
Reengineering and extending the Agents in Grid
Ontology

Pawe l Szmeja1, Katarzyna Wasielewska1, Maria Ganzha1, Micha l Drozdowicz1,
Marcin Paprzycki1, Stefka Fridanova2, and Ivan Lirkov2

1 Systems Research Institute Polish Academy of Sciences, Warsaw, Poland
{pawel.szmeja, katarzyna.wasielewska, drozdowicz}@gmail.com,

{maria.ganzha, marcin.paprzycki}@ibspan.waw.pl
2 Institute of Information and Communication Technologies Bulgarian Academy of

Sciences, Sofia. Bulgaria {stefka, ivan}@parallel.bas.bg

Abstract. Ontology engineering, despite considerable progress, is still
relatively new and dynamically evolving discipline. As a result, the uni-
versal standards for creating and/or editing an ontology, have not been
established. This leads to problems with reusing and updating existing
ontologies. It also makes writing an ontology from scratch seem like a
good idea. The aim of this paper is two-fold. First, to discuss key is-
sues encountered during re-engineering of an existing ontology. Second,
to show how the good practices of ontology development were applied to
model the area of computational linear algebra. Here, special attention
is paid to the application of this ontology in the user support system.

1 Introduction

The context for this paper is provided by the Agents in Grid project (AiG ;
[3, 6, 9]), which aims at development of an agent-based infrastructure for intel-
ligent resource management in the Grid. The AiG project combines software
agents and semantic data processing. Specifically, all knowledge in the system
is stored in / represented as an ontology, while communication protocols utilize
messages with ontological content ([5]). During the development of the system,
three ontologies were designed to provide concepts necessary for: (i) resource
and Grid structure description, (ii) contract and requirements specification, and
(iii) content of messages exchanged in the system.

As the development of the system progressed, the ontological structures
started to become complex (ontology consisting of 401 entities). Furthermore,
when reasoning moved beyond simplistic examples (ontologies with a few con-
cepts), we have been confronted with recurring errors generated by the reasoners.
Therefore, the ontology reengineering became a necessity.

2 AiG ontology reengineering

The original AiG grid ontology was created on the basis of the Core Grid On-
tology (CGO ; 217 entities). The CGO was extended (adding 88 entities) and

modified to match the needs of the AiG project (see, [5, 9]). During this pro-
cess, features identified as most problematic, from the point of view of the AiG
project, have been modified. Furthermore, constraints and messaging ontologies
have been created (96 additional entities). However, no major “checking” of the
CGO has been performed at that stage. Let us, therefore, summarize key is-
sues encountered when such check was performed for the complete set of AiG
ontologies.

2.1 Documentation standards

It is crucial that the ontology is intuitive enough and that the intended use of its
entities is clear. In OWL ([1]), this can be achieved through proper documen-
tation, clear naming scheme, and overall consistency. The ontology should be
uniform when representing the real world concepts and objects as OWL classes,
properties and individuals. However, as we have found, the original CGO had
problems in this area, and some of them carried over to the AiG ontology.

General ontology engineering standards state that names of OWL classes
should be capitalized, whereas OWL property names should start with a lower-
case letter, preferably in the format of ”has[Property]” or ”is[Property]”. This is
particularly important for a hierarchy of ontologies, because the naming schemes
carry over to all ontologies that import a given ontology. If ontologies in a hier-
archy use different naming conventions, the overall naming scheme is broken.

Here, an example is the operatingSystem property that not only conflicted the
naming scheme (it applied to properties such as hasCPU and hasFileSystem),
but also could be easily confused with the OperatingSystem class. Recall that
in OWL, IRIs should be unique in the scope of an ontology, regardless of the
type of the entity. To solve the problem, the property has been renamed to
hasOperatingSystem. The remaining (similar) problems have also been fixed.

Proper documentation should help reusability, e.g. by explaining how the
ontology is intended to be used. While the OWL annotations can be used as
the documentation, this was not the case with the CGO (only 7 classes had
commenting annotations). The AiG ontologies are constantly updated with an-
notations that are to serve both as guidelines for the users and as reminders for
the developers. In the future, we plan to use annotations in the dynamic user in-
terface (see, [4] for more details). Here, the GUI, in addition to adjusting to the
ontology structure, would also display information (contained in annotations)
to explain to the users (a) the entities in the ontology, and (b) their intended
meaning.

