Graphical Interface for Ontology Mapping
with Application to Access Control

Michat Drozdowicz!®), Motasem Alwazir!, Maria Ganzha':2,
and Marcin Paprzycki!

Systems Research Institute, Polish Academy of Sciences, Warsaw, Poland
{michal .drozdowicz,motasem.alwazir,maria.ganzha,
marcin.paprzycki}@ibspan.waw.pl
2 Department of Mathematics and Information Sciences,
Warsaw University of Technology, Warsaw, Poland

Abstract. Proliferation of smart, connected devices brings new chal-
lenges to data access and privacy control. Fine grained access control
policies are typically complex, hard to maintain and tightly bound to
the internal structure of the processed information. We thus discuss how
semantic inference can be used together with an intuitive ontology man-
agement tool to ease the management of Attribute Based Access Control
policies, even by users not experienced with semantic technologies.

1 Introduction

Rise of the Internet of Things (IoT), results in growing interest in data access
control. Obviously, assuring privacy and security of data is of utmost importance.
However, creation of complex ecosystems results in need of establishing, which
data is going to be exposed, to which stakeholder, why, when, for how long,
etc. Recently (see, [2,3]), we have proposed an Attribute Based Access Control
system utilizing semantic reasoning to enrich available information, when making
access control decisions (SXACML). However, even IT professionals have limited
knowledge of semantic technologies. Therefore, we consider how an ontology
non-expert can effectively define and/or manage an ontology within the Policy
Administration Point.

To this effect, Sect.2 introduces the SXACML system, and provides a use
case scenario. In Sect. 3, we outline the state-of-the-art in ontology modeling
tools. Section4, describes OntoPlay, a module that provides needed ontology
management capabilities. Next, in Sect.5, we outline how OntoPlay has been
integrated with the SXACML.

2 SXACML

The eXtensible Access Control Markup Language (XACML; [1]) allows imple-
mentation of the Attribute Based Access Control (ABAC; [7]) mechanisms. In
the XACML, attributes are grouped into four categories:

© Springer International Publishing AG 2017
N.T. Nguyen et al. (Eds.): ACIIDS 2017, Part I, LNAI 10191, pp. 46-55, 2017.
DOI: 10.1007/978-3-319-54472-4_5

Graphical Interface for Ontology Mapping 47

Subject — the entity (possibly a person) requesting access,

— Resource — the entity, access to which is under control,

Action — that the Subject requests to be performed on the Resource,
— Environment — other attributes that bring additional context.

The XACML specification defines also a reference architecture, comprised of:

— Policy Enforcement Point (PEP) — responsible for actual enabling or pre-
venting access to the resource. It also coordinates the execution of, so called,
Obligations — additional operations that should be performed when a decision
has been made (e.g. logging the request for auditing purposes).

— Policy Information Point (PIP) — a source of values of attributes. Commonly
handled by data stores, such as relational databases or LDAP directories.

— Context Handler — converts requests and responses between native formats
and the XACML canonical representation and coordinates, with the PIP, gath-
ering of the required attribute values.

— Policy Decision Point (PDP) — evaluates policies and issues the final autho-
rization decision.

— Policy Administration Point (PAP) — defines, stores and manages policies.

In this context, in [2, 3], we introduced a semantics-driven implementation of the
Policy Information Point. There, request attributes, combined with information
stored in an ontology, allowed inferring additional data, necessary for access
control decision. Advantages of such approach include, but are not limited to:

1. Simplified policies — information common to multiple policies can be extracted
into the ontology.

2. Better support for Role Based Access Control.

More flexibility in defining relationships between concepts in policies.

4. Possibility of greater interoperability, by semantic mapping of disparate con-
cepts in the request and in policies.

@

However, note that, while the first two points can be solved using only an ontol-
ogy describing the domain of the organization and, perhaps, a simple static
mapping of XACML terms into ontology concepts; the last points require a
more robust and dynamic solution, allowing administrators to manage the map-
ping of concepts. Hence, we will now focus on defining additional relationships
between domain concepts, and providing interoperability in the access control
context.

