Rosalind L. Ibrahim (Ed.X

Software Engineering
Education

8th SEI CSEE Conference
New Orleans, LA, USA
March 29 - April 1, 1995
Proceedings

|‘|'|J ||||'|

7o\ Springer

Parallel and Distributed Computing Education:
A Software Engineering Approach '

Marcin Paprzycki, Ryszard Wasniowski?, Janusz Zalewski’

Dept. of Math and Computer Science
University of Texas-Permian Basin

Odessa, TX 79762

paprzyckim@gusher.pb.utexas. edu

2Compuler Science Dept. dCompuler Science Dept.
Central Missouri State University Embry-Riddle Aeronautical University

Warrensburg, MO 64093 Daytona Beach, FL 32114

rwashiowskidacm.org zalewski®db.erau.edu

Abstract. This paper discusses an approach, based on sofiware en-
gincering principles, to inlroduce parailel and disiributed compuling
inio the CS curriculum. The basic assumplions are outlined, fol-
lowed by o discussion of topics and their implementaiion in core
courses. Innovalions in the leaching methed are also presenied.
Several examples of ezercises end assignments are given.

1 Introduction

In recent years, parallel and distributed computing have been considered to be
the most promising solution 1o the computational requirements of the Tuture.
Significani advances in parallel and distributed algorithms and architectures, in-
cluding those in communication technologies, have shown the enormous potential
of such computational techniques in a variety of practical problems. However,
most of the research efforts have concentrated either upon computational models,
parallel /distributed versions of algorithms, or machine architectures. Relatively
little attention has been paid to software development environments or program
construction techniques that are required to translate algorithms into operational
programs. This aspect is becoming more important as parallel/distributed pro-
cessing progresses from the research laboratories to applications.

1 Work supported in part by s grant from ARPA, vie USAF FPhillips Leboretory, Solicitation
No, F20601-94-K-0048.

188

One of the reasons for a relatively slow pace of introducing parallel and dis-
tributed computing technology into real-life applications is a shortage of an
adequately gualified workforce. In our opinion, this is mostly due to a gap In
computing curricula that do not put enough attention to software engineering
principles.

Our objective in teaching parallel and distributed computing 1s to produce C5
majors who ate thinking in terms of concurrency when developing applications,
taking the concepts of parallelism and distribution as a system development
paradigm. This goal requires a change in attitude toward computations and
cannot be reached by including just one or two courses on parallel and/or dis-
tributed computing in the curriculum. It requires a comprehensive approach
to change the way students start attacking computational problems as being
inherently parallel.

From the software engineering viewpoint, scluilions lo current and future appl-
cation problemns will require comprehensive understanding of at least five areas
of parallel and distributed computing:

¢ mathematical models of the problems posed
o inherent parallehsm of new algonthins

o mcthods and Lools for software construction
e pnnciples of implementation techniques

e new hardware architeciures and interconnects.

One of the important issues that the educational community needs to address is
to prepare our students for these challenges. VWe argue that substantial changes
in the computer science education are necessary to properly educate the next
generations of graduates. This is especially lmportant in a view of the most
recent advances in communication technologies.

This paper discusses one approach to meet this demand and SUMINArizes our
experiences in using sofiware engineering principles lo teach parallel and dis-
tributed computing to undergraduates. In Section 2, basic definitions and as-
sumptions are presented. Section 3 outlines our understanding of the contents
of the curriculum, based on software engineering principles. In Section 4, the
sample implementation is described, followed by detailed examples in Section 5,
a discussion of experiences in Seclion 6, and a conclusion in Section 7.

2 Basic Definitions and Paradigms

2.1 Definitions

Before we start explaining our approach, we think it is important to define the
domain of discourse, that is, the subject of parallel/disiribuied computing, in con-
trast to related areas, such as concurrent programming or computer nefworking.

189

As we teach courses on ali these topics, we have to understand their boundares.
Their overlap, although unavoidable, should be kept 1o a minimuim.

