Maria Ganzha, Marcin Paprzycki, Wiesław Pawłowski, Paweł Szmeja,
and Katarzyna Wasielewska. Towards common vocabulary for IoT
ecosystems—preliminary considerations. In Intelligent Information and
Database Systems, 9th Asian Conference, ACIIDS 2017, Kanazawa,
Japan, April 3-5, 2017, Proceedings, Part I, volume 10191 of LNCS,
pages 35–45. Springer, 2017.

[9] Maria Ganzha, Marcin Paprzycki, Wiesław Pawłowski, Paweł Szmeja,
and Katarzyna Wasielewska. Streaming semantic translations. In 21st
International Conference on System Theory, Control and Computing
ICSTCC, Proceedings, in press.

[10] Maria Ganzha, Marcin Paprzycki, Wiesław Pawłowski, Paweł Szmeja,
Katarzyna Wasielewska, and Giancarlo Fortino. Tools for ontology
matching—practical considerations from INTER-IoT perspective. In
Proc. of the 8th Int. Conference on Internet and Distributed Computing
Systems, volume 9864 of LNCS, pages 296–307. Springer, 2016.

http://alignapi.gforge.inria.fr/edoal.html
http://alignapi.gforge.inria.fr/edoal.html
http://alignapi.gforge.inria.fr/format.html
http://alignapi.gforge.inria.fr/format.html
http://www.inter-iot-project.eu

