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Many numerical methods for studying chemical reaction problems require the computation of the eigen-
values of very large complex symmetric matrices. Recently, a new algorithm for this problem has been
proposed by Bar-On and Ryaboy [3]. This algorithm is similar in concept and complexity to the Hermitian
eigensolver and is based on application of complex orthogonal transformations to preserve symmetry and
recovery transformations to preserve stability. We demonstrate the performance of the proposed algo-
rithm on several high performance computers from Digital, SGI, and Cray. The results show that the new
algorithm 1s much faster than the general eigensolver, the present method used for solving these problems.

1. INTRODUCTION

Recent advances in studying chemical reaction problems require the calculation of the eigenvalues of
large complex symmetric matrices. The complex rotation [2, 7, 9, 12, 15, 17, 19, 20| and the optical
potential [8] methods are typical examples of such methods which are applied to the chemical
problems [4, 10, 11, 13, 16, 18]. Modern state of the art software libraries, such as LAPACK (1],
provide routines for computing the eigenvalues of complex Hermitian and complex general matrices,
the former being faster nearly by an order of magnitude, but no support for the complex symmetric
matrices. In case of complex symmetric matrices, the use of unitary transformations in the reduction
stage (the current approach) destroys symmetry so that these matrices have to be treated as complex
general. Thus, for large matrices (order 5000 and more), finding eigenvalues becomes extremely
time consuming (taking up to 90% of the total time) and dominates the computational effort of

the chemical reaction modelling.

Recently, a new algorithm for the complex symmetric eigenproblem, similar in concept to the
Hermitian eigensolver, has been proposed in (3. It is based on the application of complex orthogonal
transformations (instead of the commonly used unitary transformations) to preserve symmetry and
recovery transtormations to maintain stability. As a result, the computational complexity of the
new algorithm remains similar to that of the Hermitian eigensolver. In this paper, we present
experimental results that demonstrate the performance of the new algorithm on several state of
the art computers: the DEC Alpha server and workstation, the SGI Power Challenge 8000, and
the Cray J-916. As can be seen, the new algorithm is much faster than the general eigensolver, the
current method of choice for solving the complex symmetric eigenproblem.

The paper is organized as follows: we begin with a comparison of the general and Hermitian
eigensolvers on the Cray, in Section 2. Then we review the characteristics of the new algorithm and
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its performance on the Cray, in Section 3. Finally, we compare these algorithms on the superscalar
machines, in Section 4.

2. GENERAL AND HERMITIAN EIGENSOLVERS

T'he standard method for computing the eigenvalues of general complex matrices proceeds as fol-
lows [6, 21] :

Householder Reduction We reduce the dense matrix 4 € C" into an upper Hessenberg matrix
H € C", by a sequence of unitary transformations. As these transiormations preserve the spectral
structure ot the transformed matrices. Thus, the final Hessenberg matrix has the same set of

eigenvalues as the original matrix.

Hessenberg QR We transform the Hessenberg matrix H € C™ into an upper triangular matrix
U € C", again by unitary transformations preserving the spectral structure of the original
matrix. Thus, the eigenvalues are found on the main diagonal of the triangular matrix.

T'he reduction process is deterministic and requires only ~ -‘-1-3977,3 flops, see [6, page 366]. However,
the QR process is iterative and convergence depends on the specific spectral structure of the un-
derlying matrix. Hence, assuming on average kK > 2 iterations per eigenvalue?, the number of flops
1S of order =~ 2—:83—’5713 (ibid. page 364), for a total of ~ 28’5{40713 flops. Thus the algorithm becomes
very time consuming as is evident from Table 1.

We illustrate the performance of the LAPACK routines ZGEHRD for the Reduction, and ZH-
SEQR for the QR step on the Cray J-916. We report the average CPU times, in seconds, and the
average performance, in Mflops, for random general complex matrices, collected using the Cray’s
perftrace utility. As can be observed, the running time becomes significant even for matrices of order
1800. The QR step dominates the solution process and is characterized by the lower performance.