The definitions we are using are presented below, based on those given in the

IFEE Standard §10.12 Glossary on Software Engineering Terminology (5]

Concurrent. Pertaining to the occurrence of two or more activities simultane-
ously within the same interval of time.

Parallel. Pertaining to the occurrence of two or more activities simultaneously
at the same time instant.

Distributed. Pertaining to the occurrence of two or morte activities simultane-
ously at different points in space.

From the above definitions, i1t stems that parallel and distributed syslems are
concurrent: however, parallel and distributed systems are nol ydentical. The
practical distinction between parallel and distributed systems is such that, if the
communication time between processofs is negligible then the system is parallel
(if the communication time is not negligible, say comparable with the compu-
tation time, then the system 1s distributed). Quite naturally, this distinction
has nothing to do with shared memery vs. message passing models of computa-
tion. There arc shared memory computer sysiems that are distributed, as well
as message passihg systems that are parallel,

It is worlh noting, in particular, that for distributed systems, the notion of the
carne time instant does not exst, mostly because of the difficulty to prove that
two events occurring at two different locations sepatated by a meaninglul dis-
tance happened at the same time. This is difficult to prove, because distributed
processors have different execulion times, in contrast to parallel processors that
have the same execution time line, by definition {due to the negligible commu-
nication time).

Distributed systems are sometimes further divided into two diflerent categories:
computing clusiers and colmputer networks, depending on the existence ol a
common goal of a computation. ‘Thus, physically the same computer network can
be used for cluster computing, il1t provides means to meel a common objective -
say, to solve a certain computation-intensive task. Meeting this objective usually
requires a special-purpose software, in addition to general networking software.

The above mentioned definitions and distinctions help us to define the subject
more clearly. They are especially useful {rom the educational viewpoint, we do
ot claim their general applicability, though.

2.2 Paradigms

There exists a variety of approaches to teaching parallel and distributed com-
puting. The literature on parallel computing education has been especially rich
and growing over the last couple of years {15]. Most of these approaches assume
that a special course or a course sequence will be devoted to this subject area.

184

Such a course (or courses) can be concentrated around vector-processor-based
1igh performance computing, an overview of software packages available on high
serformance computers, a senior level undergraduate course or a course sequence
11, 14). The primary disadvantage of most of them is the fact that this is just
sne motre course to be offered.

Instead of adding new course requirements, we are suggesting a different ap-
proach. This approach is based on the assumption that a single course 15 not
enough in ilself and that deeper changes in the CS curriculum are required.
Rather than introducing a new course, elements of parallel and distributed com-
puting should become, as far as possible, a part of each and every course that
is currently taunght. Such an approach, based on a software engineering view of
product development, helps to develop the necessary skills from the very begin-
ning and keep developing them throughout the entire course of study. |

In summary, our paradigm to reach the goals of parallel and distributed com-
puting education can be characterized by the following:

e start as carly as we can in the CS curriculum, possibly in C81 or €52
e teach as mch as we can in core caurses, in a breadth-first manner

e lLase the introduction of the material into the curriculum on software en-
ginecring principles.

3 Curricnlum Contents -~ A Hierarchical Approach

If one decides to introduce parallel and distributed compnting into the currcu-
lum, the next immediate question is what material to include. The usual source
of such information and general guidance for computer science programs, the
ACM/IEEE Computing Curricula 51 1171, 15 not very helpful in ihis respect.
All it contains is the two-paragraph suggestion on Parallel /Distributed Comput-
ing in the section Advenced/Supplemeniai Material,

According to the software engincering view, to be able to develop parallel and
distributed applications, our approach starts at the top level and includes five
telatively well separated layers of knowledge of parallel /distributed computing:

o understanding parallel and distributed applications

o parallel and distributed algorithms

o mecthodologics for parallel/distributed software construction
« Implementation techniques

o parallel and distributed architectures and interconnects.

Below we discuss the most important aspects and emphasis on each level.