2.2 Ontology hierarchy

Recall, that the AiG grid ontology extended the CGO ontology to better fit
the needs of the AiG system. When analyzing the interplay between these two
ontologies it becomes clear that they are “conceptually” on the same level. En-
tities defined in the CGO could be transferred to the AiG grid ontology and
vice-versa. This could be done without disturbing the main ideas underlying

Fig. 1. Hierarchy of ontologies in AiG

both ontologies and the AiG system. Furthermore, this could be done without
impacting the work of the AiG system. However, this means that the AiG grid
ontology must be used together with the CGO. This demonstrates a more gen-
eral issue that is rarely discussed. The typical ontology hierarchy does not take
into account the fact that, on each conceptual level, there may exist multiple
ontology files. In the AiG system, the ontological base consists of the CGO and
the AiG ontologies, with the messaging (AigMessagingOntology), the contract
constraints (AiGConstraintsOntology), and the domain (expert, AiGExpertOn-
tology) ontologies placed deeper in the hierarchy. Figure 1 presents the relation
of ontology files within the actual ontology hierarchy.

The reengineering that started with the CGO involved changes that had to
be immediately reflected in the AiG grid ontology, in order to preserve the con-
nection between them, and to prevent introducing (new) errors. An example of
how the original CGO was unsuitable for being extended was the clockSpeed
property. It’s original use, in the CGO, is summarized by two constructs: the
restriction on the CPU class, and the domain specification on itself. The first
states that every CPU needs a defined property clockSpeed. The latter restricts
the clockSpeed to the CPUs only. The AiG grid ontology introduced the GPUs
that had also to be described by the clock speed. Because of the domain re-
striction it was impossible to use the clockSpeed property from the CGO. Any
GPU that used this property would be inferred to be a CPU. While technically
correct, such inference was against our intentions. To avoid changing the CGO
file, a hasClockSpeed property was introduced in the AiG grid ontology. There,

it had the same interpretation as the clockSpeed from the CGO, only with the
GPU, as well as the CPU, in its domain.

This is an example of a “too specific” upper ontology. When narrowing the
domain, one might come to a false conclusion that the CPUs are the only objects
characterized by clock speed. Furthermore, it serves no purpose in the scope of
the ontology itself. Associating clock speed with CPUs is the suggested use,
not the only use and, therefore, it should be put in annotations. Similarly, the
extension of the domain (in the original AiG grid ontology) was incorrect. Note
that, if we added some Accelerated Processing Unit to the ontology, we would
face the same problem, and could end with three properties, each representing
clock speed, but for different entities and with differently scoped domains.

During the reengineering, we put the hasClockSpeed property in place of the
clockSpeed, with the domain specification set to Thing or CPU or GPU . In
other words, we use the CGO defined property (not defining our own) and add
suggested use in both annotation and domain definition (without narrowing it
down). In this way we fixed similar problems associated with other properties.

2.3 Cleaning conceptual inconsistencies

A number of entities with the same intended meaning were present (at the
same time) in both in the CGO and the AiG ontologies. For example, both
ontologies included a CPU class. They had a different IRI base and a different
definition (e.g. one had the clockSpeed property in the definition). Individuals
that should belong to a single CPU class were divided between them. As a result,
the reasoning about individuals in the CPU class never gave a complete result
(unless done in the scope of the IRI bases of both ontologies and then combined).
As a consequence, multiple reasoners (tried in the system) had problems with
creating an inferred hierarchy, or classifying the ontology. Note that, these errors
became apparent only after reasoners started to be used in a working system
on the full-blown ontology (400+ entities) rather than on mini-examples (10-20
entities) used in testing the agent infrastructure.

We have found that this problem resulted from a misconception (or a bug)
in earlier versions of the Protegé platform that assumed that classes of newly
created individuals belong to the active ontology, and asserted their existence
(if they were not present). The newer versions of Protegé do not suffer from this
problem. This shows that growth of knowledge about “ontologies in practice”
leads to development of better tools, but leaves behind ontologies with limited
usability. All such problems were fixed, which also solved the reasoning errors.

3 Lessons learned

Here, let us note that literature considers mostly ontology creation, rather than
long-term (re)use (see, for instance [2]). Furthermore, ongoing research concerns
ontology merging, alignment, mapping, but almost nothing concerns “software

engineering like” principles for ontology re-use. This being the case let us sum-
marize the most important lessons learned from our work.

