
Implementing Agent-based Resource

Management in Tsunami Modeling � Preliminary

Considerations

Michaª Drozdowicz1, Kensaku Hayashi2, Maria Ganzha1, Marcin Paprzycki1,
Alexander Vazhenin2, Yutaka Watanobe2

1 Systems Research Institute Polish Academy of Science, Warsaw, Poland
(name.surname)@ibspan.waw.pl

2 Graduate School Department, University of Aizu, Aizu-Wakamatsu, Japan
{vazhenin, yutaka, m5161111}@u-aizu.ac.jp

Abstract. Recently, work has started to apply the agent-semantic in-
frastructure, developed within the scope of the Agents in Grid project,
to the resource management needed in tsunami modeling. The original
proposal was based on the perceived simplicity, versatility and �exibility
of the agent-based approach that makes it easier to deploy than the stan-
dard grid middlewares. The aim of this paper is to report on the progress
in implementing and deploying the proposed system at the University of
Aizu.

1 Introduction

One of the key e�ects of the Great Japanese Earthquake and Tsunami was re-
statement of the importance of studying the impact of such events at di�erent
time scales. Here, the two main issues that have to be addressed are: (1) real-
time tsunami warning, and (2) long-term hazard assessment. To respond to these
needs, it is necessary to: (a) facilitate use of distributed clients, providing access
to computational services, (b) address scalability, to allow an arbitrary number
of users and computational resources to interact in a customizable working envi-
ronment, and (c) since di�erent applications and services may be developed for a
variety of hardware/software platforms, reusability and interoperability are im-
portant aspects of applying (and, possibly, combining) computational resources
and services [1, 2].

Here, observe that personal computers (with, or without, additional enhance-
ments, such as GPU processors) can be used for high-demand computing applica-
tions, e.g. consider the Folding@home project that involves distributed PC-based
simulations of protein folding and other molecular dynamics simulations [3, 4].
Unfortunately, while most volunteer projects (e.g. projects based on the BOINC
infrastructure) do note require human supervision � results are collected / ac-
cumulated during a long-term execution, and only in the �nal stage they are
inspected by the humans, this is not the case with tsunami modeling. Here, the
typical research scenario requires human interactions during the process, e.g.



checking/understanding the results of the current test(s) is often required to in-
stantiate the next round of experiments. Furthermore, di�erent tsunami models
often need to be combined to study various phases of the tsunami phenomenon.
This makes a direct application of the BOINC-like approach di�cult, if not
impossible.

As a result, in [20] it was stipulated that an agent-semantic system, designed
for resource management in the grid (developed in the Agents in Grid project;
AiG), can be successfully applied in tsunami modeling research. The aim of this
paper is to discuss how the AiG approach can be used to instantiate a distributed
tsunami modeling laboratory. To this e�ect, we start with a brief summary of
the state-of-the-art in tsunami modeling. Next, we outline the MOST algorithm
designed for tsunami simulation, and provide details of the implementation de-
veloped and used at the University of Aizu. We follow with an overview of the
Agents in Grid system and discuss its key aspects related to the process of its
customization to the requirements of tsunami modeling. Finally, we provide a de-
scription of the process of specifying and submitting a job within the distributed
tsunami modeling laboratory. This process is used to illustrate key features of
the system under development.

2 Tsunami modeling state-of-the-art

Let us start form brie�y discussing the state-of-the-art in tsunami modeling.
In [5], authors suggested that complex mathematical models and high mesh
resolution should only be used when necessary. They have developed a �paral-
lel hybrid tsunami simulator,� based on mixing di�erent models, methods and
meshes. This simulator was implemented using object-oriented techniques, al-
lowing for easy reuse of existing codes. Here, high performance was not the main
goal. Instead, research was focused on combining various approaches to develop
high quality hybrid tsunami models.