1. Applications. They should demonstrate 1o the students the usefulness
of parallel and distributed computing in a sense that there are no other meth-
ods to solve certain problems or that there are no such efficient methods. The

191

most successful applications of parallel/distributed computing, in such fields
as astronomy, molecular biology, quantum chemistry, fluid dynamics, theoreti-
cal physics, structural modeling, atmospheric and ocean research, etc,, can be
overviewed, but they are usually too big to be successfully demonstrated. These
large cxamples can be only described. Medium-size examples are needed, which
we are taking from the fields of numerical computations and real-time systems
(13, 18, 20].

2. Algorithms. The need and demand of applications, first of all, enforce
the development of new algorithms. This topic is especially rich 1n good exam-
ples and several classes of algonthms can be distinguished for solving typical
problems, from selection and searching through neural network and genetic al-
gorithms, What we emphasize to include in our curriculum, in addition to tra-
ditional algorithms such as searching and sorting, are parallel and distributed
solutions to the optimization problems. An essential part of this topic is how the
sequential algorithms can be improved by their parallelization. To prove this,
algorithm complexity theory and the big-O notation should be enforced.

3. Methodologies. The transition from the knowledge of algorithms to the
practice of software development methodologies should be the key 1ssue on this
level. 1n general, a good software development methodology for developing ei-
ther traditional sequential or parallel software should include three aspects: the
method, techniques, and toals. The method is a set of paradigms and a notation
t express and specify the intended software properties and their relationships.
Technigues are mathematical transformations thal support the paradigms and
enable software developmenl in a systematic and rigorous manner, and fools are
software packages that help in automalic development.

For traditional sequential systems development, there are several methods and
techniques well desenbed in the literature and supported by tools. At the same
titne (io Lhe hest of our knowledge} no such comprehensive, commmercially snc-
cessful, methodology exists that would comprise all three necessary components
and aim parallel and/or distribuled systems. Regarding methods and techniques,
a promising approach is represented by Petri nets. However, despite a numnber
of public domain tools (for example, those listed in [6]), there seems {o be a lack
of coherent commercial tools supporting this approach.

The major problem with adopting traditional methodologies to developing par-
allel /distributed systems is that they support exclusively functional (control)
parallelism and not data parallelism necessary in parallel software development.
For this reason, well established development methodologies for real-time sys-
tems, for example, structured or object-oriented, cannot be used directly.

4. Implementation techniques. Implementation techniques form one of the
best developed segments of parallel and distributed computing. They comprise
languages for parallel/distributed computations and the respective operating
system constructs. Based entirely on relatively well developed theory of concur-
rency, they define models of concurrent {parallel/distributed) computations and
define language primitives most suitable from the point of view of such models.

182

Depending on the assumed model of concurrency, whether shared memory or
message passing, one can leach the use of several primitives designed for con-
current programming: semaphores, signals, event flags, critical regions, barners,
monitors, mailboxes, rendezvous, remote procedure calls, and others.

There are several languages used for implementation of parallel systems, from
traditional languages, such as Fortran and C, through Ada, Occam, Linda,
Modula-P, Concurrent C++, Erlang, Orca, and functional, as well as, logic
programming languages [2, 10]. Qur approach to the language issue may be un-
usual but is based on an extensive industrial experience: 1t does not matter very
much which language we use — what is important are the concepils. One part of
this attitude is mixing languages. In practice, there are very few meaninglul ap-
plications (if any) written exclusively in one language. Therefore, programming
in a varety of languages should be an essential component of computer science
education.

5. Arclhiteetures. Hardware architectures for parallel/distributed compu-
{ations comprise a varicty of approaches, mostly following the perpetual Flynn
classification. Animportant issue that needs to be addressed here is a distinction
between shared nemory (tightly coupled) syvstems and message passing {loosely
coupled) systems. Another crucial problem 1s the type of interconnection which

inchudes three principal categories:
o bus
s point-to-paoind links

e crosshinr switches,

Our approach (o teaching this subject, again based on experience, favors stan-
dardization [22]. Rackplane bus architectures and their evolution towards so-
futions such as SCI (Scalable Coherent Interface) or HIPPI (HIgh Performance
Parallel Interface) are therefore emphasized, although other architectures are
not elimnnated.