Table 1. The general eigensolver Table 2. The Hermitian eigensolver
| Reduction QR | Reduction | QR
n = Secgnds Mflops | Seconds MHops n.= | Seconds Mflops Seccl_nd_s Mflops
200 | -~ 0.6 178 3.3 65 200 0.3 146 0.1 21
600 15 190 58 98 600 6.5 178 0.8 20
1000 69 193 219 106 1000 29 185 2.2 20
1400 189 194 572 110 1400 78 188 4.0 21
1800 401 194 | 1214 113 1800 | 164 190 1 21

We next consider the Hermitian eigensolver which can be treated as an application of the general
eigensolver to the complex Hermitian® matrices. Here, the unitary transformations preserve the
original Hermitian structure of the transformed matrices so that the final Hessenberg matrix, being
Hermitian, is also necessarily tridiagonal. We gain considerably in the number of flops which now
becomes only = 13—6713. The QR process, that previously dominated the running time, now takes
only O(n?) flops (see Table 2).

In Table 2 we present the performances of the LAPACK routines, ZHETRD for the Reduction,
and ZSTEQR for the QR step, on the Cray J-916. As before we report the average CPU times and
the performance, for random complex Hermitian matrices, collected by the Cray’s perftrace utility.
Observe that, indeed, the Reduction process runs ~ 2.5 times faster than before. As predicted
above the QR step, although running at a much lower Mtflop rate, is computationally insignificant.
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Table 3. General vs. Hermitian

Running Times | Mflops/195
n= | Gen Her ' Spu | Gen  Her |

200 | 3.9 0.4 | 9.8 | 42% 58%
60| 73 7.3 | 10 | 60% 82%
1000 | 288 31 | 9.3 | 65% 89%
1400 | 761 82 | 9.3 | 67% 92% |
1800 | 1615 171 | 9.4 | 68% 94%

In Table 3, we compare the overall performance of the complex general and the complex Her-
mitian eigensolvers (as reported in Tables 1 and 2). We also present the average performance 1n

percentage of the practical peak performance of the Cray J-916, which is 195 Mflops [14]. As can

be seen, the more cflicient implementation of the Hermitian eigensolver yields a speedup of ~ 10

over the general eigensolver.

2 THE COMPLEX SYMMETRIC EIGENSOLVER

Consider the standard Hermitian process applied to dense matrices A=A(”+1), 1.€.,
AF) = Qr ALy, k=n,...,3, QiQx =1
with T=A®) being tridiagonal Hermitian. Then, at the kP step

Ai-k) Bt Agc) _ ( Afc?l b ) |
Alk+1) Bk+1 f-‘f'k+1 | . ’ * (1)
Bn c[j: @k = ( o In—k+1 )’
Oy =I-2"Y w=bt L (b Fes, 2

’ 1
v ( k_1bk—1)2
where e;_1 is the (kK — 1)thl standard unit vector. Hence, Agc__ll) = QZ_1A§£19k—1 and

b1
|bk—1]
T r (k) (k—1) -
For simplicity, let A and A’ denote A, and A,_, "’ respectively. Then,

Br = 102 -

A = A —2uw(w*A) — 2(Aw)w* + 4(w* Aw)ww™ v=l|u'|ls,u’ = Aw
| ' 1
= A — 2y(wu* + uw” — 2(w u)ww”) U= ",Y““"
= A — 2vy(wr* + rw*), r=u— (wu)w,

and the complexity of the process is dominated by one matrix vector product, one outer vector
product, and one matrix subtraction for a total of &~ 16k* flops. Let us try to modify this process in
order to apply it to the complex symmetric matrices. A simple solution is to replace the conjugate

transpose operation (-)*, with the transpose operation (-)?. For example, let

0 3 4 o 1 1 1 1 7 + 51
3 0 5 4 1 -1 1 -1 1 — 5
4 4 5 0 3 | 1 1 -1 -1 |’ - —1— 5 ’

5 4 3 0 1 -1 -1 1 —7 + ot



with AX = X A. Then following (2) we have to use

v vt

O=7]-2 v=>b% (btb)lﬂffszI b = (51,4, 3)T’

viy’

which is now undefined since vTv = 0. Note that such breakdowns are not characteristic to the ill
conditioned problems as the spectrum of the matrices above 18 very simple. Moreover, it is possible
that matrices Q have a relatively large norm or that the cumulative effect of applying these matrices

~_ We therefore suggest the following more stable implementation: let H = 4 + ;B and denote the
k™ leading submatrix as in (1), and let

(%
: : Qr = I — 2uwt, w = ,
=40, 5= ;) ol 3)
v ="b+sign(by_1) ||b||2 ex_;.