Authors of [6], experimented with eight di�erent parallel tsunami propagation
simulators. Each of them used a mixed-mode programming model, consisting of
a thread-based shared memory part, a distributed memory part and, �nally,
a virtual shared memory-based part. Obtained results have illustrated various
problems with scalability of the investigated software artifacts. Furthermore, it
was shown that if su�cient node memory is not available, threading becomes
the bottleneck.

The TsunamiClaw is a software package based on a �nite volume method [7].
It solves the shallow water equations in the, physically relevant, conservative
form. Thus, the obtained solution is represented as water depth and momen-
tum. Currently, this project is no longer actively pursued. Instead it has been
generalized into the GeoClaw software.

The TUNAMI-N2 software [8], is a tsunami simulation, which uses separate
models for the deep sea and shallow water. Interestingly, it uses constant grid
size in the entire domain. The TUNAMI was originally authored by by Imamura



(in 1993) and later applied to the real tsunami events in many countries. The
package was written in FORTRAN and has a standard GUI.

Finally, the MOST (Method of Splitting Tsunami) software allows for real-
time tsunami inundation forecasting, by incorporating real-time data from actual
detection buoys [9,10]. Furthermore, in the US, the MOST model is used for de-
veloping inundation maps [11]. To use in computational practice, a web enabled
interface, named ComMIT, has been implemented.

3 Tsunami Modeling Environment and Processes

3.1 Basic Model and Software Tools

As discussed, there exist multiple tsunami models and algorithms implemented
to realize them. These models deal with: origins of tsunamigenic earthquakes (es-
timation of magnitude and epicenter location), determination of the initial dis-
placement at the tsunami source, wave propagation, inundation into the dry land,
etc. Overall, the tsunami modeling environment is typically used to simulate
three phases of the tsunami evolution: (1) estimation of residual displacement
area, resulting from an earthquake and causing the tsunami, (2) transoceanic
propagation of the tsunami through the deep water, and (3) contact with the
land (run-up and inundation). Out of available choices, the University of Aizu
team selected the MOST package [9,10]. The MOST approach was initially devel-
oped in the Tsunami Laboratory of the Computing Center of the USSR Academy
of Sciences in Novosibirsk. Subsequently, the method was updated in the Na-
tional Center for Tsunami Research (NCTR, Seattle, USA) and adapted to the
standards accepted by tsunami watch services in the US, as well as other coun-
tries. It was then used in tsunami research in many countries around the world.
According to this approach, propagation of the wave in the ocean is governed by
shallow-water di�erential equations:

Ht + (uH)x + (vH)y = 0,
ut + uux + vuy + gHx = gDx,
vt + uvx + vvy + gHy = gDy, (1)

where H(x, y, t) = h(x, y, t) + D(x, y, t); h - is the water surface displacement,
D - depth, u(x, y, t) and v(x, y, t) - are the velocity components along the x and
y axis', g - is the gravity. The initial conditions should con�rm the presence
of water in all grid points, except for the tsunami source, where the surface
displacement is not equal to zero.

The numerical algorithm splits the di�erence scheme, which approximates
equations (1) in the spatial directions. A �nite di�erence algorithm, based on
the splitting method, reduces the solution of equations with two space variables
to the solution of two one-dimensional equations. As a result, e�ective �nite
di�erence schemes, developed for the one-dimensional problems, can be applied.
Moreover, this method permits to set boundary conditions for a �nite-di�erence
boundary value problem, using a characteristic line method.



3.2 General Calculation Process

Figure 1 shows the block-diagram illustrating the overall structure of calcula-
tions. To run the program, it is necessary to specify:

� bottom topography or bathymetry data;
� initial and boundary conditions;
� modeling parameters such as time-steps and length of the model run.

