SHAPING THE FOCUS OF
THE UNDERGRADUATE CURRICULUM

Marcin Paprzycki and Janusz Zalewski
Dept. of Math & Computer Science
The University of Texas of the Permian Basin
Odessa, TX 79762-0001
(915) 552-2258/2260 |
{paprzycki.m, zalewski_j}@utpb.edu

Abstract. This paper outlines an epproach to reshape
lhe ezisting undergraduaie CS curriculum. Based on
software engineering and pargllel computing concepts,
the deiails of the new curriculum are presented in
terms of educalional objectives, core courses, Innova-
frons in the teaching method, and early erperiences,

1 Introduction

This paper discusses the approach taken to reshape
the existing undergraduate computer science curricu-
lum. There are two primary educational objectives
that drive this process:

« Make our graduates more competitive on the job
market.

* Increase the chance of admission to the graduate
schools for those who want to pursue their studies,

The first objective is to be met by a proper selection of
{ocus, concentrating on certain areas in depth, rather
than by giving a general background in many areas
of computer science. In addition to that, the areas
chosen should be attractive enough, so that current
and future job market demands are met by students
absorbing sufficient knowledge of respective subjects.

The second objective determines the need to ensure
compatibility with existing undergraduate prograins
from graduate schools. This criterion translates into
a necessity of preparing students sufficiently well to
meet the admission requirements,

In addition to the two, above mentioned, primary ob-
jectives, there are a number of secondary objectives,
such as: limit changes in the current C8 curriculum
to the necessary minimum, ensure compatibility with
Coniputing Curricula 91 {38] in view of possible ac-
creditation, etc. The secondary objectives will not be
discussed in this paper.

EEL(E.SEETIN Vol. 28 No. 3 Sept. 1996

37

In the following sections, we preseat the details
of meeting these objectives, including mathematical
background (Section 2}, selecting core courses and
their contents (Section 3), and innovations in the
teaching method, such as the use of laboratories, tools,
and other concepts to enforce the transmission of
knowledge (Section 4). This is followed by a brief de-
scription of early experiences, in Section 5, and con-
clusion in Section 6.

2 DMeeting the Objectives

Both our primary objectives are very pragmatic in the
sense that they respond to real-life situations. We have
to keep in mind, however, that due to their dynamic
nature they may change in future, so the curriculum
being developed must be flexible enough io easily ac-
commodate prospective changes.

2.1 Competitiveness Objective

This is a very practical objective which is the ma-
Jor dniving force of the new curriculum. To meet this
goal, we analyzed local (state) [35] and regional [14]
demand for computer science majors. Several compa-
nies 1n various Texas areas and neighbor states were
called and inquired about their current needs for €S
graduates as well as their needs in the immediate fu-
ture.

The overwhelming majority of responses (near 70%)
indicated the demand for graduates familiar with var-
lous stages of the software development process. This
indication, supported by an observation of local busi-
nesses, was an important factor in leading us to the
conclusion that every effort should be made to base
the curriculum on Software Engineering concepts and
introduce them, as early as possible, in the CS cur
riculum.

'To determine the most promising area of computer sci-
ence, with respect to the potential growth within the
next 3-10 years, we studied the list of feature articles
in {orty most recent issues of IEEE Computer mag-
azine (from January 1992 to April 1995). We found
that two fields prevailed in the number of research ar-
ticles: Software Engineering, and Parallel Computing.
Parallel Computing alone is represented by the largest
number of single-topic articles, beating the next cate-
gory, Software Engineering, by some 20%. Along with
distributed computing, computer networks, and data
communication, parallel computing takes meore than

3G% of the eniire number of articles printed for the
siudied peried.

To relate the above findings to current developments in
computer industry, one of the authors spent summers
1994/95 in the Silicon Valley area, and the other one in
Europe, trying to collect evidence on current practice
and the most immediate future of computer technol-
ogy. Observations of correct developments at compa-
nies such as Sun Microsystems [23], Silicon Graphics
8], as well as presentations at conferences, such as Hot
Interconnects [12] and others, convinced us that paral-
lel computing in various forms is indeed an area of the
highest potential. All these studies led us to the con-
clusion that Parallel Computing is another field which
needs to be melted with our curriculum.

2.2 Preparedness Objective

Assuming that our curriculum should be based on
Software Engineering and Parallel Computing, we
have to meet the second primary objective., To see how
our students need to be prepared to meet the require-
ments of the leading graduate schools, we studied sev-
eral graduate programs with emphasis on software en-
gincering, and analyzed undergraduate programs from
top computer science schools (using their catalogs).