We then apply

(%

to i and denote the transformed matrix by Hy = A; +1Bj,

’" ~ ~7 " 1
AI=(§I Z-)= g{ z’c::: , B;=(B;} z)= gtj /g'y ,
" T o y B
with
A} = QT A'Qy, a=Qfa,
B; = QI B'Qy, y==%x|bll2.
Let .
Qr=I-2wvl, w=rle  v=a'+sign(@_;) |7 eos,
and apply
Qr
Qr = 1

1
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Then, unless

ISk ]
max(|z}], |y, |z]|)

1s relatively small, we apply

I3

e = Qc
1

to Hp. Hence, H' = QTHQ with Q = Q;QrQc, @1 Q = I. Here, Q; and Qg being real orthogonal,
are norm preserving. Moreover, (Jc applies only to the last two rows and columns of H, and as
is shown in [3], does not substantially increase the norms of the transformed matrices. For the
special case of z = 0 and |y| = |z|, we apply simple recovery transformations that eliminate this
breakdown effect. For example, when G;; # 0 we apply one step of the QR algorithm to the trailing
tridiagonal matrix in (1), whereby the algorithm would return to normal behaviour as usual®. Here,
the recovery transformation take O(k) flops, and since their occurrences is relatively rare

HED = (IYTHOQ®) ¢t =0,...,m—1, m = O(n),
the algorithm takes = 13—6m3 136 3> flops. In practice, due to the rounding errors,
E+1) — (Q(t))TE[(t)Q(t) + E®) E®)| < elHWY)|,

with € being the machine p'recision so that

P

T=V'(H+E)V, E-= Z v p® ()T v = 00 ..o
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By construction, the norms of E( ) are relatively sma,ll, and the special structure of the transfor-
mations in V(! suggests that they should not increase that norm substantially. Hence, we would
expect the eigenvalues to be backward stable. This has been confirmed in practice for the quantum
application discussed in the introduction, i.e. the observed accuracy of the computed eigenvalues

1s similar to that for the general eigensolver.
We conclude with a full description of the complex symmetric eigensolver:

Orthogonal Reduction We reduce the complex symmetric matrix A € C™ into a complex sym-
metric tridiagonal matrix T € C™, by a sequence of complex orthogonal transformations. These
transformations preserve the spectral structure of the transformed matrices so that the final

tridiagonal matrix has the same set of eigenvalues as the original matrix.

Tridiagonal QR We transform the tridiagonal matrix into a diagonal matrix A € C", again by a
sequence of complex orthogonal transformations preserving the spectral structure of the original
matrix. Hence, the eigenvalues are the diagonal entries A;,2 =1,...,n.

The Reduction process, as described above, requires = -§-n3 flops, and the QR process, using
the routine CMTQL1 [5] only O(n?) flops. In Table 4, we present the average performance of
the algorithm on random complex symmetric matrices, which are representative of the quantum
applications discussed in the introduction. Random matrices were used for the ease of the work since
the latter require many more runs and their dimension could not be easily determined beforehand.
As before, the experimental data was collected on the Cray J-916 using the perfirace utility. As
expected, the performance of the Reduction process behaves as in Table 2. However, the QR process
is considerably more time consuming although its significance decreases for larger dimensions®. This
effect, we believe, can be partially traced to the inefficient implementation of the routine CMTQL1
which was originally designed for sequential scalar machines and not for vector machines such as
the Cray J-916. More research should be done in order to improve this performance on the Cray.

“For the more simple case of Bx4+1 = 0 see [3].
SThe inherent O(n?) complexity of this process comes into play.



Table 4. The complex symmetric eigensolver

Reduction _ Q_R |
n = | Seconds Mflops | Seconds Mflops
200 | 04 118 | 15 15
600 7.1 165 13 15
1000 31 173 35 15
1400 83 177 69 15
1800 174 180 114 15

4. COMPARISONS WITH SUPERSCALAR MACHINES

In addition to the Cray J-916 vector-computer we have studied the performance characteristics of
all three algorithms on the following platforms: the DEC Alpha Workstation 600 5/266 (DEC1),
the DEC Alpha Server 8400 (DEC2), and the Silicon Graphics Power Challenge 8000 (SGI). Their
practical peak performance, as established by matrix multiplication 114], was 185 Mflops for the
Alpha workstation, 220 Mflops for the Alpha server and 290 Mflops for the SGI. As the algorithms
we have studied are computationally intensive (O(n?) flops), for large matrices, the performance
achieved should be close to the practical peak. However, the results obtained were surprisingly
different.

