
Designing Agent Based Travel Support System

Minor Gordon
Department of Computer Science

Technische Universität Berlin
Berlin, Germany

minorg@cs.okstate.edu

Marcin Paprzycki
Department of Computer Science

OSU, Tulsa, OK, USA
and

Computer Science, SWPS
Warsaw, Poland

marcin@cs.okstate.edu

Abstract

Online travel support systems have often been cited as an
ideal proving ground for agent-based architectures, yet no
working systems have materialized. Over the last few
years we have been considering various aspects of the
design of such travel support systems. The aim of this note
is to present the current state of our comprehensive
framework for delivering personalized travel services
using agent infrastructure.

1. Introduction

Today the potential traveler has access to an
unprecedented wealth of travel-related information
available on the Internet yet planning actual trips using
only Internet based resources requires a lot of work and
sometimes turns out to be rather difficult. Potential
traveler must devote a lot of effort sifting through many
sites of varying quality of data simply to form a coherent
picture of his intended destination, possible means of
transportation, etc. The total amount of data is so large that
it is impossible to find all pertinent and important
information in a reasonable time.

In the last 15 years there have been numerous attempts
to apply the software agent paradigm to travel services and
the pervasive problem of information overload [26, 28,
30]. The analogy of software agents to travel agents makes
the analogy between real world travel agencies and online
agent platforms seem trivial, yet the majority of the
proposed systems never left the drawing board. The few
active experiments in travel-related agent architectures we
have discovered have either been limited in scope [29, 34,
40] or abandoned. The CRUMPET project is a typical
example of what happens with projects aiming at applying
agents in travel support systems. CRUMPET was funded
by the EU FP5 umbrella between 1999 and 2003, but as of
April 2005 it is almost impossible to assess its
achievements, because its WWW site no longer exists and

information about the project itself is spread across a few
auxiliary sites and conference papers that resulted from it
[34]. Since 1999-2001 a large number of researchers that
were originally interested in agent-based systems have
moved on to more fashionable ventures such as the
Semantic Web or Ambient Computing, leaving behind a
trail of papers and unfinished, only partially implemented
designs. We have also been trying to develop such a
system since 2001, so we can easily understand why these
groups have moved on rather then complete a working
prototype. Working with existing agent systems is a
struggle with cutting edge, constantly evolving and highly
unreliable technologies. The design of a system that seems
to be quite reasonable one day may become infeasible
and/or obsolete sometime before the initial
implementation is completed. For instance, we have run
into this problem when experimenting with data indexing
and the ebXML Registry Repository [8]. After many futile
attempts we were forced to acknowledge that the existing
implementation of the repository was unreliable and
incapable of handling “real size” load and had to abandon
it, after nine moths of work invested in making the
repository a centerpiece of our design [16, 21, 41].

The aim of this paper is to present some of the lessons
we have learned in designing our agent-based travel
support system, and to outline an evolved version of the
design. The current system stores semantically demarcated
data in a central repository (data gathering rather than the
indexing we originally envisioned [16]). While the
majority of today’s Internet-based travel services focus on
transportation and lodging, with an emphasis on
transactions, our system is designed to deliver an extended
travel itinerary, including the standard transportation and
accommodation choices as well as restaurants, movie
theaters, national parks, historical sites and other points of
interest, any of which may be selected by the user from an
array of options composed specifically for him/her
(content personalization). The system is accessible via
Internet-enabled devices, ranging from standard PC-based

browsers to palmtops and WAP-conversant phones etc.,
and even non-human entities (such as other agents) [11].

In this paper we devote our attention to the high level
description of the agent system and omit (and assume to
be “successfully addressed”) a number of important
questions:
(a) economic model – how such a system will generate

revenue for the company that implements it (see e.g.
[3, 4, 7, 19, 27, 39]),

(b) user profiling and clustering (in the context of RFM
analysis and cluster analysis) to discover and modify
customer segments (see e.g. [10, 36, 37, 38, 42]),

(c) methodologies for data mining and modeling in the
context of content delivery personalization (see e.g.
[36, 37]),

(d) personalized advertisement targeting (see e.g. [3, 4, 6,
10]),

(e) dealing with conflicting information and, more
generally, validating information from unverified
Internet sources (see e.g. [33]).