There exists a number of CS/CIS programs that re-
quire only a minimal mathematics component. Such
approach may lead to satisfying our first ohjective
(even though it would be open to discussion), but def-
inttely does not satisfy the second one. We have no
doubt Lthat a strong mathematical background is im-
portant to our undergraduate CS program. Therefore
we stress the necessity of strong mathematical prepa-
ration by including, as a requirement, several mathe-
matics courses.

The mathematics support in our institution was quite
standard and consisted of requiring all CS majors to
take the three-course calculus sequence followed by
two courses selected from the four core courses of the
mathematics major: statistics and/or prebability, lin-
ear algebra, intermediate analysis and algebraic struc-
tures,

gﬁﬁ_@@rm Vol, 28 No. 3 Sept. 1996

LI

38

Recently it became clear to us that after finishing the
calculus sequence our students {computer science, as
well as mathematics majors} are not prepared well
enough to take further courses in mathematics or com-
puter science. The primary deficiencies were 1n the
areas of basic mathematical knowledge: logic and set
theory, and theorem proving. To alleviate the problem
a new course {Introduction to Mathematics, MATH
305) was developed. This course replaced one of the
two mathematics support electives. The content of
this course is concentrated around basic methods of
proof and 1s supposed to provide the student with fun-
damental skills and tools in this area.

3 Implementation in Core

Courses

To meet the objectives as suggesied above, it 1s not
enough to add a course or two (say, on Parallel Com-
puting, as discussed in [19, 22]) to the curriculum al-
ready filled to the limits; a radical change in most
of the currently existing courses is required. The ap-
proach presented here is an extension to the proposed
incorporation of parallel computing into the curticu-
lum without a separate parallel computing course [27].
This approach, somewhat similar to the one discussed
in [33], employs a top-down, software engineering view
of teaching parallel computing and comprises five rel-
allvely well separated layers of knowledge:

s understanding parallel applications

e parallel algorithms

» methodologies for parallel software construction
¢ implementation techniques

e parallel hardware architectures.

Below a brief description of our current core courses
15 given, in terms of the new contents, including more
important modifications due to the change of focus.
Software engineering contents and parallel computing
contents ts discussed for each course.

1. Computer Science I (CPSC 121)
The basic paradigm for this course is the three-phase

software development cycle: Design/Code/Test. All
fundammental computer science concepts are taught us-
ing this vehicle. All classes, including lectures, are
taught in the lab and approximately one third of lec-
ture/lab time is spent on each phase. Especially im-
portant, from the practical viewpoint, is to teach the
right approach to program testing, beginning from
the simplest examples, such as a program solving a
guadratic equation {which nevertheless contains at
least 7 test cases, to test it adequately), to less obvious

examples, such as a program which runs correctly but
contains a fault.

The choice of a programming language is very impor-
tant for the beginners, although teaching a program-
ming language 1s a by-product of this course. This
1s based on a firm practical observation that coding
15 not the most critical phase in the software life cy-
cle. Once the design is done well, coding can be made
trivial. Therefore, in the first place, we teach con-
cepts of software development., Our course is based
on Pascal, because we believe it is the simplest vehi-
cle to teach such concepts. It avoids the dangers and
difficulties of C and Ada, for example, and provides
a good background to learn any other structured pro-
gramming language quickly.

No explicit parallelism is tanght at this level; only
preparatory concepts are introduced that are well
matched with software engineering principles. The
list of topics that need to be covered in this respect
includes: local/global variables, information hiding
(ADTs), separate compilation. Examples of concur-
rency and task separation are discussed when the con-
cept of an algorithm is introduced (for example, using
flowcharts). The idea of a computer with more than
one processor 1s discussed,

2. Computer Science II (CPSC 122)

‘This course is based on two fundamental paradigms:
use of software development tools other than compil-
ers and debuggers, and explicit programming of paral-
lelism/concurrency. Qur first attempt is to use a tool
for structured program development, based on Nassi-
Shneiderman diagrams, XperCASE (reviewed in [18]).

To introduce parallelisim/concurrency, a more gradual
approach is needed. The typical CS I course covers
the programming concepts approximately up to the
introduction of the first structured data type — single-
dimensional arrays, although it is often possible also
to introduce the concept of a matrix. Qur experiences
show that the new approach does not slow down the
pace of the instruction, so it should be possible to in-
troduce the students to the early glimpses of paral-
lelism, near the end of the semester in CS 1. If not,
CS II starts with basic vector and matrix operations

{vector addition, dot product, matrix-vector multipli-
cation, matrix-matrix multiplication) to introduce the
preliminary concepts of parallelism, and possibly the
notion of task/problem granularity (see [27] for exam-
ples of the appropriate laboratories).