Use case scenario. To put our work in a real-world context, consider a some-
what simplified example originating from the INTER-IoT project!. Let us con-
sider controlling access to facilities of a cargo port, and assume that policies,
stating which persons and vehicles may access the port premises, have been
defined using a Policy Administration Point. One of them states that drivers
(and trucks) employed by Globex Corporation can access the area. We assume

! http://www.inter-iot-project.eu/.

http://www.inter-iot-project.eu/

48 M. Drozdowicz et al.

that authentication mechanisms are in place, to verify that information provided
by the drivers/trucks is correct and valid. Now, consider that one day trans-
port of goods is handled by a subcontractor of Globex Corp — Stark Transport.
Here, subcontracted drivers/trucks should also be granted access. This scenario
involves two aspects that necessitate additional processing of request attributes
in order to make the authorization decision:

1. Relationship between Stark Transport and Globex Corp cannot be stored in
access policies (as Globex hired Stark “incidentally” to deal with shortage of
trucks, and only then they should be granted access).

2. Stark Transport uses a slightly different terminology than Globex Corp and
thus concepts from the XACML access request have to be mapped to these
used in the port’s policies.

3 Existing Ontology Modelling Tools

Let us now assume that semantic technologies are to be used in this sce-
nario. Hence, the system should facilitate defining relationships between con-
cepts related to access control. Moreover, this function should be accessible to
users unfamiliar with ontology modeling. Existing tools for defining concepts and
relations between them, manipulation and searching of data represented as an
ontology; can be divided into two groups: (i) ontology editors, and (ii) SPARQL
query editors.

Ontology editors. Ontology editors are integrated development environment
(IDE) for creating new and managing existing ontologies. Their GUT is provided
as a desktop, or a web, application. The World Wide Web Consortium (W3C)?,
lists 12 Ontology Editors®. In addition to ontology creation and modification,
they may provide extra capabilities. For instance, Protégé*, WebProtege®, Cog-
nitum® and OWLGrEd" display a graphical representation of concepts and rela-
tions between them (as defined in the ontology). They also support defining
SWRL Rules, use of reasoners, etc. Those editors (or others, see [5,8]) are very
useful for ontology engineers or developers during the stage of designing, updat-
ing and utilizing an ontology but they are not suitable for non ontology experts,
even when it comes to simple tasks, such as creating an instance of a class. For
example, in Protégé, which, according to its website, is trusted by more than
300,000 users, such simple tasks cannot be performed without knowing the ele-
ments of an ontology. It also requires the user to understand the structure of
the loaded ontology to be able to add consistent taxonomies. In other words,

2 https://www.w3.org.

3 https://www.w3.org/wiki/Ontology _editors.

4 http://protege.stanford.edu/.

® http://protege.stanford.edu/products.php#web-protege.
5 http://www.cognitum.cu/semantics/FluentEditor/.

7 http://owlgred.lumii.lv/.

https://www.w3.org
https://www.w3.org/wiki/Ontology_editors
http://protege.stanford.edu/
http://protege.stanford.edu/products.php#web-protege
http://www.cognitum.eu/semantics/FluentEditor/
http://owlgred.lumii.lv/

Graphical Interface for Ontology Mapping 49

Protégé does not facilitate easy management and mapping of XACML concepts
in the ontology, by administrators with minimal knowledge of ontologies.

SPARQL editors. Tools included in this category, e.g. SPARQL Editor®,
YASQE?® and Virtuoso'® allow writing and executing SPARQL queries, to search
and retrieve data from an ontology. They provide a simple user interface, for user
to select the ontology she wants to query, and a text area to write the queries. A
more user friendly way to write SPARQL queries is a GUI designed to support
building them; found in tools like: Visual SPARQL BUILDER' and Gruff'?.
Nevertheless, no simple way exists to use such editors by persons who do not
know SPARQL. A work around would be to prepare queries, which user might
need for mapping XACML concepts. However, this would mean that the code
would have to be changed whenever the ontology is modified. Furthermore, avail-
able queries would work only with a given ontology (could not be reused).
Summarizing, a number of user interfaces to semantically demarcated infor-
mation exists. However, none of them could serve as a lightweight front-end,
allowing creation of nested descriptions of OWL individuals and class expres-
sions. Moreover, all of them require the user to have understanding of ontologies.