We proceed as follows: in Section 2 we present the
general architecture of the system and briefly sketch its
functions; Section 3-5 contains the descriptions of the
content collection, content management and content
delivery subsystems. In Section 6 we describe a scenario
that illustrates how user will interact with the system. We
conclude with a brief summary of the current state of the
project.

2. System Architecture

The overall architecture of the proposed system is depicted
in Figure 1. Before proceeding, let us make two
comments: (1) The proposed system belongs to the class
of infomediaries and therefore its development will
proceed within the framework presented in [19]; (2) The
general system structure is a modification of the skeleton
of the general e-commerce system presented in [9]. Here,
instead of dividing the complete system into two
subsystem-spheres: supply and delivery, connected
through a communication channel, we are introducing
three sub-areas: content collection, content management
and content delivery, with the content management
subsystem together with the central data repository
becoming the centerpiece of the system. Let us now
briefly summarize each of the components presented in
Figure 1.

Verified Content Providers (VCP)
Today, a very large number of web sites provide some
form of travel-related information. However, as pointed
out in [28], there exist a few serious potential problems
arising from the dynamic nature of content on the Internet.
Information relevant to travel is stored in a large number
of small, independently operated Web sites (consider all

restaurants, bars and independently owned hotels that have
their own private websites). Since many of these sites are
hosted by small local ISP’s that may not be able to provide
sufficient quality of service, these sites may migrate and,
as a result, change their URL’s. In this case information
that was once available (its location was known) cannot be
found easily. The second situation involves progress in
Web site design. Due to technological change (e.g.
switching from plain HTML to PHP) or overall change in
what is perceived to be state of the art in website design,
the layout of a given site may change completely, such
that agents that were collecting information from that site
are no longer able to access it without errors. To deal with
this problem and the more general issues of accuracy and
relevancy we utilize the concept of Verified Content
Providers [1].

Figure 1. Infrastructure for the travel support system

Conceptually, a Verified Content Provider (VCP) is a

site that is known to provide reliable and consistently
available information. We assume that VCPs do not
randomly appear and disappear from the Internet.
Furthermore, VCP’s are expected to maintain the same site
interface for extended periods of time. It can be even
assumed that in the case of a commercial travel support
system, VCPs will be providers with whom a contract is
signed and thus if the interface changes “we” will be
informed about it beforehand. Finally, VCPs are sites that
constantly provide reliable information and thus can be
trusted. While the category of VCPs is used to mark “the
best of breed” information sources, the remaining sources
available on the Internet can be assigned varying levels of
trust and that level of trust can dynamically change over
time. (e.g. a Verified Content Provider may cease being
verified if it no longer meets the criteria of trustworthiness
while a different source may become a VCP by
systematically delivering high quality information).
Delving into details of designing such an adaptive trust
system is outside scope of this paper.

VCPs can be divided into two groups: (i) pushing
sources – those that provide content for our system in a
standard form (such as RSS feeds), and (ii) static – sites

CONTENT

VCP

other
sources

Content
Collection

Content
Management

Content
Delivery Content

Storage

User

User

User

User

that require agents to collect pages periodically and extract
the necessary information. It is important to stress (since
we are interested in collecting, storing, and processing
semantically demarcated data) that at this stage of
development of the Internet, existence of any form of
VCPs containing travel-related semantically demarcated
content (except of academic demonstrator systems of
minimal breadth and depth of available data; and the
ChefMoz [5] site containing RDF demarcated data or
reasonable, but not fully machine consumable quality
[12]), while highly desirable, is just a wish that we hope
one day will come true.

Other Sources
There exists a number of problems related to dealing with
unverified, unstructured Internet-based information: (a) its
amount, which makes an exhaustive search practically
impossible, (b) the unreliability of data, and (c)
contradicting sources that require application of
sophisticated data deconfliction techniques. While we
hope that the approach of relying primarily on trusted data
providers (VCPs) will alleviate most of these problems
(see [1] for more details), we still should not discard
additional information available on the Internet and we
will utilize it whenever possible. This approach will
become even more important when the idea of the
Semantic Web will start to take hold and semantically
demarcated information available in small-independent
sites will be much easier to process automatically.