Explicit parallelization is discussed using program-
ming examples of introducing concurrency to elemen-
tary searching and sorting algorithms [25]. These pro-
grams, together with the earlier examples of matrix
operations are used to introduce concepts of load bal-
ancing and algorithms’ performance characteristics.

SIGCSE
BULLETIN VYol 28 No. 3 Sept, 1996

39

3. Programming Language Survey

Our current requirements include a second program.
ming language: C, Ada, Fortran, or Cobol. We fee!
that this should be changed and the course should
be extended to teach broad spectrum of implemen
tation techniques. This can be either a course on Pro-
gramming Languages or an Operating Systems course,
provided either one can teach respective concepts of
concurrency, its models (shared memory and message
passing), and basic interprocess communication prim-
itives, such as semaphores, monitors, etc,

Our approach o teaching implementation techniques
may be controversial but is based on an extensive in-
dustrial experience: it does not matter very much, on
this level, which language we unse - what is impor-
tant are concepts, One part of this attitude is mixing
languages in a single project. In practice, there are
very few meaningful applications (if any) writien ex-
clusively in one language. Therefore programmingin a
variely of languages should be an essential component
of computer science education.

4. Discrete Mathematics (CPSC 312)

We consider this course to be the one giving theoretical
background for formal software development as well as
for the design and aralysis of parallel algorithms. The
necessary topics include: propositional calculus, pred-
icate calculus, formal logic, sets, relations, functions
and sequences, combinatorics, graph theory, introduc-
tion to Petri nets, introduction to cellular automata.

To cover the entire matenal of this sort, it is not
enough to have one course, therefore we introduced
a prerequisite course, Introduction to Mathematics
(MATII 305), which focuses on logic and theorem
proving. It 15 worth noting that in recent years sev-
eral textbooks were published that quite well match
our course contents requirements, for example [11, 13].

The one currently used in MATH 305 i1s {16].

6. Digital Computer Organization (CPSC 310)
Traditionally this course is oriented on introduction
to computer architecture, which has to teach all ba-
sic hardware-related concepts, so not much time is
le{t to introduce basic ideas of parallel architectures,
especially without hatrdware lab. If this is possible,
however, we recommend to cover any of the following
topics: instruction-level parallelism, cache, bus arbi-
tralion, coherence problems and their hardware solu-
tions, hardware lock, parallel 1/O. The book by Dowd
5] is a very good example of what approach could be

taken here,

Since this is the only hardware-oriented course In our
core, to make it more effective we plan to base it on the
extensive use of tools. This includes courseware cov-
ering ordinary topics [4], as well as the intzoduction of
CAD software, such as [3], in a way the SPICE sim-
ulator dominates courses on analog circuitry [30]. I

elements of parallelism are present, respective course-
ware and CAD tools should also be used, as much as
possible, for example [7].

6. Data Structures (CPSC 320)

This course has been a good vehicle to introduce or
strengthen, if introduced earlier, the concepts of paz-
allel algorithms (as an extension of sequential ones),
their design, analysis and implementation. All the ex-
amples of programming projects include the parallel
component. The emphasis in contents is on optimiza-
tion algorithms, which comprise the most widely used
class of algorithms in praciice.

The sofiware engineering approach taken in this course
needs to cmploy object-oriented concepts (based on
carlier introduced notions of abstract data types), to
teach how te produce rensable software components.
Formal methods should be also applied in this course
(¢ teack systematic and rigorous development of such

components, and to prove the correctness of algo-
rithins.

Another impottant paradigm in this course should be
the introduction to performance analysis of parallel al-
gorithms, including formal definitions of speedup, etc.
As far as possible, various courseware items already

developed should be used, such as CD-ROMs [9, 10]
ot DS Guide [29)].

T. Software Engineering

This course, actually called Informmation Systems De-
sign {CPSC 315), is designed to teach the full-fledged
soltware development cycle and an application of soft-
ware development methodologies. Since the prerequi-
site in data structures is assumed, 1t 1s not a course
for beginners. Students must have been already intro-
duced to the basic concepts of software engineering.

The additional emphasis in teaching is on team work
[39] and the use ol tools [40]. Team project 1s an es-
seniial part of this course, to lel the students interact
in groups to meet a common objective. The extreme
solution is to employ a parallel model of software de-
velopment, where teams work in parallel, from the be-
ginning, on various phases of the simplified develop-
ment cycle (say, requirements, design, coding, testing,
and verification), and change roles if the circumstances
permit. This is usnally a project in concurrent soft-
ware development for some real-life situation, such as
a real-time application [38, 41} or a business applica-
tion. The use of an integraied ioolset for soflware
development is critical to the success of this course.