Fig. 1. General computational scheme of the MOST software

The necessary parameters are passed to the modeling program as a scenario �le

that is composed of the following elements:

� Area Information � BathymetryArea. Containing:
• Grid Name � Name of the Sea Area under consideration
• Grid Axes Version � Version Number
• Grid File Name � Link/Path to the Bathymetry Data/File

� Computational Parameters � CalculationInformation. Containing:
• Minimum Depth � Minimum depth for the o�shore area
• Time step � Time between two modeling iterations (in seconds)
• Total number of steps � The total number of iterations



• Number of steps between snapshots � Number of output frames (NF)
• Modeling time passed � The time elapsed since the beginning of modeling
• Save output every n-th grid point � Speci�cation of results saving struc-
ture

• global b.c.s � 1=global, 0=non-reentrant
� Naming Rules � NameOfOutputResult. Containing:

• Filename � <pre�x_ha.nc>, or "auto"
• Source Zone Name � Name of domain inside the bathymetry area
• Source Zone Code � Code of domain
• Source Column � Code of Grid (Column)
• Source Row � Code of Grid (Row)
• Source Version � Version of source

� Fault Plane Information � InformationAboutEarthquakeData. Containing:
• Number of Fault Planes � Information concerning number of fault planes
• x-integration � X value for integration
• y-integration � Y value for integration
• Vp � P-wave velocity
• Vs � S-wave velocity
• Deform Area X � Value of the Deform Area (x-axis)
• Deform Area Y � Value of the Deform Area (y-axis)
• Longitude (deg) � Center of the initial Wave (Longitude)
• Latitude (deg) � Center of te initial Wave (Latitude)
• Length (km) � Size of the initial Wave (Length)
• Width (km) � Size of the initial Wave (Width)
• DIP (deg) � DIP of the Wave
• RAKE (deg) � RAKE of the Wave Form
• STRIKE (deg) � Strike of the Wave
• SLIP (m) � Slip of the Wave
• DEPTH (km) � Depth of the Wave

The complete model of this information is depicted in Figure 2. As will be
seen, this information was used to develop the initial version of tsunami modeling
ontology.

After launching, the program implements calculations and stores results as
a series of frames representing tsunami propagation process in time. Parameter
NF de�nes the time interval, during which the results of computations are per-
sisted in the computer memory. After this time expires, results are stored on the
secondary storage devices in the NetCDF format ( [11]).

It is important to note that it took about 3.31 seconds to complete a single
time step of the original (Fortran 90) program on a computer with 4 dual-core,
Intel Xeon 2.8GHz, CPUs. After the program was ported to C/C++, it takes
about 3.00 seconds for a single time step [12]. Since a typical simulation, con-
sists of about 10000 time steps, it requires about 8 hours to complete. Therefore,
the tsunami modeling needs to be signi�cantly accelerated (e.g. through paral-
lel processing); especially for real-time tsunami warning generation. However,
speeding up modeling is also crucial for repetitive tsunami simulations; e.g. in
the arti�cial island modeling scenario.



Fig. 2. Scenario parameters



3.3 Hybrid Tsunami Modeling Combining Natural and Arti�cial

Bathymetry Objects

Lessons from the Great Japanese Tsunami stress importance of: (i) being able to
provide real-time tsunami warning, (ii) long-term hazard assessment (e.g. run-
ning detailed inundation models across the Japanese sea-line, and (iii) studies
of the well-known �Matsushima e�ect.� The later concerns the in�uence of geo-
graphical objects, like islands, on the wave height and/or speed. This observation
�nds its foundations in the research reported in [14]. Here, results of an exper-
imental study on e�ects of submarine barriers on tsunami wave propagation
indicated capability of reducing tsunami run-up through strategic placement of
arti�cial objects interacting with the tsunami waves. Speci�cally, it may be pos-
sible to design and build a set of arti�cial objects (islands) that can be used
to protect the coastal areas. In particular, such protection could be of extreme
value in highly populated areas (e.g. coastal cities, such as Sendai, that was af-
fected by the tsunami of 2011), as well as in industrial areas (e.g. nuclear plants,
factories, airports, etc.). Note that such e�ect, caused by local islands, already
exist in the Matsushima area, while absent on the Fukushima coast. It can be
conjectured that adding a small number of appropriately placed arti�cial objects
�in front of� the Fukushima Nuclear Plant could have mitigated the e�ect of the
tsunami and prevent the disaster. For more details, see also [19,20].