Content Collection Subsystem (CCS)
In the proposed approach, the information provided by or
collected from the Verified Content Providers and from
other Internet sources is stored in a semantically
demarcated form. We have selected RDF as the ontology
tagging “language.” For storing RDF triples we have
decided to use the Hewlett-Packard Jena system [24]. Our
Content Collection System (CCS) stores sets of RDF
triples that in aggregation represent travel objects
(hereafter referred to as tokens). Travel object tokens may
originate either from a direct feed from VCPs or from an
agent subsystem that collects data from the Internet and
are stored in the central repository. While the question of
the size and centralized nature of the repository will have
important consequences to the scalability of the system,
these questions are outside of the scope of this paper and
will have to be addressed only in the future (when the
system reaches such size that the performance of the
repository will become the true performance bottleneck
for the whole system). In Section 3 we present details of
the functions and structures that comprise the CCS
subsystem.

Content Management Subsystem (CMS)
This subsystem includes all functions related to the data
stored in the central repository (Jena database). Observe
that at least two cases of possibility of data inadequacy

have to be taken into account. First, we have to deal with
incomplete data items. For instance, an object to be stored
in the repository may contain triples for the name, address
and web site of a restaurant, but not the phone number (or
some other information defined by our restaurant ontology
[13]). In this case such an object is incomplete and we
must attempt to find the missing information. The second
case involves data that is stored in the system and that is in
some way time sensitive, e.g. cinema programs change on
Fridays, and thus they have to be updated. Obviously,
even information that is not explicitly time-sensitive (e.g.
Museum opening times) has to be re-checked in some
unspecified time intervals. In Section 4 we discuss this
subsystem in more detail.

Content Delivery Subsystem (CDS)
Here the data stored in the central repository is
manipulated for delivery to end users. The agents in this
subsystem obtain a query from the user and work with the
CMS to find information matching the user's personal
preferences. Data presented to the user may be acquired
from the repository, or result form additional Internet
searches. We devote Sections 5 and 6 to describing this
subsystem in detail.

Users
The system will be accessed via Internet-enabled devices,
ranging from standard PC-based browsers to palmtops and
WAP-conversant phones etc., and even non-human
entities (such as other agents) [12, 13]. Some details
describing how we are implementing user-system
communication can be found in Section 6.

3. Content Collection Subsystem

The structure of the content management subsystem is
presented in Figure 2.

Figure 2. Content management subsystem: WA –
wrapper agents, CA – coordinator agent, IA – indexing
agents, MA – management agents

Object
Database
(JENA)

Data
Sources

MA
MA

MA

IA

IA

CA

WA

WA

WA

.

.

.
.
.
.

VCP

other
sources

Recall that the central repository of our system stores
RDF triples – semantically demarcated data tokens.
Because currently there is very little RDF-demarcated data
natively available on the Internet, we must extract HTML
content from existing web sites into RDF triples
“manually.” Our Content Collection subsystem uses
Wrapper Agents (WA) that interface with various WWW
sites, mapping XML- or HTML-demarcated data into RDF
triples describing travel objects (according to an
appropriate ontology used in our system [12]). Sets of
triples gathered by Wrapper Agents, and assembled into
travel tokens, are sent to a Coordinator Agent (CA), which
schedules Wrapper Agents and relays the resulting triples
to the Jena database. Earlier we suggested that some of the
VCPs may, sooner or later, contain and/or start delivering
RDF demarcated content directly to the system. In this
situation all we have to do is to adjust some of the WAs to
be able to handle these particular inputs, while the
remaining parts of the CCS remain the same (this
illustrates the power of agent-based system design, where
changes need to be incorporated only into specific groups
of agents and remain localized to them). An interesting
question arises when ontologies (e.g. our hotel ontology
[14]) available on the Internet do not match our custom
ontologies. In this case, the ontology matching and
resolving techniques have to be applied, but this process
remains outside of the scope of current paper. Here we
assume that in this case selected Wrapper Agents will have
to take role of the ontology resolvers, working on
achieving this goal on a case by case basis. In general we
assume a collection of WAs capable of interfacing with an
assortment of data sources and delivering to the CA RDF
demarcated tokens describing various travel resources.
Communication between WAs and the CA occurs through
exchange of ACL messages (RDF triples are serialized
and send as a content of ACL Inform messages).