In Table 5, we illustrate the performance (time in seconds) of the general algorithm on the three
machines. Observe that the Cray computer is significantly faster (see Table 1) in the Reduction
step, although its theoretical peak performance is the second lowest. Furthermore, the SGI (a RISC
based superscalar machine similar to the DEC computers, but theoretically almost twice as fast)
1s almost twice slower in the QR step.

In Table 6, we present the performance (time in seconds) of the Hermitian eligensolver on these
machines. The Cray computer, is again the fastest in the Reduction step (see Table 2), while the
superscalar machines behave similarly. The running time of the QR step is insignificant for all
superscalar machines. Note that the Hermitian code seems to be well optimized on all machines,
possibly because of its extensive use in many applications.

Table 5. The general eigensolver

Reduction ] ) _Q_R_H )
n= | DECl CRAY DEC2 SGI | DEC1I CRAY DEC2 SGI
200 | 08 06 07 04 | 16 33 16 3.5
600 | 33 15 27 16 43 58 43 78 |

[ 1000 | 186 69 180 226 219 226 369
1400 | 713 189 754 649 | 644 572 644 1116
1800 ‘ 1518 401 1621 1278 | 1411 1214 1199 2429 |

Table 6. The Hermitian eigensolver

T Reduction QR ]
n= | DECl1 CRAY DEC2 SGI|{DEClI CRAY DEC2 SGI
0.3 0.3 03 02| 01 0.1 0.1 0.1 |
125 6.5 82 4 0.1 08 02 04
63 29 53 42 . 2.2 0.6 1.2
1400 | 174 78 164 163 | 1.5 4.0 1.3 24 |
1800 [ 376 164 378 404 | 23 71 20 338




Table 7. The complex symmetric eigensolver

Reduction | QR ]
n= | DECl CRAY DEC2 SGI|DECl CRAY DEC2 SGI
200 | 04 04 04 08] 04 15 03 05

600 '____'j& 7.1 12 20 3.1 13 2.8 5.1]
1000 | 91 31 80 105 | 8.6 35 7.7 14
1400 | 282 33 259 327 | 17 69 15 28

701 28 114 29 49

1800 | 633 _1_"7:11 623

Rl ——

Table 8. Speedup for n = 1800

Reduction Total
Machine | Hermitian New | Hermitian New
DEC1 4 2.4 7.7 44
| CRAY | 24 23 | 94 5.6
DEC?2 4.3 26 | 74 4.4 |
SGI | 3.2 1.7 [ 91 47

In Table 7 we present the corresponding results for the new algorithm. Once again, in the
Reduction step, Cray outperforms other machines (compare with Table 4). The performance of the
superscalar machines in the Reduction step of the new algorithm is worse than their performance
in the Reduction step of the corresponding Hermitian eigensolver, suggesting that further research
should be done 1n order to improve this performance. As indicated before the poor performance
of the Cray in the QR step can be partly attributed to the scalar characteristics of the routine

CMTQLI.

Finally, in Table 8, we compare the speedup of the Hermitian and the new complex symmetric
eigensolvers with respect to the general eigensolver. We present the speedup of the Reduction
step separately, and the speedup of the complete algorithm. We observe that the new solver is
approximately 5 times faster than the general eigensolver, while the results presented above may

indicate that further improvements are still possible.

5. CONCLUSION AND FUTURE RESEARCH

We have presented a number of experimental results comparing the performance of the new com-
plex symmetric eigensolver with that of the standard method applied to this problem in the current
computational practice. The results clearly indicate the superiority of the new algorithm. However,
as we have pointed out, more research should be carried out in order to enhance the performance
of the Reduction process on the super scalar machines, and the tridiagonal QR process on the
Cray vector-machine. Moreover, the numerical stability of the proposed algorithm requires further
research, and more specifically, the effect of using complex orthogonal but non unitary transfor-
mations in the Reduction process should be further studied, as well as the accuracy and efficiency
of the QR algorithm for complex symmetric tridiagonal matrices. Further research should also be
directed toward an eflicient parallel implementation of the algorithm. We hope to consider these

issues in the very near future.