4 AiG for Tsunami Modeling

Let us now discuss how the Agents in Grid; AiG project can be used to sup-
port tsunami modeling. We will start from an overview of these parts of the
AiG approach that are pertinent in the current context. The AiG project aims
at providing a �exible agent-based infrastructure for managing resources in the
grid ( [15, 16]). Application of software agents and semantic technologies makes
it well-suited for open, dynamic and heterogeneous environments. The AiG ar-
chitecture is based on the premise of an open Grid � a network of heterogeneous
resources, owned and managed by di�erent organizations. It allows for users to
either provide a new resource to the Grid in order to earn money, or to use the
Grid to execute a task.

In the original AiG approach, each resource is governed by a WorkerAgent

and performs its tasks as part of a team, managed by an LMaster agent. Teams
are registered in a yellow-pages-like directory service, represented by the Client
Information Center (CIC ) agent, which handles the initial matchmaking of users
to teams. Users interact with the system through their (dedicated) UserAgents.
The decision, which team to choose to execute the job is a result of autonomous
negotiations between the UserAgent and the LMasters of appropriate teams. In
a similar way, adding a resource to the system involves negotiations with teams
looking for new members. The main features of the system are shown in Figure 3,
in the form of a use case diagram.

An important aspect of the project is the fact that all data and information in
the system are represented in ontological format, using the OWL language. The



Fig. 3. Use Case diagram of the AiG system

usage of ontologies enables to describe jobs, resources and their relationships in
a structured, yet �exible way (for more details, see [17]). Thanks to application
of ontologies, providing support for new (added to the system) types of hard-
ware and augmented software con�guration (such as new software libraries or
programs) involves only modi�cation of the ontology terms and does not require
any additional customization. As the job descriptions are also de�ned using the
OWL language, it is possible to specify di�erent parameter sets and requirements
towards computing resources depending on the type of the task to be performed.
For instance, as part of the initial implementation of the AiG system at the Uni-
versity of Aizu, we have extended our core ontology to be able to accurately
describe the hardware con�guration of the machines used in the experiments, as
well as terms related to the tsunami modeling (see, Section 3.2).

Putting the AiG system to work for tsunami modeling we have made a few
observations. First, computers made available to the tsunami research at the
University of Aizu do not constitute an open environment where resources join
and leave �dynamically.� Second, there is no economic aspect � we can safely
assume that if a resource matches the requirements of the job and is available
for use, there is no need for negotiations concerning its price. However, what
is still required are negotiations concerning availability of resources (e.g. when
a given laboratory is in use during certain class periods and machines cannot
be used for other purposes then instruction). To address these points we have



modi�ed the AiG system. First, we have resigned from the notion of resource
team, and placed a WorkerAgent (playing the role of the LMaster) on each
computing node. We have also eliminated the scenario in which theWorkerAgent

is joining a team. Instead, adding a new resource means registering it with the
CIC Agent as a standalone node (one-member team). Finally, in the next phase
of the implementation, we will re-focus the negotiations. Their role will be to
provide information about current and planned utilization of the resources. This
will allow the UserAgent to decide where to run, which job, and when.

4.1 Job submission process � summary

Let us now go through the entire process of conducting an experiment, using
resources at the University of Aizu and use it to illustrate the details of the
modi�ed AiG system.