In summary, this hroad coverage eflectively means that we attempt to teach all
aspects of parallel and distributed computations, rather than focus on a single
aspect such as parallel/disiributed algorithms or architectures. Following the
distinction between parallel and distributed compuling, topics such as commu-
nication, fault tolerance, etc., are included in courses on distributed systems.

4 Implementation

There are three major issues in the implementation of the outlined approach:

» how to map basic concepis of parallel/distributed computing onto the
course scguence

s what tools to use to facilitaie and enforce the abscrption of the material
by students

193

e what teaching methods to use to ensure effective transmission of knowl-
edge.

4.1 Mapping Concepts on the Course Sequence

The anthors’ altempt to introduce parallel /distributed computing concepts 1n
the core courses at one of the instituiions (UTPB) is outlined below. In the
presentation, we emphasize the initial courses, firstly because they are the nost
important vehicle to spread the 1deas outlined above, and secondly because we
have not had extensive experience with upper-division courses yet.

1. Computer Science 1

Our teaching micro-paradigm in this course is the software engineenng approach:
Design/Implement/Test, without introducing parallelism explicitly, Therefore
we covel preparatory concepts that we consider important from the point of view
of parallel/distributed computations: Jocal /global variables, information hiding
(ADTs), separale compilation, veclor compntations. The idea of parallelisin can
be discussed when introducing the concepl of an algorithm.

2. Computer Science 11

The emphasis is on parallelization of elementary scarching and sorling, for ex-
ample, following practical applications {1, 3, 9]. Ogplimization algorithms are
atroduced as those of extreme practical linportance. The concept of load bal-
ancing is briefly discussed. Matrix multiplhication, as a computation-intensive
application suitable for performance evaluation, is one of the major topics.

3. Discrete Mathematics

We consider this course to be the one giving theoretica) background for formal
software development as well as for the design of parallel/distributed algorithins.
The basic topics included are: propositional and predicate caleuli, fnrmal logic,
Jlements of set theory, combinaterics, graph theory, introduciion to Petri nets,
and introduction to cellular automata.

4. Computer Architecture

This is a traditionally oriented course on introduction to computer architecture,
which has to teach all basic bardware-telated concepts, so not much time 13
left to jntroduce basic ideas of parallelism and distribution. If this is possible,
however, we recommend to cover any of the {ollowing topics: instruction-level
parallelism, cache and cache coherence problems, bus arbitration, hardware lock,
and parallel 1/O. Hardware Jab is essential for this type of course.

5. Upper-Level Courses
Our plans, already partially implemented, include {ocusing on particular layers
of the topics hierarchy in upper-division courses, such as:

e Programming Languages oI Operating Systems (to teach particular imple-
mentation technigues)

+ Data Structures and Algorithms (for teaching advanced concepts), and

104

e Software Engineering and Senior Research FProject, as scparate courses (to
teach parallel/distributed software development methodologies and em-
phasize the use of tools).

4.2 Teaching Toels

The teaching tools we use can be divided into three major categories, based on
the distinciion we made about various kinds of concurrency:

e concurrent software development tools
e lools for parallel sofiware development

e distributed software development tools.

Concurrent software development tools forin the most consistent category. One
particular combination has been described in a former arlicle (21]. It is com-
posed of high-level tools, mapping designs onto implementations in particular
languages, such as Ada or C4 &, supported by a real-time, Unix-based, oper-
ating syslem running on a single-processor hardware. A number of other tools
suitable for innnediate use in this category are listed in Appendix 2.

There is a lack of commercially available toals for parallel software development
(hat would cover the entire life cyele. The enormous variety of parallel architec-
tures is another serious obstacle to came up with a cohesive sel of teols for the
canstruction of parallel systems. One possible approach, which has been imple-
mented, includes a set of PC-based transputer boards driven by Ada/Qccam-
based sofiware. There are two advantages of selecting this particular architecture
and base higher-level {ools on it. First, it fits well into our former experience
with using tocls for concurrent and real-time sysiems education (20, 21]. Sec-
ond, such a combination of tavls has been widely used in college education, and
a very goaod fext exists which covers parallel laborateries [12].