4 OntoPlay

Let us start by observing that users of, for example, database-centered applica-
tions do not need to know about databases, tables and relations. The same is
needed for ontology-driven systems. Here, front-end/GUI should be straightfor-
ward and should “hide” use of ontologies. It should guide “ontology-illiterate”
users to define individuals and/or classes expressions to query the ontology.
Moreover, in an “Open World assumption”, one might need to change the ontol-
ogy, to model more concepts, or add new properties. To avoid changing the
system whenever vocabularies are modified, the front-end should be ontology-
agnostic (i.e. ontology change should result in a minimum changes to its code).
The GUI should be rendered dynamically, based on the underlying ontology.
For example, consider a system that uses the Pizza ontology'3. The GUI should
allow people, who do not understand semantics, to add a new instance of the
class Pizza. It should also make it easy to find a pizza from Italy.

The OntoPlay (see, [4]) is a web-based front-end plugin satisfying these
requirements. Its GUI contains the condition builder, which allows “any user”
to create class conditions, or individuals, translated to OWL expressions, and
merge them with the underlying ontology. In [4], we showed how it helps deal-
ing with various scenarios involving ontologies. Let us stress that the OntoPlay
operates with any OWL ontology, if it is syntactically and semantically correct.

8 http://sparql.carsten.io.

9 http://yasqe.yasgui.org/.

10 https://dbpedia.org/sparql.

' http:/ /leipert.github.io/vsb.

12 http://franz.com/agraph/gruff.

13 http://protege.stanford.edu/ontologies/pizza /pizza.owl.

http://sparql.carsten.io
http://yasqe.yasgui.org/
https://dbpedia.org/sparql
http://leipert.github.io/vsb
http://franz.com/agraph/gruff
http://protege.stanford.edu/ontologies/pizza/pizza.owl

50 M. Drozdowicz et al.

Recently, the level of OWL expressiveness, in the OntoPlay, had been
increased through handling relations, and individuals using annotation prop-
erties'* (OWL 2.0 entities). Here, user is to be able to use annotations “without
knowing it”. Additional interfaces were put in the OntoPlay as well.

The main components of the new OntoPlay are the same as before: Client,
Server and Gateway [4]. The Gateway was not changed. On the client side,
the AngularJS'® was used to allow data binding between HTML elements and
models defined using JavaScript. This was needed in the condition builder inter-
face, for example, when user changes data property to object property, or creates
nested class expressions. On the server side, using the functionality and the rout-
ing of the Play framework, web services were defined, to read the structure (or
the data) in the ontology and return it in JavaScript Object Notation (JSON).
Combining Angular with web services made the user interface more dynamic
and efficient from a programming point of view. Examples of defined services
are: get properties of a class, get range type of a property, get individuals in
the range of a property, etc. In addition, the structure of the JSON build has
been changed to include the annotation properties for the new created entity,
and relations defined within it. Let us now enumerate new interfaces available
in the OntoPlay and the functionality of each one of them.

Current Ontology

* Ontology pizza.owl
 IRI http:/Awww.co-ode.org/ontologies/pizza/pizza.owl

Update Ontology

To use the Ontoplay with another Ontology, upload the .ow file and write the IRI of the ontology

Ontology file
Ontology IRI m
Choose File No file chosen

Fig. 1. Administrating the ontology connected to the OntoPlay

Managing ontology. A simple interface which allows the “system administra-
tor” to manage the current ontology. The importance of this interface is that
the Java code does not have to be changed when a different ontology is to be
used. When using this interface (see, Fig. 1), the administrator can see the cur-
rent ontology connected to the OntoPlay and update/replace it, if needed, by
uploading the OWL file with the new ontology and writing its IRI.

Class instances. A web page displaying all individuals of a class, in the under-
lying ontology. Just like a system displaying data from the database, it allows
users to perform operations: view, add, edit and delete data, defined in the ontol-
ogy knowledge base. Figure 2 shows this view for the Country class defined in
the Pizza Ontology.