The user starts by accessing a web based interface, which is the entry point
to the communication with the UserAgent. The next step is to specify the hard-
ware requirements for the job in the form of constraints on the ontological terms
describing the resources. This task is done using the interface based on the On-
toPlay module [18] (its Condition Builder component), giving the user complete
freedom in describing the needed resources, while guiding her through the con-
tents of the ontology without the need for deep knowledge of its structure (knowl-
edge of semantic technologies, in general). As shown in Figure 4, the Condition
Builder is composed of a series of condition boxes used to create constraints on
class-property relationships. Depending on the chosen class, the user can select,
which class property she wishes to restrict. For example, having selected the
GPUMemory class, the expanded property box will contain properties such as
hasTotalSize and hasAvailableSize (see, Figure 4).

After selecting the class and property the user can choose the required oper-
ator and value. Here, she sees only the operators applicable to the given type of
the property. Speci�cally, this means that for value properties (such as amount
of available GPU memory) it would be operators such as equalTo, lessThan or
greaterThan, while for object properties (e.g. the CPU installed on the node) the
user would be allowed to select, e.g. is equal to individual or is constrained by.
Note that the selection of available operators is performed by the front-end, on
the basis of the ontology and was not hand-coded. Should a user wish to restrict
the value of a particular property to a �xed individual from the ontology, the
Condition Builder lists all available individuals that can be used in the context
(see, Figure 5).

Let us now assume that an object property is selected choosing the �is con-
strained by� operator. This enables the user to specify the type of object for
which the value should be constrained, and to create additional constraints on
that class (see, Figure 6).



Fig. 4. Example of choosing a property for constraining

Fig. 5. Example of choosing an individual

4.2 Job submission process � detailed example

Let us now look at a practical example that will illustrate the entire process. As
described in [9, 10, 12, 13], the implementation of the MOST code, used at the
University of Aizu, is most e�ective when run on a CUDA-based GPU, with a
su�cient amount of available GPU memory. Therefore, let us assume that the
user wishes to schedule a job on a resource that has a GPU with at least 512
MB of available GPU memory (which is one of the machines available for our
experiments). In this case the user starts with an empty ComputingComponent

speci�cation. First, she would constrain the property hasGPU of the class Com-
putingComponent to contain a value of type GPU_CUDA. Let us assume that
it does not need to be any particular GPU model, so we do not add additional
conditions on this class (though such speci�cation already exists in the com-



Fig. 6. Example of choosing a nested condition

pleted representation of available machines). Second, the user adds a condition
on the property hasMemory, constraining it to the GPUMemory subclass and
adding a nested condition specifying that the hasAvailableSize property should
have a value greater than 512 MB. Figure 7 represents the completed condition.
Once more, note that during the selection process, only these properties and
individuals are �shown to the user� that have been speci�ed within the ontology;
and that no hand-coding of these terms and conditions was required. All �work�
is done by the front-end on the basis of the ontology.

After the user submits the resource requirements, the UserAgent passes this
description to the CIC Agent, which performs semantic reasoning on its knowl-
edge base, to �nd resources satisfying the given criteria and returns a list of
matching nodes, including the information on how to contact the LMasters (in
our case the WorkerAgents) at each node.

Note that in a dynamic environment, such as the university laboratory, there
is no guarantee that the resources found by the CIC Agent are, at the moment,
available for use. The machine might be o�ine, used for other purposes, or
the agent process (and/or container) might not be running. Therefore, there
is a need for additional veri�cation of the availability of the resources. This
is handled using the mechanism of multi-agent negotiations, albeit in a very
simpli�ed form. When the UserAgents receives the list of LMaster addresses, it
issues a Call For Proposal; CFP message to gain con�rmation of whether the
resources are able to perform the task. The LMasters con�rm that this is the
case (or reject the proposal), and provide information when they could start
executing the job. This helps to handle the case of temporarily occupied nodes.
Once the UserAgent receives o�ers from the agents (here, note that we assume
their benevolence), it presents the list to the user, who can choose the node(s) on
the basis of their availability and other parameters. Here, the resource selection
may be also passed to the UserAgent, but this will require further considerations
and will be approached in the next phase of the project.