8, Senior Research Project (CPSC 485)

The objective of this course is to develop a meaningful
application, including parallelism er concurrency, to
make evident the student’s ability to perform individ-
nal work under supervision and demonstrate his/her
maturity. The project includes elements of parallel
computing as well as software engineering.

SIGCSE

40

The way we are approaching this course and select
meaningful applications is by talking to researchers
and educators from other science disciplines (biology,
chemistry, geology, math, physics, and also business
and economics) to learn about their needs in parallel
computations. This prepares students better to under-
stand computational problems of these disciplines and
respond to their future needs, which leads to blending
such needs with methods of solution that computer
science can offer. The idea of integrating the needs
with CS tools in the undergraduate curriculum was
explicitly suggested in [20] and is actually being im-
plemented elsewhere [31].

4 'The Method

At this point, we feel we have a well designed curricu-
lum. The dynamic process of teaching is responsible
for its ultimnate success, however. This requires the in-
iroduction of several innovations in the method, some
of which are discussed below. The natural categoriza-
tion divides them into new teaching concepts and new
teaching aids.

4.1 Teaching Concepts

There are four basic ideas we are trying to base our
method upon: scientific experimentalion, expanding
from examples, recurring cencepts, and technical writ-
INg. '

The way the CS laboratories are usnally designed and
conducted does not satisfly our requirements as far as
the scientific experimentation component is concerned.
The principle of scientific method, which leads to a dis-
covery, is to introduce changes in the environment and
nake observations that must be presented in a form
of numerical results. Then the results are analyzed
and conclusions are drawn that may lead to a discov-
ery. Therefore the basis of our labs is experimenting in
compuler science, that is based on performance evalu-
ation. For example, to measure performance of patal-
lel algorithms there is a number of important param-
eters influencing the algorithm’s behavior when exe-
cuted on a computer with multiple processors. In the
simples,t case it could be the size of the problem n
and the number of processors . Then a thorough in-
vesligation of the two-dimensional performance space
will be expected from the students, e.g., for a certain
range of values of n, study the program behavior when
executed on 1,2,..., P processors.

What we consider crucial to the success of this ap-
proach is a set of carefully selected examples: demos,
exercises, assignments, and team projects. Our former
experience proved that this way of gradual introduc-

tion of new concepts significantly enforces their under-
standing [26, 27]. The way it works is that students
are presented with a demo program showing how a
certaiu concept works. Then they are given a task
of modifying shghily the existing program, urder in-
structor’s supervision, to achleve a predefined effect.
Based on this knowledge, a more involved homework
or open-lab assignment is given to them. If solved, it

15 followed by a more sophisticated problem requiring
a solulion as a team project.

Another vehicle that worked well in our experience is
that of recurring concepts from [36]. For instance, in
parallel computing, one can use the notion of multiple
entities competing for a single resource, on virtually
all levels of software development hierarchy, in a va-
riety of {ouns, such as: job partitioning {algorithm
level), resource allocation (design level), task schedul-
ing (implementation level), bus arbitration {architec-
ture level). Scveral other notions can be used that
way, across the entire curriculum, for example, perfor-
mauce evaluation (of algorithms, development meth-
ods, implementalions, and architectures), heterogene-
ity (mixing programming enviromments, mixing lan-
gnages, and mixing architectures).

The way our assignments and laboratories are struc-
tured allows us to build upon them. It is a fact in
our environment that a typical undergraduate student
has a limited writing ability. T'ypical English courses
do not help much as far as technical writing is con-
cerned (and only very few scliools have a Technical
Wrotling ¢ourse requiremnent). In our curriculum we
introduce students to the basic ideas of technical writ-
ing as early as in CS 1. We do so by appropriately
structuring the laboratory exercises and homework as-
signments [27, 25}, and requesting students to write
technical reports based on their findings. Later in the
curriculum, we require students to write a substantial
number of literature-search type research papers (for
more details see [28]). This approach is successful to
the extent that allows students to write and publish a
software review paper [18].

4.2 Teaching Aids

By teaching aids we understand all environmental fac-
tors that can be used to impact the effectiveness of
teaching. In this paper, we consider three kinds of

teaching aids: computer laboratory equipment, sofi-
ware tools, and audiovisual aids.