1 https://www.w3.org/TR/owl2-syntax/# Annotation_Properties.
5 https://angularjs.org/.

https://www.w3.org/TR/owl2-syntax/#Annotation_Properties
https://angularjs.org/

Graphical Interface for Ontology Mapping 51

Country

Uri: http://www.co-ode org/ontologies/pizza/pizza owi#Country

Super Class: DomainConcept

Proeprties: 2
Intances: 5
© Individuals
Local Name Uri
® s [i1] France http /ivwaw.co-ode orglontologies/pizzalpizza owtFrance
® rd [i1] Italy http://www.co-ode org/ontologies/pizzal/pizza owlltaly
® e (1] England http/ivww.co-ode
® e i} America hitp/iveww.co-ode org alpizza a
® s [i7] Germany http //www.co-ode org/ontologies/pizza/pizza. owl#Germany

Fig. 2. Class interface displaying Countries defined in the ontology

Annotation properties. Observe that OWL does not put any constraints on
the domain (it can be any IRI) and the range (any IRI or data literal) of the
Annotation Properties. Some annotation properties are predefined by OWL (e.g.
owl:versionInfo, redfs:1abel, rdfs:comment, redfs:seeAlso and redfs:isDefinedBy),
while custom ones can be added to an ontology. They can be added for several
reasons. One of them is to define N-ary relations'®. For example, one wants to
establish the “amount” of a pizza topping. For example “a little” (or “a lot”)
of black olive topping). To satisfy this, withAmount can be introduced as an
annotation, to describe the relation hasTopping.

Predefined, and custom, annotation properties can be used to describe
classes, data and object properties, individuals and even annotation properties.
An ontology engineer may be able to use annotation properties in the context
they were defined, meant for, without having constraints on the domain and
range. On the other hand, user assumed here, would not know how to do it “the
right way”. That is why we have introduced a mechanism to limit the annotation
properties and make them available only where they are meant to be. To do that,
a new admin panel (Fig.3) has been developed to allow “system administrator”
to restrict, which annotation property users can use to describe an individual,
or a relation within an individual. Currently, OntoPlay supports only a data
literal, as a value for any annotation property (custom or predefined). In the
condition builder/individual creator interface, a new dialog is opened when the
user chooses to annotate a property, or an expression. This dialog allows user to
choose one of annotations pre-assigned to that property or class. Figure4 illus-
trates how the user can specify that she wants a little fruit topping on her Pizza.

16 https://www.w3.org/TR/swbp-n-aryRelations/.

https://www.w3.org/TR/swbp-n-aryRelations/

52 M. Drozdowicz et al.

Here, More will allow her to choose one of default annotation properties and
assign a value to it.

Annotation Property Configuration

Choose an annotation property to manage the configuration for that property
withAmount

Current Configuration
Name uri Type Input type Action

hasTopping hitp?) d #hasT Object Properties. text x

New Configuration

Component Type Component input Type

Object Properties v ||isBaseOf M ﬁext M “

Fig. 3. Managing withAmount annotation property in the admin panel

5 Integration of Redesigned OntoPlay into the SXACML

Let us now discuss how the OntoPlay can be used in our use case scenario. As
assumed, the semantic PIP uses OWL ontologies as the basis for inferring values
of attributes that were not contained in the incoming access request, but required
for policy evaluation. Typically, three ontologies are used by the system.

1. Request ontology — common for all scenarios where the SXACML is used.
It contains vocabulary related to the XACML specification, such as Subject,
Resource and Action.

2. Domain ontology — containing structured knowledge related to a particular
organization or business. We assume it is modeled by an expert and filled
with axioms from an external data source (database). This ontology needs
not be directly related to the context of access control.

3. Mapping ontology — links the generic Request ontology with the Domain
ontology. At the very least, it needs to define what, in domain terms, is the
Subject and the Resource. It may also contain axioms defining relationships;
e.g. hierarchies of resources and clustering of subjects into groups or roles.