First, one should be mindful of the existing (or planned) ontology hierarchy,
and how a new/modified ontology would fit into it. Hierarchies can vary but it’s
always good to remember that upper ontologies should contain “general con-
cepts” and avoid introducing unnecessary conditions that would restrict usage
of upper entities. Consequently, the hierarchy level should be reflected in the
level of ontological specialization, when moving deeper into the imports chain.

Second, ontologies are meant to be reused. Thus, it is crucial to clearly com-
municate their intended use (e.g. by providing complete annotations and ad-
hering to the naming standards). As seen in the examples above, this can help
prevent misusing a concept or (re)defining it more times than intended.

Finally, the crucial lesson is that applying an ontology in practice is an in-
dispensable for identifying the problems that exist in its design. It also helps to
understand the importance of developed standards and best practices.

4 Adding a domain ontology

During the development of the AiG system, the need to add a new (created from
scratch) ontology arose. Note that the AiG system is to provide support beyond
the functionalities found in the existing Grid middlewares. Specifically, ontolog-
ical representation of domain knowledge is to be a part of the decision support
provided to the user. For instance, it should help the user to choose optimal algo-
rithm and/or resource to solve her problem. Hence, this is another attempt (using
modern tools) to achieve goals summarized in [7, 8]. While work completed in
1990’s did not gain traction, we believe that with help of ontologies and semantic
data processing we may have more success. As a starting point, we have focused
on computational linear algebra. The ontology under development is extending
the existing AiG ontologies, and created taking into account the lessons learned
from the reengineering of the AiG ontologies. The main goal of the AiGExpertOn-
tology is to provide concepts necessary to capture three aspects of the domain:
(i) problems to be solved, (ii) algorithms to solve them, (iii) objects that these al-
gorithms operate on. Additionally, classes DomainExpert and ExpertOpinion
where introduced to represent experts knowledge (recommendations) allowing
matching of problems and algorithms. Therefore, the ExpertOpinion class has
property hasRecommendedResource, which points to a resource that is most suit-
able for solving a specific problem (according to the expert). Obviously, resources
originate from the AiG ontology. Let us now present the preliminary hierarchy of
problems in computational linear algebra (Figure 2). Here, we distinguished five
types of problems represented with OWL classes: eigenproblem that can be fur-
ther categorized into eigenvalue or eigenvector problem, least squares problem,
solution of a system of linear equations, and calculation of a matrix norm.

The second part is the Algorithm; a superclass for classes (in Figure 3, we
present a fragment of this hierarchy) representing algorithms that can be used
to solve problems from Figure 2, for a given input data (represented in the

Fig. 2. Hierarchy of problems in AiGExpertOntology

Matrix class). This part of the ontology is going to be most complex and is
being developed based on domain expert knowledge.

Fig. 3. Part of hierarchy of algorithms in AiGExpertOntology

Finally, we develop Matrix and MatrixProperty classes (Figure 4) and the
property hasMatrixProperty that defines their relationship. The MatrixProperty
class is a superclass for a hierarchy of properties that describe the matrix (e.g.
symmetricity, density, structure, etc.). Obviously, in Figure 4 we present only
fragments of the ontology that is being extended on the basis of expert opinions.

To illustrate how we plan to use the AiGExpertOntology ontology, let us con-
sider a scenario, where the user is looking for a team to commission a job. Here,
she could specify only requirements for resources needed to execute the job (as-
suming that she is certain about her needs). However, she could also indicate an
individual of a subclass of the Problem class (Figure 2), e.g. SystemOfLinearE-
quationsProblem. Such individual may have (optional) properties that specify

Fig. 4. Part of hierarchy of matrix properties in AiGExpertOntology

(i) the input, e.g. individual of class Matrix with values of hasProperty being
individuals of classes PositiveDefiniteMatrix and SymmetricMatrix, and (ii) al-
gorithm, e.g. individual of class CholeskyFactorization. The first use case is to
validate user request for a resource against resources recommended by experts for
a combination of problem, input data, and algorithm. User’s resource specifica-
tion is evaluated against experts suggestions using Saaty’s Analytical Hierarchy
Process (AHP) for multicriterial assessment. The way to combine ontologies and
the AHP method was introduced in [10].