All incoming information is received by the CA. Its
primary role is to act as a large priority queue, where all
data objects will be temporarily stored (since in an agent
system one cannot have a “free floating queue,” but any
such data object has to be encapsulated in an agent).
Obviously, having only one CA may become a bottleneck
and in this case having additional CAs may alleviate the
problem (however, also this purely technical problem is
outside of the scope of this paper). The CA prioritizes the
data in the queue. This is done based on the answer to the
questions: why is given data taken brought to the system
and when it will be needed? If the data token is a result of
web crawling, it will be assigned “basic” priority. If the
token is a result of time-oriented trigger event (for
instance that the theater program is changing) then it will
be assigned an “elevated” priority (it is quite possible that
someone will soon request this information and thus it has
to be inserted into the system as soon as possible). Finally,
tokens resulting from the “user queries” will be assigned

“highest” priority. Here the assumption is that user is still
online and necessary information has to be delivered as
soon as possible.

Information is inserted into the repository by a pool of
Indexing Agents (IA). These agents request from the CA
(via an ACL message) the next data token to work on and
obtain it wrapped in an ACL message. IAs check the
completeness of data. There are many situations when the
data tokens may be deficient (e.g. hotel info misses
information about available amenities). In this case, before
insertion into the repository, data tokens are marked as
incomplete. However, they may still be used by the
content delivery subsystem to deliver response to the user
(especially when these tokens are widely queried, or they
are the only available content pertaining to a given query).
Finally, in the case of a token replacing another token and
the two tokens containing conflicting information, both
tokens are left in the system and marked accordingly for
deconfliction to take place.

4. Content Management Subsystem

In our earlier work [2, 9], the content management
subsystem included both its current functions and the
content collection functions described above. After our
implementation experiences we decided to change this and
separate the collection and the management functions.
Content management involves all the agents that operate
on data stored within the repository. In this way we
separate these agents and functions form the rest of the
system, with which the communication occurs only via
ACL messages.

Thus far we have indicated three possible functions to
be performed by the CMS agents. The first is related to the
completeness of tokens. Incomplete tokens will be marked
as such by the IA. CMS agents will traverse the repository
to find incomplete tokens. They will then formulate
queries to be answered and request (via an ACL message)
from the CA that appropriate WA be released to search for
the missing information.

The second situation involves tokens containing
conflicting information. They are marked as such by the
IA and left for the deconflicting agents to deal with.
Deconfliction may involve additional queries to the
Internet as well as consideration of factors such as, the
freshness of the older data, reliability of the sources etc.

The third situation deals with time-sensitive data. There
is a large amount of travel-related information on the
Internet that changes in regular intervals (e.g. programs of
operas, theaters, cinemas, etc.). It is possible, for each of
these situations, to establish proper time to find updated
information. We assume here that the database will
generate triggers that will result in agents involved in
management of time-sensitive data to communicate with
the CA to request an update of a given token. However, we

also must recognize that all of data available in the system
is time sensitive. Even content that seems to be relatively
“stable,” like the restaurant menu or ZOO opening times
change from time to time. Therefore each data item will
have a “time stamp” describing when it was created. After
a specified time (different for different travel objects), the
database will generate a trigger that will start the update
function. Here one of the adaptation mechanisms available
in the system will take place. When the update request
does not result in any changes, the time length before the
next update will be increased, while the request resulting
in change will cause the update time to be shortened.

Obviously, there may exist other data management
functions involving data in the central repository. The
clear advantage of the agent system is that in such a case
the only required function is to add new agent type that
will perform the required functions [25].

5. Content Delivery Subsystem

The content delivery subsystem is responsible for
answering user queries. Here the primary challenge is
communication between clients and agents in our system.
While in theory this should be relatively straightforward,
in our earlier work [112] we discovered that this is not the
case. Specifically, the absence of agent platforms to host
agents on client devices limits the reach of the agent
platform to protocols supported by the client, and those
only to the extent that the agent system may be adapted to
them. Thus we make only a minimal set of assumptions
about expected capabilities of the device (like that it will
be able to communicate with the Internet using the HTTP
protocol). Furthermore, all the computational power and
support for communication has to be on the server side.
Our initial attempt to solve the problem [12] employed the
Mozilla XUL and XUP languages for platform-
independent user interfaces. Recently we changed our
approach to this problem [13], and our current design will
be described detail in the next Section. Here we will
proceed with the assumption that the user has submitted a
query through an Internet enabled device to his Personal
Agent (PA) (see Figure 3). This message has been
translated from its original form by the Proxy Agent (PrA)
residing on the “gateway HTTP server.” Regardless of the
form of the original query the “query content” is extracted
and wrapped into an ACL message and in this way send to
the PA. The PA forwards the message to two locations.
First, to the group of agents responsible for content
personalization. This message is stored in the user
behavior database, where information about all
interactions between the user and the system is logged.
More precisely, all user queries sent to the system and all
system responses are logged for future mining [10]. Based
on the queries and responses and user responses to the
queries it is possible to establish a profile that can be used