Fig. 7. Complete requirements speci�cation

4.3 Specifying the scenario description

The �nal step of submitting jobs is the speci�cation of the executable code /
library an of the necessary parameters. As described in the previous sections,
for the tsunami simulations it is crucial to be able to run di�erent kinds of algo-
rithms on di�erent data sets and variables to come up with collections of results
(particularly in the case of tsunami modeling, rather than generating tsunami
warnings). Consequently, in this case, the user is going to provide multiple job
descriptions (one for each model / parameter set in the simulation). The job
description is provided using the same Condition Builder mechanism, although
using a di�erent ontology.

As part of the implementation of the AiG system at the University of Aizu,
a new ontology � the MOSTOntology � has been created to represent the en-
tities forming the simulation scenario (recall that these parameters have been
described in Section 3.2). This ontology is an extension of the AigGridOntol-

ogy in a way that a newly introduced class TsunamiSimulation is introduced,
which is a sub-class of the JobDescription class. Other classes contained in the
MOSTOntology correspond directly to the entities from the scenario �le:

� AreaInformation



� ComputationalParameters

� NamingRule

� FaultPlaneInfo

The ontology also contains object properties linking TsunamiSimulation

with the above mentioned classes, as well as all data properties describing them
(as speci�ed in Section 3.2).

The introduction of the MOSTOntology into the AigGridOntology enables
the user to specify the job using the same Condition Builder interface. It also
makes it possible for the WorkerAgent to generate the scenario �le from the
ontological information, thus removing the need to deploy the scenario �les onto
each (potential) grid node. Of course, the system will still support running jobs
using scenario �les accessible locally on the nodes, or at a network location acces-
sible to them, but the goal of achieving simpli�ed access of users to distributed,
heterogeneous resources has been achieved.

To give an example of how the contents of the scenario �le corresponds to
the contents of the MOSTOntology and to illustrate the usage of the Condition
Builder for the job speci�cation, Listing 1.1 contains a sample scenario �le, while
Fig. 8 depicts a part of the same scenario represented in the AiG user interface.

Listing 1.1. Sample scenario �le
# MOST Propagation t e s t input f i l e
#
# This i s the format f o r an input f i l e f o r running the
# MOST Propagation program ve r s i on 1 .3
#
# Comments are p r e f i x ed with a hash "#", and can appear
# on t h e i r own l i n e , or a f t e r a parameter .
# The only important th ing i s order o f parameters
#
# I f there are mul t ip l e f au l t−planes , user must prov ide
# a l l deformation parameters repeated f o r each f au l t−plane
# ( repeat from "x−i n t e g r a t i o n " to "Depth" f o r each f au l t−plane )
#
# I f number o f f au l t−planes i s 0 , MOST expects to read the
# deformation from a f i l e in the MOST gr id (ASCII Grid ) format
# I f number o f f au l t−planes i s < 0 , MOST reads deform . dat f i l e
# created from the prev ious run o f MOST ( hint , use t h i s to
# keep from re−running deformation )
#
# Beginning o f t e s t input f i l e :
# Grid Name
Pa c i f i c
# Grid Axes Vers ion
20060823
# Grid Filename
/home/ tsunamiagent /MOST/Bathymetry/pacif ic_4m_nocaribbean . co r r
# Computational parameters
20 # Input minimum depth f o r o f f s h o r e (m)
10 # Input time step ( sec )
1000 # Input amount o f s t ep s
6 # Input number o f s t ep s between snapshots
6 # . . . S ta r t i ng from timestep
4 # Save output every n−th g r id po int
0 # Input g l oba l b . c . s (1=globa l , 0=non−r e en t rant )
# Output f i l ename (<pre f i x >_ha . nc , or "auto ")
auto
# Source naming i n f o
# Source Zone Name