Here, two use cases can be distinguished. First, when user requirements are
significantly disjoint from the expert suggestions (e.g. request for GeneralSolver
is made for a SymmetricMatrix), he will be provided with alternative sugges-
tion(s) and thus may modify his request. Second, when user requirements are
not very detailed, they will be made more specific by accommodating experts
opinions. For instance, when user specified the problem, the matrix type (and
size), and the algorithm, the system can additionally suggest the CPU / GPU
type, and/or memory, and/or number of processors. Similarly, when the user
specified only the problem and the matrix type, the expert knowledge and the
AHP shall be utilized to suggest the algorithm and resources to be used.

In the AiGExpertOntology we follow, earlier specified, guidelines for ontology
engineering, e.g. naming conventions for classes and properties, filling annota-
tions for ontology elements. Moreover, we decided that new ontology has to
become a new module (separated from previously designed ones).

5 Concluding remarks

The aim of this paper was, first, to discuss important issues involved in ontology
reengineering, based on our experiences with the AiG ontology. Here, we have
discussed problems that one can encounter when ontology has been created using
earlier state of the art knowledge and tools and has to be extended and modern-
ized. Second, to introduce a new ontology that is going to be used in the user de-
cision support in the AiG system. This ontology has been developed following the

guidelines established during the reengineering process. The reengineered ontol-
ogy is available at: http://gridagents.sourceforge.net/AiGGridOntology.
Our current goal is to continue development of the ontology of computational
linear algebra and apply it in a prototype of the user decision support subsystem.

Acknowledgments

Work of the authors was in part supported by bilateral grant between Polish
Academy of Sciences and Bulgarian Academy of Sciences.

References

1. OWL 2 Web Ontology Language. http://www.w3.org/TR/owl2-overview/.
2. Fensel Dieter. Ontologies: A Silver Bullet for Knowledge Management and Elec-

tronic Commerce. Springer-Verlag, New York, 2003.
3. Mateusz Dominiak, Wojciech Kuranowski, Maciej Gawinecki, Maria Ganzha,

and Marcin Paprzycki. Utilizing agent teams in Grid resource management—
preliminary considerations. In Proc. of the IEEE John Vincent Atanasoff Confer-
ence, pages 46–51, Los Alamitos, CA, 2006. IEEE CS Press.

4. Micha l Drozdowicz, Maria Ganzha, Katarzyna Wasielewska, Marcin Paprzycki,
and Pawe l Szmeja. Using ontologies to manage resources in grid computing: Prac-
tical aspects. In Sascha Ossowski, editor, Agreement Technologies, volume 8 of Law,
Governance and Technology Series, pages 149–168. Springer Netherlands, 2013.

5. Micha l Drozdowicz, Katarzyna Wasielewska, Maria Ganzha, Marcin Paprzycki,
Naoual Attaui, Ivan Lirkov, Richard Olejnik, Dana Petcu, and Costin Badica.
Ontology for Contract Negotiations in Agent-based Grid Resource Management
System. Saxe-Coburg Publications, Stirlingshire, UK, 2011.

6. Wojciech Kuranowski, Maria Ganzha, Maciej Gawinecki, Marcin Paprzycki, Ivan
Lirkov, and Svetozar Margenov. Forming and managing agent teams acting as
resource brokers in the grid—preliminary considerations. International Journal of
Computational Intelligence Research, 4(1):9–16, 2008.

7. M. Lucks. A Knowledge-Based Framework for the Selection of Mathematical Soft-
ware. PhD thesis, Southern Methodist University, 1990.

8. Dana Petcu and Viorel Negru. Interactive system for stiff computations and dis-
tributed computing. In Proceedings of IMACS’98: International Conference on
Scientific Computing and Mathematical Modelling, pages 126–129. IMACS, 1998.

9. Katarzyna Wasielewska, Micha l Drozdowicz, Maria Ganzha, Marcin Paprzycki,
Naoual Attaui, Dana Petcu, Costin Badica, Richard Olejnik, and Ivan Lirkov.
Trends in Parallel, Distributed, Grid and Cloud Computing for engineering. chap-
ter Negotiations in an Agent-based Grid Resource Brokering Systems. Saxe-Coburg
Publications, Stirlingshire, UK, 2011.

10. Katarzyna Wasielewska and Maria Ganzha. Using analytic hierarchy process ap-
proach in ontological multicriterial decision making – preliminary considerations.
In Proceedings of 4th International Conference–AMiTaNS’12 Memorial Volume
devoted to Prof. Christo I. Christov, pages 95–103, 2012.