The fundamental question in imptoving the effective-
ness of teaching any computer science course is the ex-
istence and usefulness of a computer laboratory, In ad-
dition to traditional concepts of a computer lab, based
on a network of personal computers and/or worksta-
tions, we feel that in our environment, where par-

gﬁ‘ﬁiﬁrm Vol. 28 No. 3 Sept. 1996

41

allelism is a fundamental concept taught, a parallel
computing laboratory is essential. With very limited
avallability of funds, we were forced 1o seek a cost-
effective solution, which we found to be a transputer-
based equipment. In choosing this type of lab, we also
considered the extent to which we would be able to use
experiences of other educators ir pursuing the idea of

a Closed Lab [21].

Another crucial environmental factor helping increase
teaching effectiveness is the availability and classroom
use of software tools, especially impertant in a curricu-
lum based on software engineering principles. One of
the authors developed such an integrated envirenment
from oft-the-shelf components, and used it successfully
in classrooms, in a course focusing on real-time sys-
tems [40]. The cormponents include high-level specifi-
cation and design tools based on object-oriented tech-
niques [32], compilers of concurrent languages, real-
fime kernels, and appropriate simulators. Portability
of designs, simulation of designs and automatic code
generation, portability of the source code across dif-
ferent platforms, mapping language constructs onlo
operating system kernel calls, all are importani issues
stressed 1n such a course.

In addition, we are irying to use various forms of au-
diovisual aids in a systematic manner across the cur-
riculum, to enhance our courses. This includes tradi-
tional videotapes [1, 15, 34} and courseware {3, 4, 6, 7,
29] designed specifically for certain types of courses
but also new media, such as CD-ROMs, multime-
dia and networks (accessible via World Wide Web)
[0, 10, 37]. Our first lessons learned from the exten-
sive use of non-printed media make us believe that a
classical textbook may become obsolete, mayhe in the
near future.

5 Early Experience

Redesigning a curriculum is a time consuming process
and usually takes several years. At this point in time
(end of 1995), changes in lower-level courses {rom the
core have been implemented. Below, we shortly de-
scribe one such change, a semester lang software de-
velopment project in CS II, which has been designed
to meet the competitiveness objective and respond di-
rectly to a challenge from industry (moere detailed dis-
cussion can be found in [2, 24}). In particular, this
project addresses the needs articulated most recently
in [17]: "industry needs software practitioners who un-
derstand the dynamics of developing and reengineering
large software systems, adepily employing techniques
stich as analysis and reuse.”

5.1 Project Description

The CS 11 course is currently relatively small and con-
sists of one section of approximately 15 students. The
semester long software development project was intro-
duced two years ago as an attempt to confront the
future computer scientists with a larger software arti-
fact.

The starting idea for the project 1s Conway’s Game
of Life. This relatively simple simulation game i5 ex-
tended to a larger artificial life simulation project.
This project is based on a group work, where the
groups consist of 2-4 students — depending on the class
arrangements and attrition,

The project proceeds in phases. Phase I, development
of the original game of life, consists of the following
sleps:

. Formulation of the soltwate requirements

2. Wniting the design

3. Instructor’s comments on the design

4. Implementation

5. Testing and preparation of the User Manual

G. Across-lhe-class comparisons

7 Instruclor’s commments on the artifacts

At the beginning of the process, groups are created and
students study the original paper by Conway. Then
they are asked to discuss the basic system require-
ments with a very strong emphasis on the development
of human-computer interface. This step is followed by
each group writing the design (in the form that they
were introduced to in the CS I course). These designs
are then commented on by the instructor.

After receiving feedback on the designs, students work
on improving them and implementing the code, test-
ing the code and writing the user manual. At this
moment, groups exchange the artifacts: design, user
manual, and code. Depending on the size of the class,
each group receives the artifacts prepared by all other
groups or some subset (up to two or three) of other
groups. Each of the groups has the task of: com-
menting on the design, commenting on the user man-
ual, verifying the code against the design, running the
code and testing it, commenting on the user inlerface
— all tasks comprising a natural way of introducing
independent verification and validation. Students are
instructed to concentrate their atieniion on particn-
lar verification criteria, such as consistency and clar-
ity. They are also informed that they should read the
user manual from the point of view of the prospective
nsers of the system, so that they should concentrate
their attention on all things that are unclear and not
explained well-enough. The improved documents are
then commented on by the instructor.

SIGCSE

BULLETIN Vol. 28 No. 3 Sept. 1996

42

Phase 11, first modification of the system, comprises
the following steps:

1. Specification of new requirements

Upgrade of the design document

Instructor’s comments on the design

. Modification of the code to include changes
Testing the new cede and upgrading the manual

Across-the-class comparisons

. Instructor’s comments on the artifacts

The second phase is almost a repetition of the previous
one, although this time students work not on the new
code, but introduce modifications to their own, earlier
developed, programming artifacts. This phase is then
repeated as many times as there is time during the
semester.