Aleutian−Cascadia
# Source Zone Code ( two cha ra c t e r s )
ac
# Source Column ( one charac t e r )
b
# Source Row ( i n t e g e r )
13
# Source Vers ion ( i n t e g e r )
0
# Fault plane i n f o
1 # Number o f f au l t−planes
41 # x−i n t e g r a t i o n
21 # y−i n t e g r a t i o n
8 .11 # Vp − P−wave v e l o c i t y
4 .49 # Vs − S−wave v e l o c i t y
200 # Deform Area X
200 # Deform Area Y
179.842 # Longitude ( deg )
51 .085 # Lat i tude ( deg )
100 .0 # Length (km)
50 .0 # Width (km)
15 .0 # DIP ( deg )
90 .0 # RAKE ( deg )
271 .0 #STRIKE ( deg )
1 .0 # SLIP (m)
5 .0 # DEPTH (km)

4.4 Job execution

Once the user completes the job description, it is sent by the UserAgent to the
respective LMaster (the one that was selected as a result of the, above described,
negotiations), which then starts task execution. The information that is passed
from the UserAgent to the LMaster is the ontology fragment, containing in-
formation needed to generate the scenario for the MOST software. When the
computation is �nished, the LMaster creates a JobResult message, which con-
tains information about the job execution, the outcome and links to the result
data and (any resources created by the simulation algorithm). The UserAgent,
on the other hand, is responsible for gathering all responses from the nodes tak-
ing part in the experiment (in the case, when multiple simulations have been
submitted to multiple nodes).

After specifying the scenario description, the user is redirected to a page
presenting the status of the scheduled job(s). The information shown therein is
periodically retrieved using a Query message, sent to the UserAgent. The job(s),
for which the result(s) has/have already been received by the UserAgent are
represented along with a list of output �les generated by the executed process.

The complete sequence of actions and messages for a typical job execution is
depicted in Figure 9.

5 Concluding remarks

The aim of this paper was discuss issues involved in applying the approach based
on the Agents in Grid project to the tsunami research. We have presented how
the AiG system has been modi�ed (simpli�ed) to instantiate the computational



infrastructure of the tsunami research laboratory at the University of Aizu. With
the initial setup in place for three machines, we will now proceed to increase their
number. This will require stretching the system across multiple sub-networks
within the University and possibly stretching it to the computers available at
the SRIPAS. Furthermore, as mentioned above, this is going to result in the
need for more complex negotiations and task scheduling. We will report on our
progress in subsequent publications.

Acknowledgment

Work of Marcin Paprzycki was completed while visiting the University of Aizu.

References

1. Th. Erl, SOA Design Patterns, Prentice Hall, 2010.
2. M. Kuniavsky, Smart Things: Ubiquitous Computing User Experience Design, El-

sevier, 2009.
3. Folding@home Distributed Computing, http://folding.stanford.edu/.
4. A. Beberg, D. Ensign, G. Jayachandran, S. Khaliq, Folding@home: Lessons from

eight years of volunteer distributed computing, in Proc. of IEEE International
Symposium on Parallel & Distributed Processing (IPDPS), Rome, Italy, 1�8, 2009.

5. X.Caiand, and P.Langtangen, Making Hybrid Tsunami Simulators in a Parallel
Software Framework, LNCS, vol. 4699, pp. 686�693, Springer�Verlag. 2008.

6. K.Ganeshamoorthy, D. Ranasinghe, K.Silva, and R.Wait, Performance of Shal-
low Water Equations Model on the Computational Grid with Overlay Memory
Architectures, Proc. of the Second International Conference on Industrial and In-
formation Systems (ICIIS 2007), IEEE Press, Sri Lanka, 415�420, 2007.