While the first two ontologies are static or, at least, need not be modified
together with the access control policies, the mapping ontology needs to be
easy to update (also for an administrator unfamiliar with ontology modeling).
To facilitate this, OntoPlay is configured to work with the Mapping Ontology,
which in the beginning is empty, aside from the import statements referring to
the Domain Ontology and the Request Ontology. This makes it possible to use
any terms, from these ontologies, when creating class expressions in the Ul. From
the SXACML administration page it is then possible to define equivalentClass
expressions, for the following classes declared in the RequestOntology.

Graphical Interface for Ontology Mapping 53

urn:oasis:names:tc:xacml:1.0:subject-category:access-subject
urn:oasis:names:tc:xacml:3.0:attribute-category:resource

urn:oasis:names:tc:xacml:3.0:attribute-category:action
0:

urn:oasis:names:tc:xacml:3.0:attribute-category:environment

To cover the scenario introduced in Sect.2, we have modelled a simplistic

domain ontology — Logistics Ontology — that represents knowledge concerning
operations of the port. Here, note that in real-life, instead of creating a sim-
ple ontology, we would consider use of (possibly somewhat modified) existing
transport and logistics ontologies (see, [6]). Integration of a more sophisticated
ontology is planned, as future work, within the INTER-IoT project. The sample
ontology consists of the following entities (we omit namespaces for brevity):

Wore desrbtion
v isdescibedwin v | FruTopping

hasTopping description
ome value action

withamount v g

Fig. 4. Specifying the desired amount of the fruit topping using annotation property

Person — an employee of the port or other institution.

Company — a company employing or contracting persons.

ContractedHaulier — a subtype of Company. A transport organization that
has a fixed contract with the port authority.

Location — an area of the port.

Role — role of a person, e.g. a driver.

Yard — the area within the port premises where truck and container movements
occur. A subtype of Location.

isHiredBy — a property describing the relationship between a Person and a
Company.

isContractedBy — a property describing the relationship between a Company
and another Company. This property is transitive, therefore, a company con-
tracted by company A that is contracted by company B, will also be inferred
as contracted by company B. The ontology also contains a statement that
Stark is subcontracted by Globex.

The policy that we focus on has the following structure:

It specifies conditions for a Permit result
The Subject needs to be of type HiredDriver
The Resource needs to be Yard

The Action needs to be Entry

54 M. Drozdowicz et al.

Lastly, the request from the Stark Transport driver to access the facilities con-
tains the following attributes (and their values):

— Subject category has two attributes: id = cristiano.cosio@starktransport.com,
isHiredBy = Stark Transport

— Resource category has attribute id = InternalParking

— Action category has attribute id = Entry

We can see that the request does not use the same attribute set as the one
used in the policy. Specifically, it does not refer to type HiredDriver and uses
InternalParking instead of Yard. Here, note that the default XACML engine
would not be able to deduct that Cristiano is an instance of type HiredDriver,
therefore the permission would not be granted and our requirement of permission
delegation would not be satisfied.

Let us demonstrate how we can employ semantic reasoning for this purpose.
First of all, we need to make sure we map the generic subject category to the
Person class from the Logistics Ontology. We do so by creating a class expres-
sion specifying that Subject is an equivalent class of Person. Subsequently, we
should define another simple expression, tying together the concepts of Yard and
InternalParking. This would be done in the same way — as an equivalentClass
expression. Finally, we would like to specify the meaning of HiredDriver used in
the policy, but not existing in the ontology itself. To this effect we create a class
expression built of the following conditions:

1. HiredDriver is a subtype of Subject

2. it hasRole of Driver

3. it isHiredBy a ContractedHaulier OR it is hired by a Company that is sub-
contracted by a ContractedHaulier

The associated expression as defined in OntoPlay is shown in Fig. 5.