5.2 Addressing Software Engineering
Needs |

The project described above matches the software en-
gineering education needs as specified in {17] well.

1. Software reuse

After the first phase, students stop programming from
scratch, as they introduce changes to the existing pro-
gratmiming artifacts: the design, code, and user man-
ual. This is an even more realistic model of what hap-
pens in real life than simple changes in some of the
programining artifacts proposed in [17]. Here the de-
velopers are faced with a situation where the entize
set of soflware related documents needs to be reengi-
neered. It is also possible, although we have not done
it so far, to rense software artifacts as a starting point
during the next semester, so that the software reuse
and analysis of existing ariifacts will be utilized to
ils fullest, Going in this direction even further, it 1s
also possible that students from one group introduce
changes to the products generated by another group.

2. Group work and communication skills
Obviously our project proceeds as a group project and
as such it matches the natural situation 1n industry.
Students from one group take active part not only in
developing their own software, but also act as analysts,
verifiers, and users of the products of other groups.
This allows them, first, to see the 1ssues of software
quality from all sides and, second, to evalnate their
own product in a view of what the other groups were
PIOPOSINEG.

Group work leads naturally to the expansion of com-
munication skills. In addition, since the groups ac-
tively deal with the products prepared by other groups
they are involved in a group-to-group communication.

4. Increasing project size

Due to the introduction of this project, students have a
chance, already in the CS II course, to be confronted
with the management of a project which is between
2000 and 3000 lines long. This experience is very
untque when, during the final stages of the project,
they are introducing chanrges/additions to the 2500
lines of existing code. Only then they really begin to
appreciate the importance of issues like quality of the
documentation, code modularity, the appropriateness
and number of comments in the code.

2.3 Further Observations

During the two first semesters of using the project in
the CS I course, 2 number of observations have been
made. In both semesters a different number of soft-
ware cycles have been reached. Also, since the stu-
dents themselves decide which way to proceed with
the project, different types of upgrades have been pro-
posed. Typical changes include: introduction of ran-
dom movement, introduction of two genders, introduc-
tion of food on the feld which is thew eaten at a cectain
rate by the creatures, introduction of the aging pro-

cess. In each group, a different resolution of interac-
tions between various parameters have been observed.
In all cases, a relatively lacge working code with all
the supporting decuments have been produced.

The primary problems are related to group work. It
was observed that as long as the group works hard and
as a unit, even if the group consists of relatively weak
students, they were able to reach satisfactory results,
However, any kind of group disfunctionality leads to
serious problems with project completion and qual-
ity. Typical problems are related to some of the group
members not doing the required work on time, some
of the group members not being ready to cooperate
with others (for various reasons), groups falling apart
due to attrition.

We do believe that a project of this type should be in-
troduced at CS II level, even if this means that some
of the material typically covered in such a course will
not be covered. The fact that students actively de-
velop and maintain a software system (relatively large
tn comparison to their former experience) is extremely
important from the point of view of matching the
needs of future employers. Also, the fact of introduc-
ing students relatively early to group work will defi-
nitely be beneficial to them.

ﬁﬁiff_ségrm Vaol. 28 No. 3 Sept. 1996

43

6 Conclusion

In this paper we show how to remodel the undergrad-
uate CS curriculum to meet a set of well-defined ob-
Jectives: competitiveness on the job markei and pre-
paredness to enter graduate schools.

It is extremely important that the €S graduates are
well prepared both to join the work force as well as
to pursue more advanced levels of education. Very of-
ten these two goals were perceived as contradictory,
since the requirements of future employers were con-
sidered incompatible with the requirements of gradu-
ate schools.

We are proposing and implementing a new approach
to shaping the urdergraduate CS curriculum focused
on two areas: software engineering and parallel com-
puting. This approach allows us to produce graduates
that are well prepared to face the current and future
computational challenges, whether they decide to pur-
sue their careers by going for employment or by staying
at school.

For this approach to work well, substantial changes are
needed in the core courses, math prerequisites, and in
the teaching methods. We presented the first experi-
ences and progress made, s0 far, in all these areas,

7 Acknowledgement

Work supported in part by a grant from ARPA, via
USAF Phillips Laboratory, Solicitation No. F29601-
94-K-D04G. A preliminary version of this paper was
presented at the Forum on Parallel Computing Cur-
ricufa, Wellesley, Mass., March 31 - Apnl 1, 1995,

References

[1] A Z Readers Course (5 videotapes). Pavic Publi-
cations, Sheflield, UK, 19972

[2] Bailey D., A. Cheek, M. Paprzycki, Developing
an Artificial Life Simulation Package, Proc. 12th
Amnnual Conference on Applied Mathematics, Ed-
mond, Oklahoma, February 1996 (to appear)

[3] Capilano Computing Systems, LogicWorks — In-
teractive Circuit Design Software.
Benjamin/Cummirgs, Redwood City (CA), 1994

[4] Digital Techniques. Computer-Aided Instruction.