by the PA to filter and personalize content delivered to the
user [15]. Second, the query is send to the DB Agent
(DBA). The DBA is the interface of the system to the Jena
database. The DBA translates the user query into the
RDQL language (the database language used by Jena to
query the entire set of RDF triples). The DBA executes the
query and as a result obtains a set of tokens describing one
or more travel objects. These RDF demarcated tokens are
then sent to the personalization infrastructure.

The personalization infrastructure consists of a number
of “RDF Agents.” These are simplistic agents. Each
represents one of more of simple rules of the type
“Szechuan food is also Chinese food” or “Romantic
Comedy is also a Comedy.” These rules are applied to the
set of RDF triples returned by an RDQL query. Rule
applications may involve querying the repository and
expand the result set. The personalization infrastructure
agents operate as a team passing the result set, wrapped in
an ACL message from one to the next and their role is to
maximize the set of responses to be delivered to the user
(no potential response is removed form the set).

Figure 3. Content delivery subsystem: PA – personal
agent, DBA – database agent, PIA – personalization
infrastructure agents, PrA – proxy agent, TA –
transformation agent

The maximal set of responses is sent back to the PA.
The PA utilizes the user profile filter the answer set. For
instance, the DBA and the PIA agents may not know that
the user never stays in Howard Johnson hotels and never
visits Braum’s restaurants. Thus RDF triples representing
these two chains will be included in the expanded answer
set. However, the PA will remove them form the set. The
answer set is send to the Transformation agent (TA) that
utilizes a Racoon [35] server to render the response to be
displayed on user device (as well as back to the
personalization infrastructure to be logged as a response to
the given query).

PA
DBA

TA

User
Input
Devices

HTTP
server

PrA

Racoon
server

PIAs

6. Usage scenario

Let us now consider a usage scenario that will illustrate in
detail how the data flow in the system is handled (this
description should be matched with subsystem depiction
presented in Figure 3). We assume here that initial data is
already stored in the system. Let us assume now that user
fills a form (an extremely simplified test-form) to find a
restaurant in Virginia Beach (Figure 4).

Figure 4. User form to find a restaurant.

The target of this query is the following restaurant, which
is described in our Jena database with a set of RDF triples
(here shown in the N3 syntax – note that some lines have
been wrapped because of the narrowness of the two-
column format):
:United_States_VA_Virginia_Beach_Bella_Mont
e954313245

a res:Restaurant;
res:title "Bella Monte";
res:id
"United_States_VA_Virginia_Beach_Bella_M
onte954313245";
res:locationPath
"United_States_VA_Virginia_Beach";
res:link
"http://digitalcity.com/hamptonroads/din
ing/venue.dci?vid=81334".
loc:streetAddress "1201 Laskin Rd.";
loc:city "Virginia Beach";
loc:country "United States";
loc:phone "757.425.6290";
loc:state "VA";
loc:zip "23451";
 res:description "Lunch and dinner
served Monday through Saturday.";
 res:alcohol alc:FullBar;
 res:dress drs:Casual;
 res:reservations rsv:Recommended;
 res:cuisine cui:Italian;
 res:cuisine cui:Regional;

When the user clicks the “Find it!” button of the form an
HTTP request is sent to our Proxy Agent (PrA), which
translates the CGI query string

http://www.agentlab.net/restuarant/page?action=ge
tdata&cuisine=Italian&dress=&city=Virginia+Beach

into a temporary form:

[[cuisine{{Italian[[city{{Virginia Beach

which is then sent in an ACL message to the Personal
Agent (PA). The PA forwards this ACL message in turn to
the personalization infrastructure for logging and to the
Database Agent (DBA). The DBA transforms the
keywords of the query into the following RDQL string:
SELECT
 ?res
WHERE

(?res, <res:cuisine>, <cui:Italian>),
(?res, <loc:city>, "Virginia Beach")

USES
res for

<http://www.agentlab.net/schemas/Restaurant#>,
cui for

<http://www.agentlab.net/schemas/CuisineCode#>,
 loc for

<http://www.wam.umd.edu/~krakatoa/cs828y/project/
travel.daml#>

This RDQL query is executed and matching RDF triples
are serialized to an RDF/XML document, fragment of
which has the following form:
<res:Restaurant
rdf:about="&res;United_States_VA_Virginia_Beach_B
ella_Monte954313245">

<res:title>Bella Monte</res:title>
<res:description>Lunch and dinner served
Monday through Saturday.</res:description>
<res:dress rdf:resource="&drs;Casual"/>
<res:reservations
rdf:resource="&rsv;Recommended"/>
<res:alcohol rdf:resource="&alc;FullBar"/>
<res:cuisine rdf:resource="&cui;Italian"/>
<res:cuisine rdf:resource="&cui;Regional"/>
<loc:city>Virginia Beach</loc:city>
<loc:country>United States</loc:country>
<loc:phone>757.425.6290</loc:phone>
<loc:state>VA</loc:state>
<loc:streetAddress>1201 Laskin
Rd.</loc:streetAddress>
<loc:zip>23451</loc:zip>

</res:Restaurant>

In a full fledged system this initial response would then
be sent to the personalization infrastructure that would
analyze it and try to expand the number of response-
tokens. For instance, if there was a movie theater near by
the location of the restaurant then a token for the theater
could be then added to the answer set. The complete set of
answer-tokens is then sent back to the PA. The PA could

add additional tokens (like utilize knowledge that user
smokes cigars and that there is a Cigar Shop close to the
restaurant) or remove some tokens (movie theater plays
movies that are not likely to attract this particular user’
attention). Finally, the PA sends the filtered answer-set to
the personalization infrastructure agents for logging (to
obtain a query-response pair) and via the TA to the Racoon
server for it to be rendered (in our case to HTML). The
result is then forwarded back to the PA that sends it to the
PrA and then it is finally forwarded to the browser, where
it could look like a response presented in Figure 5.

Figure 5. Response form the system.

While the depiction presented there is extremely simplistic
it was obtained in the process of actual interaction with the
system. In other words, the above described data-flow has
been implemented and actually works (see also [13]).

7. Concluding Remarks

In this note we have outlined the high-level architecture of
an agent-based travel support system. In pursuing the
agent framework we have described the most important
classes of agents in our system, their respective functions
and the relationships between them. We have also
presented a usage scenario illustrating the dataflow of a
user query and illustrated it on the basis of an existing
implementation of this functionality of the system under
development.

We are currently in the process of implementing most of
the key parts of the system. We are using JADE agent
environment [6], Jena repository for the RDF demarcated
data [24], and Racoon for rendering responses for variety
of devices [35]. We will be using JESS for providing
expert system capabilities in the system. In support of our
system we have developed ontology of a hotel and re-
engineered restaurant ontology based on the ontology
implicitly underlying the ChefMoz project [5]. We
continue locating and designing further ontologies needed
in our system. We have also developed the first collection

of Wrapper Agents that will be used to populate our data
repository.

We will report on progress of implementation in the
near future.

References
[1] Abramowicz W., Kalczyński P. J. (2002) “Building and
Taking Advantages of the Digital Library for the Organizational
Data Warehouse,” in: Cobb M. et. al. (eds.), Proceedings of the
Second Southern Conference on Computing, Hattiesburg,
Mississippi, USA, October 26-28, 2000, CD, 8 pages.