Setting up a coherent develepment eavironment for teaching distributed con-
puting is a particular challenge due to Lhe prnimary requirernent of keeping it
heterogeneous. Distribuled computing using a cluster of workstations, called
cluster computing, is becoming an attraciive and viable solution. Traditionally,
groups of workslalions are used as a resource for a series of sequential jobs, but
with the development of specialized message-passing software a cluster could
also work together on a single problem. In addition, workstation clusters are
an attractive and cost-effective software development platform. An application
can readily be developed on a group of workstations and ported to moderately
parallel machines. If the implementation of the application algorithms scales
properly, then software for massively parallel machines can also be developed
on the cluster platform. Workstation-based programming environments are also
affordable for researchers, especially at universities with moderalely sized com-
puter centers. Below, we report on a heterogencus environment which has been
adopted for use in classtoom experiments on distributed computing. The PVM

195

project [16] is an attempt 10 provide a unified ramework within which large pro-
grams can be developed on a collection of heterogeneous machines and make the
{ransitjon from teaching sequential processing to parallel /distributed processing
easy.

4.3 Cluster Computing

The term cluster compuling means distributed computing with the use of several
high-performance workstations to solve a single compulation-intensive problem.
An example of soltware <uitable for this kind of computing js the PVM sys-
tem, developed at Oak Ridge National Laboratory. PVM is a programining
environment for the development and execution of large distributed applica-
tions that consist of many interacting but relatively independent components.
it is intended te operate on a collection of heterogeneous computing systemns
interconnected by one or more networks. The participating processors majy be
acalar machines, multiprocessers, ot special-purpose computers. PVM provides
a straightforward and general interface that permits the description of various
types of algorithms while the undertying infrastruclure permits the execuiion of
applicationsan a virtual computing environment (hat supports multiple parallel
computation models.

UVaing PV, large computational problems can be solved by the aggregale pro-
cessing power and memory nf many computers. PVM supplies the functions to
start tasks and lets the computers communicate and synchronize with each other.
It survives the failure of one or more connected computers and supplies functions
for users to make their applications (ault tolerant. Users can wrile applications
L Fortran or O and parallelize them by calling simple PV M\ message-passing rou-
Lines such as prmoaend() and prm yecuf). By sending and receiving 1messages,

application subtasks can cooperate to solve a ptoblem concurrently.

What makes PV especially Attraclive to us is its development environment,
Hence. \With the Hence graphics interface (also available from Oak Ridge) im-
plemeated oun a workstation, a user can develop a parallel program as a comn-
putational graph. The nodes in the graph represent the computations to be
performed and the atcs represent the dependencies beiween the computations.
From this graphical representation, Hence can generate a lower level portable
program, which when executed will perform the computations specified by the
graph in an erder consistent with the dependencies specified. Designers can
visualize the problem’s overall structure far more easily from these graphical
representations than from textual specifications.

4.4 The Method

The method (how to teach) 1s crucial in implementing the approach outhined
above. There are several issues we would like to siress. Firsi, we use what is

196

believed to be a very effective method for developing software construction skills:
the sequence demos/exercises/assignments/projects. This technique has been
ontlined elsewhere {15, 20, 21] and is illustrated here with a couple of examples
in the next section. To illusirate it very briefly, for assignments, we adopted two
basic ways of conducting them. One very efficlent way is to extend exercises to
a full assignment, same for the entire class. Another way, that is more effective
but involves an instructor to a much larger extent, is to assign a problem to solve
individually per student. An example of the individual assignment in concurrent
pregramming, to control access to a one-way iunnel, written in Ada, has been
presented in [13].