Heathkit Educational Systems, Benton Harbor
(MI), 1994

(5] Dowd K., High Performance Computing, O'Reilly (18] McBee L. et al., XperCASE{SPX) Lite. Com-
and Associates, Sebastopol (CA), 1983 puter, Vol. 27, No. 7, pp. 118-119, July 1994
(6] Eaton J.K., L. Eaton, LabTulor. Stanford Uni- [19] Metaxas P.T., Fundamental Ideas for a Paral-
versity, Stanford (CA), 1992 lel Computing Course, ACM Computing Surveys,
Vol. 27, No. 2, pp. 284-286, June 1985
|7] Futurebus+ Concepts. Self-paced Instruction |
Tape. Digital Equipmeni Corp., Burlington [20) Misra M., An Undergraduate Course in Paral-
(MA), 1993 lel Computing for Scientists and Engineers. Proc.
o NSF Workshop on Parallel Computing for Un-
18] Galles M., The Challenge Interconnect, Hot Inter- dergraduates, pp. 22/1-13, Colgate University,
connects: A Symposium on Thigh-Performance In- Hamilton (NY), June 22-24, 1994, C. Nevison
terconnects. Stanford University, Palo Alto (CA), (Ed.)
August 5-7, 1993, IEEE Computer Society TC on
Microprocessors and Microcomputers, Washing- [21] Nevison C.H. et al. (Eds,), Laboratories for Par-
ton (1DC), 1993 allel Computing. Jones and Bartlett Publishers,
_ ' Bosten (MA), 1894
(9] Gloor P. et al. (Eds.}, Animated Algorithms: A
lTvpermedia Learning Environment for "Intro- [22] Nevison C.H., Parallel Computing in the Under-
duction to Algerithms” (CD-ROM). MIT Press, graduate Curriculum, [EEE Computer, Vol. 28,
Cambridge (MA), 1994 Ne. 12, pp. 51-56, December 1935
(1] Gloor T et al. {(19ds.), Parallel Computation - (23] Normoyle K. et al., Systems Architecture for the
Practical hinplementation of Algorithms and Ma- 00s: Introducing UPA From SPARC Technol-
chines (CD-ROM}. Telos/Sprnnger-Veslag, Santa ogy Business, Hot Interconnects III: A Sympo-
Clara {CA)/New Yortk, 1994 siumm on High-Performance Interconnects. Stan-
ford Universily, Palo Alto (CA), August 10-12,
[11] Elrics D., F.B. Schineider, A Logical Approach to 1995, [EEE Computer Society TC on Micropro-
Discrete Math. Springer-Verlag, New York, 1993 cessors and Microcomputers, Washington (DC),
1945
[12] Hot Interconnects III: A Symposium on High-
Performance Interconnects. Stanford Universily, [24] Paprzycki M., CS 1I: An Applied Software Eng-
Palo Alto {Gﬁ}, August 10-12, 1995, IEEE Com- neering Project, J. of Computing in Small Col-
puter Society TC on Microprocessors and Micro- leges, Vol. 11, 1996 (to appear)
computers, Washington (DC), 1995 _ | 1 _ .
(25] Paprzyvcki M., R. Wasniowski, J. Zalewski, Par-
[13] Ince D.C., An Introduction to Discrete Mathe- allel and Distributed Computing Education: A
matics, Formal Systemn Specification, and Z. Sec- Software Engineering Approach, Proc. 8th S5kl
ond Edition. Clarendon Press, Oxford, 1992 Confl. on Sofiware Engincering Education, pp.
187-204, New Orleans {LA), March 29 - April
[14] Job Choice 1995 in Science and Engineering. A 1, 1965, R.L. Ibrahim (Bd.), Springer-Verlag,
Guide to Employment Opportunities {or College Berlin, 1595
Graduates, College Placement Council, Bethle-
hem (PA), 1994 [26] Paprzycki M., J. Zalewski, Introduction to Par-
allel Computing Education. J. of Computing in
[15] Kennedy K. et al., Parallel Computation: Prac- Small Colleges, Vol. 8, No., 5, pp. 85-92, May 1994
iice, Perspectives and Potential. CRPC Short
Course (7 videotapes). Center for Research in [27] Paprzycki M., 1. Zalewski. Teaching Parallel
Parallel Computation, Rice University, Houston Computing without a Separate Course, Proc.
(TX), 1994 NSF Workshop on Parallel Computing for Under-
grads., pp. 19/1-18, Colgate University, Hamilton
[i16] Kurtz D.C., Foundations of Abstract Mathemat- (NY), June 22-24, 1994, C. Nevison (Ed.)
ics. McGraw-Hill, New York, 1992
(28] Paprzycki M., J. Zalewski. Should Computer Sci-