[2] Angryk R., Galant V., Gordon M., Paprzycki M., “Travel
Support System – an Agent Based Framework,” in:
H. R. Arabnia, Y. Mun (ed.), Proceedings of the International
Conference on Internet Computing (IC’02), CSREA Press, Las
Vegas, NV, 2002, 719-725

[3] Brady R., Forrest E., Mizerski R. (2002) “Marketing w
Internecie,” PWE, Warszawa, Poland

[4] Chaudhury A., Malik D. N., Rao H. R. (2001) “Web
Channels in E-commerce,” CACM, 44 (1), pp. 99-104

[5] Chefmoz Dininig Guide, http://chefmoz.org/

[6] Chmiel K., Tomiak D., Gawinecki M., Kaczmarek P.,
Paprzycki M., Szymczak M., “Testing the Efficiency of JADE
Agent Platform,” with in: Proceedings of the ISPDC 2004
Conference, IEEE Computer Society Press, Los Alamitos, CA,
2004, 49-57

[7] de Kare-Silver, M. (2001) “E-shock: the New Rules. E-
Strategies for Retailers and Manufacturers,” Palgrave,
Houndmills, UK

[8] ebXML R/R: http://ebxmlrr.sourceforge.net/

[9] Galant V., Jakubczyc J., Paprzycki M. (2002) “Infrastructure
for E-Commerce,” Proceedings of the 10th Conference on
Extraction of Knowledge from Databases, Karpacz, Poland,
May, 2002 (to appear)

[10] Galant V. and Paprzycki M. (2002) “Information
Personalization in an Internet Based Travel Support System,”
Proceedings of the BIS’2002 Conference, Poznań, Poland, April,
2002, pp. 191-202

[11] Galant V., Gordon M., Paprzycki M., “Knowledge
Management in an Internet Travel Support System,” in:
B. Wiszniewski (ed.), Proceedings of ECON2002, ACTEN,
Wejcherowo, 2002, 97-104

[12] Galant V., Gordon M., Paprzycki M., “Agent-Client
Interaction in a Web-based E-commerce System,” in:
D. Grigoras (ed.), Proceedings of the International Symposium
on Parallel and Distributed Computing, University of Iaşi Press,
Iaşi, Romania, 2002, 1-10

[13] Gawinecki M., Gordon M., Kaczmarek P., Paprzycki M.,
“The Problem of Agent-Client Communication on the
Internet,” Parallel and Distributed Computing Practices (to
appear)

[14] Gawinecki M., Gordon M., Paprzycki M., Szymczak M.,
Vetulani Z., Wright J., “Enabling Semantic Referencing of
Selected Travel Related Resources,” Proceedings of the
BIS’2005 Conference, Poznań University of Economics Press,
Poznań, Poland, 271-288

[15] Gawinecki M., Vetulani Z., Gordon M., Paprzycki M.,
“Representing Users in a Travel Support System,” in:
Proceedings of the Intelligent Systems Design and Applications,
Wrocław, Poland, September, 2005, (to appear)

[16] Gilbert A., Gordon M., Nauli A., Paprzycki M., Williams S.,
Wright J., “Indexing Agent for Data Gathering in an e-Travel
System,” Informatica, Vol. 28, No. 1, 2004, 69-78

[17] Gilbert A., Gordon M., Paprzycki M., Wright J., “The
World of Travel: a Comparative Analysis of Classification
Methods,” Annales UMCS Informatica, A1, 2003, 259-270

[18] Gordon M., Gilbert A., Paprzycki M., “Knowledge
Representation in the Agent-Based Travel Support System,” in:
T. Yakhno (ed.) Advances in Information Systems, Springer-
Verlag, Berlin, 2002, 232-241

[19] Grover V., Teng J. C. T. (2001) “E-commerce and the
Information Market,” CACM, 44(4), pp.79-86

[20] Grunninger M., Lee J. (eds.) (2001) “Ontology,
Applications and Design,” Special Section of the CACM, 45(2),
pp. 39-65

[21] Harrington P., Gordon M., Nauli A., Paprzycki M.,
Williams S., Wright J., “Using Software Agents to Index Data in
an E-Travel System,” in: N. Callaos (ed.), Electronic
Proceedings of the 7th SCI Conference, Orlando, 2003, CD, file:
001428.pdf, 6 pages

[22] Heilmann K., Kihanya D., Light A., Mousembwa P. (1995)
“Intelligent Agents: A Technology and Business Application
Analysis,” Technical Report, University of Vienna, BA248D

[23] Jakubczyc J., Gordon M., Galant V., Paprzycki M.,
“Knowledge Management in an E-commerce System,”
Proceedings of the Fifth International Conference on Electronic
Commerce Research, Montreal, Canada, October, 2002, CD, 15
pages