Ancther interesting experience that we found very useful is the idea of recurring
concepts [17]. For instance, in parallel /distributed computing, one can use Lthe
notion of multiple entitics competing for a single resource, on virtually all levels
of a hierarchy of topics, in various forms, such as: job partitioning (algorithm
level), resoutce allocation {development level), task scheduling (implementation
level), bus arbitration (architecture level). Two other motions which we use
this way across the entire computing curricuJum are: performance evaluation
(of algorithms, development methods, implementations, and architeclures) and
heterogeneity (mixing progranming environments, mxing languages, and mix-

ing archilectures).

One other very imporiant issue regarding the methed 1s the materials for 1indi-
vidual study, We atlempt (o employ new generations of multimedia technigues,
departing slightly from a traditional concept of a texibook. A careful review of
{he market revealed enough opportunities to select a handful of good teaching
vids of varions kinds one can use in parallel/distributed computing education,
for example:

s videotapes lTJ

e rlectrome honks [18],

~x

n Examples

What we consider crucial to the success of such an approach is a set of carefully
selecied examples including demos, exercises, assignments, and team projects
fromn the cross-section of the discipline. QOur former experience with other courses
proved that this way of gradual introduction of new concepls significantly en-
forces their understanding [20].

The seleclion of snch examples for the development of concurrent and parallel
systems has been presented elsewhere [13, 20, 21]. The concept of demonstrating
more realistic applications [19] has been also successinlly tested in practice. Be-
low we present a sample parallel sorting exercise and focus on selected exercises
for distributed computing,

197

5.1 Sorting Exercise

Fxcercise objective: To teach basic issues related to the parallel sorting.

Methodology: In-class discussion followed by the code development and by
the homework assignment,

Prerequisite: Knowledge of basic sequential sorting methods 18].

Discussion topics:

1 Ddescribe the basic sorting methods that you know (It is assumed that
some hasic sorting methods as well as quicksort will be mentioned as a

minimum.)

7. How can we parallelize the code mn a multiprocessor environment with
global memory? (We lead the discussion in such a way that the idea of
dividing n elements to be sorted among p processors and doing the sorting
by each processor independently followed by the combination of the results
will be introduced.)

1 low can the results from different surts be combined? (A multiprocessor
nierging shankd be the outcome of this discussion. The proper version of
compare-sphit eperation should be also introduced.)

4 For more advanced classes. What is the arithmelic complexity of such
a sorting process? Assume that there is 1o communication cost involved
and that the different sorting procedures are applied in the parallel phase.
What are {he properlies of these sort procedures for fixed n and 1ncreasing
number of processors; for fixed number of processors and increasing nf
What is the predicted speed-up?

Additional topics (for higher level courses e.g, Theory of Algorithms). a)
How the alporithms need to be modified for the distributed memory ma-

T

chine? b) How to sort the data if there are as Mmany processois as Lhere
are data elements? ¢) Can we utihize an additional information about the
data (e.g. data arc already partially sorted). d) Effect of the cominunica-
Vion costs on the arithmelic complexity.) Bitonic sort and its properties,
functions and their asymptotic behavior.

Class Exercise:

Imiplement the parallel sorting algorithm on the parallel machine available to
you. Here a variety of particular implementation assignments can be used based
on the way the discussion in class has shaped up, the level on which the class was
taught, and the available computer architecture. The important point 15 that
each student will have at least one working code for the parallel sort. Multiple
version of parallel sorting, versions wntten using vatious parallelizing tools (on
the same machine), versions written using the same parallelizing tool (for differ-
ent machines), versions written in different programining languages can also be
used in different courses. Problem description is presented in Appendix 1.

198

Homework Assignment:

Run the code for multiple numbers of processors and multiple numbers of data
entries (details depend on the available architecture}. Study the performance
characteristics of the code. Compate the results to the theoretical predictions.
Write a technical report describing vour findings (using a format based on a
professional journal).

{n case of one of the other possibilities suggested 1n the hinplementation section,
the general framework of the homework should remain the same: multiple runs,
analysis of the results, and paper. The particular aim of the assignment will
depend on the curricular needs. T'he important point is thatl it 1s necessary to
perform the experiinents on a real machine, analyze the experimental data and
sharpen the technical wniting skills.