Lawlis P.K., K.A. Adams, Computing Curricula
vs, Industry Needs: A Mismatch, pp. 5-19, Proc.
9th Annual Ada in Software Engineering Educa-
tion and Training (ASEET) Symposium, Morgan-
town (WV), 1995

ence Majors Know How to Write and Speak?, .
of Computing in Small Colleges, Vol. 10, No. 5,
pp. 142-151, May 1985

***Undergraduate Continued On Page 50**

SIGCSE

BULLETIN 44

Vol. 28 No. 3 Sept. 1990

‘**#*******‘k*i‘******i‘**#***#****Undergraduate Frﬂ'm Page 44***i‘**i‘****#*‘#*‘k****i**'ﬁ'*i*‘#****#

29) Pinter-Lucke J., DS Guide (Courseware). Intelli-
malion, Santa Barbara (CA}, 1993

[30] PSPICE Electrical Circuit Simulator. Student

Version 5.0. Prentice Hall, Englewood Cliffs (NJ),
1892

[31] Rebbi C. et al, Lecture Notes of the Work-
shop on Parallel Computing for Undergraduates.

Boston University, Center for Computational Sci-
ence, Mav 25-27, 1904

[32) Robinson P.J., Hierarchical Objeci-Oriented De-
sign. Prentice Hall, Englewood Cliffs (NJ), 1992

[33] Rosenberg A.L., Thoughts on Parallelism and
Concurrency in Computing Curricula, ACM
Computing Surveys, Vol. 27, No. 2, pp. 280-283,
June 1995

[34] Shatsz $., Concurrent Software Analysis. A Video-

tape. IEEE Computer Society Press, Los Alami-
tos (CA), 1991

BULLETIN Vol 28 No. 3 Sept. 1996

30

[35] Texas’ Hotlest 500 Employers, Future Outlook,

[36]

137]

38

[39]

Vol. 2, No. 2, pp. 23-34, 1994

Tucker A.B. {Ed.), Computing Curricula ’91.
Report of the ACM/IEEE-CS Joint Cnrricalum
Task Force, ACM/IEEE, New York, 1991

Umar V.M. (Ed.), Computational Science Edu-
cation Project. Universal Recard Locator (U RL):
http://csepl.phy.ornl.gov/csep.himl

Wann K-C., J. Zalewski, Scheduling Messages 1n
Rea] Time with Application to the SSC Message
Breadcast System, IEEE Trans. on Nuclear Sci-
ence, Vol. 41, No. 1, pp. 213-215, February 1694

Zalewski 1., [EEE Draft P-1074 Mapped on a
Parallel Model: A Teaching Vehicle for Seftware
Development. Proc. Workshop on Directions in
Software Engineering Education, pp. 125-134, L.

*x*Indergraduate Continued On Page 64***

“Jr*'h'***'#****i'***t‘**************#Uﬂdergraduate Frﬂ'm Page 5G******i‘**************************

Werth and J. Werth {Eds.), 13th Intern. Confer-
ence on Software Engineering, Anstin (TX), May
12-16, 1991

Zalewski J., Cohesive Use of Commercial ‘Tools
in a Classroom. Proc. Tth SEI Conf. on Software
Engineering Education, pp. 85-75, San Anilonio
(TX), January 5-7, 1994, J.L. Diaz-Herrera (Ed.),
Springer-Verlag, Berlin, 1994

BULL TN Vol 28 No. 3 Sept. 1996

[41] Zalewski J., Boiler Water Content Controlles

[42]

Based on EWICS Safety Model. Proc. Intern. In-
vitational Workshop on the Design and Review
of Sofitware Controlled Safety-Related Systems,
Qitawa, Canada, June 28-29, 1993. University of
Walterloo, Institute of Risk Research, 1994

Zalewski I. (Ed.), Advanced Multimicroproces-
sor Bus Architectures, IEEE Computer Society
Press, Los Alamitos {CA}, 1995

	sig copy.gif
	sig0001 copy.gif
	sig0002 copy.gif
	sig0003 copy.gif
	sig0004 copy.gif
	sig0005 copy.gif
	sig0006 copy.gif
	sig0007 copy.gif
	sig0008 copy.gif
	sig0009 copy.gif