6. ACKNOWLEDGEMENT

We would like to thank the anonymous referee for the help in preparing the final version of the
paper.



REFERENCES

[1] E. Anderson, Z. Bai, C. Bischof, J. Demmel, J. Dongarra, J.D. Croz, A. Greenbaum, S. Hammarling, A. McKen-
ney, S. Ostrouchov, D. Sorensen. LAPACK Users’ Guide, SIAM, 1992.

2] E. Balslev, J. Combes. Spectral properties of many body Schroedinger operators with dilation analytic interac-
tions. Commun. Math. Phys., 22: 280-294, 1971.

[3] I. Bar-On, V. Ryaboy. Fast diagonalization of large and dense complex symmetric matrices, with applications
to quantum reaction dynamics. SIAM J. on Scientific Computing, 18: 1412-1435, 1997.

[4] D. Brown, J. Light. Evaluation of thermal rate constants in the eigenbasis of a Hamiltonian with an optical
potential. J. Chem. Phys., 97: 5465-5471, 1992.

5] J.K. Cullum, R.A. Willoughby. Lanczos Algorithms for Large Symmetric Ergenvalues Computations. Birkhauser,
Boston, 1985.

6] G.H. Golub, C.F.V. Loan. Matriz Computations. The Johns Hopkins University Press, 1989.

[7] Y. Ho. The method of complex coordinate rotation and its applications to atomic collision processes. Phys.
Rep. C, 99: 1-68, 1983.

8] G. Jolicard, E. Austin. Optical potential stabilization method for predicting resonance levels. Chem. Phys. Lett.,

121: 106-110, 1985.
[9] B. Junker. Recent computational developments in the use of complex scaling in resonance phenomena. Adv. At.

Mol. Phys., 18: 207-263, (1982).

[10] D.N.I. Last, M. Baer. The application of negative imaginary arrangement decoupling potential to reactive
scattering: conversion of a reactive scattering problem into a bound-type problem. J. Chem. Phys., 96: 2017-
2024, 1992.

[11] N. Lipkin, N. Moiseyev, C. Leforestier. A three dimensional study of NeICl predissociation resonances by the
complex scaled discrete variable representation method. J. Chem. Phys., 98: 1888-1901, 1993.

[12] N. Moiseyev. Resonances, cross sections and partial widths by the complex coordinate method. Isr. J. Chem.,
31: 311-322, 1991. |

[13] D. Neuhauser, M. Baer. The time-dependent Schroedinger equation: application of absorbing boundary condi-
tion. J. Chem. Phys., 90: 4351-4355, 1989.

[14] M. Paprzycki, C. Cyphers. Multiplying matrices on the Cray — Practical considerations. CHPC Newsletter,
1991.

[15] W. Reinhardt. Complex coordinates in the theory of atomic and molecular structure and dynamics. Annu. Rev..
Phys. Chem., 33: 223-255, 1982.

[16] V. Ryaboy, N. Moiseyev. Cumulative reaction probability from Siegert eigenvalues: model studies. J. Chem.
Phys., 98: 9618-9623, 1993. '

(17} V. Ryaboy, N. Moiseyev. Three dimensional study of predissociation resonances by the complex scaled discrete
variable representation method: HCO/DCO. J. Chem. Phys., 103: 4061-4067 1995.

[18] T. Seideman, W. Miller. Calculation of the cumulative reaction probability via a discrete variable representation
with absorbing boundary condition. J. Chem. Phys., 96: 4412-4422. 1992.

[19] J. Simon. Quadratic form techniques and the Balslev-Combes theorem. Commun. Math. Phys., 27: 1-9, 1972.

[20] J. Simon. Resonances in n-body quantum systems with dilation analytic potentials and the foundations of time
dependent perturbation theory Ann. Math., 97: 247-274, 1973.

(21} J.H. Wilkinson. The Algebraic Eigenvalue Problem. Oxford University Press, 1965: reprinted in Oxford Science

Publications, 1988.