[24] Jena 2 – A Semantic Web Framework, Hewlett Packard,
http://www.hpl.hp.com/semweb/jena2.htm

[25] Jennings N. R. (2001) “An agent-based approach for
building complex software systems,” CACM, 44 (4), pp. 35-41

[26] Maes P., “Agents that Reduce Work and Information
Overload,” Communications of the ACM, 37(7), 1994, 31-40

[27] Mohr J. (2001) “Marketing of High-Technology Products
and Innovations,” Prentice-Hall, Upper Saddle River, NY

[28] Nwana H., Ndumu D. (1999) “A perspective on software
agents research,” The Knowledge Engineering Review, 14 (2),
pp. 1-18

[29] Ndumu, D., Collins, J., Nwana, H. (1998) “Towards
Desktop Personal Travel Agents,” BT Technological Journal, 16
(3), pp. 69-78

[30] Paprzycki M., Abraham A., “Agent Systems Today;
Methodological Considerations,” in: Proceedings of 2003
International Conference on Management of e-Commerce and e-
Government, Jangxi Science and Technology Press, Nanchang,
China, 2003, 416-421

[31] Paprzycki M., Angryk R., Kołodziej K., Fiedorowicz I.,
Cobb M., Ali D. and Rahimi S. (2001) “Development of a Travel
Support System Based on Intelligent Agent Technology,” in: S.
Niwiński (ed.), Proceedings of the PIONIER 2001 Conference,
Technical University of Poznań Press, Poznań, Poland, pp. 243-
255

[32] Paprzycki M., Kalczyński P. J., Fiedorowicz I.,
Abramowicz W. and Cobb M. (2001) “Personalized Traveler
Information System,” in: Kubiak B. F. and Korowicki A. (eds.),
Proceedings of the 5th International Conference Human-
Computer Interaction, Akwila Press, Gdańsk, Poland, pp. 445-
456

[33] Petry F., Cobb M., Ali D., Angryk R., Paprzycki M., Rahimi
S., Wen L., Yang H. (2002 to appear) “Fuzzy Spatial
Relationships and Mobile Agent Technology in Geospatial
Information Systems,” in: Sztandera L., Matsakis P. (eds.) Soft
Computing in Defining Spatial Relations, volume in series: Soft
Computing, Physica-Verlag, to appear

[34] Poslad S., Laamanen H., Malaka R., Nick A., Buckle P.,
Zipf A. (2001) CRUMPET: Creation of User-friendly Mobile
Services Personalised for Tourism. Proceedings of: 3G 2001 -
Second International Conference on 3G Mobile Communication
Technologies. 26-29 March 2001. London, UK.
http://conferences.iee.org.uk/3G2001/

[35] Racoon: http://rx4rdf.liminalzone.org/Racoon

[36] Rud O. P. (2001) “Data Mining Cookbook. Modeling Data
for Marketing, Risk, and Customer Relationship Management,”
Wiley, New York, NY

[37] Simon A. R., Shaffer S. L. (2001) “Data Warehousing and
Business Intelligence for E-commerce,” Morgan Kaufman, New
York, NY

[38] Sołtysiak S., Crabtree B. (1998) “Automatic learning of user
profiles – towards the personalization of agent service,” BT
Technological Journal, 16 (3), pp. 110-117

[39] Strauss J., Frost R. (2001) “E-Marketing,” Prentice-Hall,
Upper Saddle River, NY

[40] Suarez J. N., O’Sullivan D., Brouchoud H., Cros P. (1999)
“Personal Travel Market: Real-Life Application of the FIPA
Standards.” Technical Report, BT, Project AC317

[41] Wright J., Gordon M., Paprzycki, M., Williams S.,
Harrington P., “Using the ebXML Registry Repository to
Manage Information in an Internet Travel Support System,” in:
W. Abramowicz and G. Klein (eds.), Proceedings of the
BIS'2003 Conference, Poznań University of Economics Press,
Poznań, Poland, 2003, 81-89

[42] Zhang B., Li W., Xu Z. (2002) “Personalized Tour Planning
System Based on User Interest Analysis,” Proceedings of the
BIS’2002 Conference, Poznań, Poland, April, 2002, pp. 184-190