7. D. George, TsunamiClaw User's Guide, http://faculty.washington.edu/rjl/
pubs/icm06/TsunamiClawDoc.pdf/pubs/icm06/TsunamiClawDoc.pdf

8. N. Shuto, F. Imamura, A. C. Yalciner, G. Ozyurt, TUNAMI N2; Tsunami mod-
elling manual, http://tunamin2.ce.metu.edu.tr/

9. V. Titov. Numerical Modeling of Tsunami Propagation by using Variable Grid'.
Proc. of the IUGG/IOC International Tsunami Symposium, Computing Center
Siberian Division USSR Academy of Sciences, Novosibirsk, USSR, 46�51, 1989

10. V. Titov and F. Gonzalez, Implementation and Testing of the Method of Splitting
Tsunami (MOST). Technical Memorandum ERL PMEL-112, National Oceanic and
Atmospheric Administration, Washington DC, 1997.

11. J.C. Borrero, K. Sieh, M. Chlieh, and C.E. Synolakis, Tsunami Inundation Model-
ing for Western Sumatra, Proc. of the National Academy of Sciences of the USA,
Vol. 103, N 52, http://www.pnas.org/content/103/52/19673.full, 2006.

12. A. Vazhenin, K. Hayashi, Al. Romanenko, Service-oriented tsunami wave propa-
gation modeling tools, in Proc. of the Joint International Conference on Human-
Centered Computer Environments (HCCE '12), Aizu-Wakamatsu, Japan, ACM
Publisher, 131�136, 2012.

13. A. Vazhenin, M. Lavrentiev, A. Romanenko, An. Marchuk, Acceleration of Tsunami
Wave Propagation Modeling based on Re-engineering of Computational Compo-
nents, International Journal of Computer Science and Network Security, vol.13,
no. 3, 24�31, 2013.



14. iisee.kenken.go.jp/staff/fujii/OffTohokuPacific2011/tsunami.html

15. Katarzyna Wasielewska, Michal Drozdowicz, Maria Ganzha, Marcin Paprzycki,
Naoual Attaui, Dana Petcu, Costin Badica, Richard Olejnik, and Ivan Lirkov. Ne-
gotiations in an Agent-based Grid Resource Brokering Systems. Trends in Parallel,
Distributed, Grid and Cloud Computing for Engineering. Saxe-Coburg Publica-
tions, Stirlingshire, UK, 2011.

16. Wojciech Kuranowski, Maria Ganzha, Maciej Gawinecki, Marcin Paprzycki, Ivan
Lirkov, and Svetozar Margenov. Forming and managing agent teams acting as
resource brokers in the grid�preliminary considerations. International Journal of
Computational Intelligence Research, 4(1):9�16, 2008.

17. Michal Drozdowicz, Maria Ganzha, Katarzyna Wasielewska, Marcin Paprzycki,
and Pawel Szmeja. Using ontologies to manage resources in grid computing: Prac-
tical aspects. In Sascha Ossowski, editor, Agreement Technologies, volume 8 of
Law,Governance and Technology Series, Springer, 149�168, 2013.

18. Michal Drozdowicz, Maria Ganzha, Marcin Paprzycki, Pawel Szmeja, Katarzyna
Wasielewska, OntoPlay � a �exible user-interface for ontology-based systems, http:
//ceur-ws.org/Vol-918/111110086.pdf

19. A. M. Fridman, L. S. Alperovich, L. Shemer, L. A. Pustilnik, D. Shtivelman, An.
G. Marchuk,and D. Liberzon, Tsunami wave suppression using submarine barriers,
Physics�Uspekhi, vol. 53, no. 8, pp. 809�816, 2010.

20. A. Vazhenin, Y. Watanobe, K. Hayashi, M. Drozdowicz, M. Ganzha, M. Paprzy-
cki, K. Wasielewska, P. Gepner. Agent-based resource management in Tsunami
modeling.Computer Science and Information Systems (FedCSIS), 2013 Federated
Conference on, 1047-1052, 2013



Fig. 8. Simulation scenario



Fig. 9. AiG job execution sequence