Subject
urn:oasis:names:tc:xacml:1.0:subject-category:access-subject

Class name: HiredDriver

hasRole v is described with v Role\Driver x
+

isHiredBy v is described with v Company\ContractedHaulier v *
+

isHiredBy v is described with v Company v

isContractedBy v | isdescribed with v Company\ContractedHaulier ¥
+

+

B e *

Fig. 5. Class expression defining the class HiredDriver

Graphical Interface for Ontology Mapping 55

Based on this knowledge, the semantic Policy Information Point can infer that
Cristiano matches the Subject conditions of the policy and that InternalParking
matches the Yard requirement, therefore permitting the request.

6 Conclusions and Future Work

We have discussed how the redesigned OntoPlay, a simple and flexible ontology
management Ul component, can be utilized within an access control module to
provide ontology mapping capabilities. The main improvement of this solution,
when compared to other ontology editors, is that it is assumed that the user
possesses minimal /no prior knowledge or experience with semantic technologies.
We have illustrated how the combination of OntoPlay and semantic inference can
simplify access control policies and improve the interoperability of the system.
In the next steps, we plan to use transport and logistics ontologies listed in [6]
and verify applicability of this approach to real-world use cases defined in the
INTER-IoT project. We will also work on extending possibilities to easily map
not only classes but also properties, thus enabling flexible attribute mapping.

Acknowledgments. Research presented in this paper has been partially supported
by EU-H2020-ICT grant INTER-IoT 687283.

References

1. eXtensible Access Control Markup Language (XACML) version 3.0 (2013). http://
docs.oasis-open.org/xacml/3.0/xacml-3.0-core-spec-os-en.html

2. Drozdowicz, M., Ganzha, M., Paprzycki, M.: Semantic policy information point —
preliminary considerations. In: Loshkovska, S., Koceski, S. (eds.) ICT Innova-
tions 2015. AISC, vol. 399, pp. 11-19. Springer, Cham (2016). doi:10.1007/
978-3-319-25733-4.2

3. Drozdowicz, M., Ganzha, M., Paprzycki, M.: Semantically enriched data access poli-
cies in eHealth. J. Med. Syst. 40(11), 238 (2016)

4. Drozdowicz, M., Ganzha, M., Paprzycki, M., Szmeja, P., Wasielewska, K.:
OntoPlay - a flexible user-interface for ontology-based systems. In: AT, pp. 86—100
(2012)

5. Falco, R., Gangemi, A., Peroni, S., Shotton, D., Vitali, F.: Modelling OWL ontolo-
gies with graffoo. In: Presutti, V., Blomqvist, E., Troncy, R., Sack, H., Papadakis,
I., Tordai, A. (eds.) ESWC 2014. LNCS, vol. 8798, pp. 320-325. Springer, Cham
(2014). doi:10.1007/978-3-319-11955-7_42

6. Ganzha, M., Paprzycki, M., Pawlowski, W., Szmeja, P., Wasielewska, K.: Seman-
tic interoperability in the Internet of Things: an overview from the INTER-IoT
perspective. J. Netw. Comput. Appl. 81, 111-124 (2016)

7. Hu, V.C., Ferraiolo, D., Kuhn, R., Schnitzer, A., Sandlin, K., Miller, R., Scarfone,
K.: Guide to attribute based access control (ABAC) definition and considerations.
NIST Spec. Publ. 800, 162 (2014)

8. Petersen, N., Lange, C., et al.: TurtleEditor: an ontology-aware web-editor for col-
laborative ontology development. In: 2016 IEEE Tenth International Conference on
Semantic Computing (ICSC), pp. 183-186. IEEE (2016)

http://docs.oasis-open.org/xacml/3.0/xacml-3.0-core-spec-os-en.html
http://docs.oasis-open.org/xacml/3.0/xacml-3.0-core-spec-os-en.html
http://dx.doi.org/10.1007/978-3-319-25733-4_2
http://dx.doi.org/10.1007/978-3-319-25733-4_2
http://dx.doi.org/10.1007/978-3-319-11955-7_42

	Graphical Interface for Ontology Mapping with Application to Access Control
	1 Introduction
	2 SXACML
	3 Existing Ontology Modelling Tools
	4 OntoPlay
	5 Integration of Redesigned OntoPlay into the SXACML
	6 Conclusions and Future Work
	References