5.2 Distributed Processing Examples Using PV M

In order to prepare PVM teaching examples and compare their performance
to existing multiprocessors, several parallel problems were implemented in this
syslemt.

(u} Calculntion of I1

The first exereige jnvalves the appreximation of 11 by numernical integration, A
similar excrcise is presented as Module 1410 (12, Students experiment with both
the sequential and parallel cases. The sequeniial case computes 8000 partitions
to approximate the area under the curve frem 8 to 1. In the parallel case, the
master spawns (wo processes where ane daes 40600 partitions from 0 to 0.5 and
the other does 4000 partitions from 0.3 1o |, then the two sums are added. The
master sends two messages to the slave workers and wails for two messages from
them. In this exercise the students explore granularity (i.e. coarse granularity,
a fow messiges and a Lot of campntation). The exercise is very simple and
allows students tn measure {imings on different werkstations and compare the
results, One possible extension of such expennients is to use an ATM network of
Sun workslations {hat we have condncted at the High Performance Computing
Laboratory of Michigan State University, East Lansing.

(b} Block Matrix Multiplication

Matrix muliiplication’is a computatinn-intensive apphcation, On shared-memory
mulliprocessors, rescheduling algorithms work well and exhibit good speed-up
characteristics with an increase in the number of processors. On distributed
memory machines, matrices are decomposed into sub-blocks and multiplied, and
a regular communication pattern between the processing elements helps mini-
mize the overheads. A detailed description and analysis of block matnx multi-
plication on hypercube architectures can be found in programsning manuals for
CM-2 and CM-5 machines. A modified version of the block matrix multiplica-
tion algorithm was implemented on the PVM system and executed on various
hardware combinations.

199

(¢} Computation of Mersenne Primes

Fr. Marin Mersenne {1588-1648) was among the mathematicians of the early
}7th century who worked on the problem of perfect numbers. A Mersenne
prime is a prime of the form M{(n) = (2% ~ 1) for some prime n. Thus 3, 7, 31,
127 are the first four Mersenne primes. At the time of this writing, the largest
known Mersenne prime was Mgsoaza with 258716 digils, found by Paul Gage
and David Slovinski, with the aid of CRAY-XMP at the Lawrence Livermore
National Laboratory. The interest in finding Mersenne numbers is growing due
to some potential applications of those numbers in cryptography. We developed
a paraliel algorithm and program based on a known Lucas-Lehmer sequential
algorithm, for a primality testing of Mersenne numbers.

(d) The Burg Algorithm

The Burg algorithm is a linear signal-processing procedure for fitling an autore-
gressive model Lo a time-series data set. An autoregressive model of an order mm
is given by

gy T X SPP TR TR | o SR _} Lo - Ani-tn - Crin

where o, 1s the auloregressive process, @Gyny ... Gygn aI€ the process parametets,
and e,,,, is white noise. The purpose of the Burg algorithm 15 to estimnate the
., covflicients. The key to the parallel implementation of this algerithn is the
fact that the autoregressive model can be realized using direct implementation
or the lattice structure. The Burg algorithm is widely used in various areas of
digital signal processing (i.c. seismic, biomedical, speech etc.). Any algorithm
that involves n convolution or a correlation operation will very likely have this
algorithim as a major component.

6 Experience

First response from the students, though rather limited, is very positive. Most
of them are excited about being able 1o use and develop parallel and distributed
applications to meet the market demands. Students enjoy expenencing the vari-
ety of paradigms and understand their importance. They appreciale the broad
base of knowledge and experience that they are able to get. The approach also
gives students a better understanding of concepls taught throughout the cur-
riculum. Topics such as asynchronous processes, performance analysis, and data
structures are reinforced. Because parallel and distributed computing is a very
dynamic discipline and there are still many important unresolved 1ssues, 1t s an
excellent basis for independent study or project work for the best students.

From the instructor’s perspective, students gain a good understanding of the
basic concepts of parallel/distributed computing and the various programming
paradigms. They develop experience in programming that belongs to both
distributed-memory and shared-memory models. The exposure to different pro-
gramming paradigms and systems gives our students broader knowledge of com-
puting and awareness of the differences in the basic approaches to parallel and

distributed software development.

200

One specific lesson regarding the contents of the curriculum is worth mentioning.
There seems to be a recently emerging tendency for the sphi in computing mod-
ols for the high performance environments. On one hand, some of the vendors
(Convex, Kendall Square Research, Cray Research) move toward the shared vir-
tual memory model. In this model of computation, the unified address space is
provided {on the software development level} to the programmer. At the same
time, the physical layout of the memeory is distributed. On the other hand, the
heterogenous network computing model represented by the popular packages like
PVM and P4, as well as the supporting visual development environment Hence,
seem to steadily gain popularity. Taking these developments inlo consideration,
it is particularly impoertant to introduce students cohesively to both models of
computation.

7 Conclusion

In this paper, we presented and illustrated our effort to structure the CS cur-
riculum accerding to the major objective to preduce €S graduates who think 1n
terms of concurrency and parallelism when develaping applications. ¥We adopt
a software engineering view to shape the curriculum by going top-down [rom
apphcations and development methedologies to hardware architectures and -
terconnects. In brief, our approach to teaching parallel /distributed computing
can be characterized as follows:

« Understand parallel/distributed camputations
¢« Define your teaching objective

s Sclect a range of topics

e« Map topics onto courses

o Sclect appropriate toals and teaching mwethods,

We discusszed one particular implementation attemnpt in the core courses at one
of the institutions {UTPB). The major obstacle 1n successful umplementation
of this approach is the lack of commercial tools suitable for education. Inno-
vative teaching methods, such as the gradual use of programming/development
examples (from demos through team projects), emphasis on recurring conceptis,
and multimedia techniques proved to be particularly valuablein our educational
envitonment.

We are aware, however, that the implerentation of the entire project will un-
dergo a very lengthy and painful process. The immediate next step in continuing
this work is to integrate sofiware engineering concepts with computing needs of
non-computing disciplines, such as physics and chemistry, to help educate stu-
dents in a broader arca of, what is called, computational science [18}.

201

References

(1]

2]

[10]

(1]
[12]

13

[14]

Boykin J. et al.,, Programming under Mach, Addison-Wesley, Reading
(MA), 1993

Cheng D.Y., A Survey of Parallel Programming Languages and Tools, Re-
port RND-83-005, NASA Ames Research Center, Moffett Field (CA), March
1993

Ellis C.5., Concurrent Search and Insertion in AV Trees, IEEE Trans. on
Computers, Vol. 28, No. 9, pp. R11-817, September 1980

Gloor PLA. el al. (Eds.), Parallel Computation ~ Practical Implementa-
tion of Algorithms and Machines (CD-ROM), Telos/Springet-Verlag, Santa
Clara (CA}), 1994

Instilute of Electrical and Electronics Engineers, IEEE Std 610.12 Glossary
of Software Engineering Terminology, IEEE, New York, 1830

Jensen K., Q. Rozenberg (Eds), High-Level Petri Nets: Theory and Appli-
cation, Springer-Verlag, Berhin, 1891

Kennedy K. et al,, Parallel Computation: Practice, Perspectives and Po-
tential, CRI’C Short Course {7 videotapes), Center for Research in Parailel
Computation, Rice University, Houston, TX, 1994

Kumar V. e al. Introduction to Parallel Computing, Benjamin/Cummings,
Redwood City (CA], 1994

Litwin VW.. Y. Sagiv, K. Vidyasankar, Concurrency and Urie Hashing, Acta
lnfonmatica, Vol 26, pp. H87-614, 1983

Messina P., T.Sterling (Eds.), System Soltware and Tools for High Perlor-
mance Computing Environments, STAM, Philadelphia {PA), 1893

Miller .. The Status of Parallel Processing Education, Computer, Vol. 27,
No. 8, pp. 40-43, August 14934

Nevison C. et al. {Eds.), Laboratories for Parallel Computing, Jones and
Bartlett Publishers, Boston (MAY}, 1994

Paprzycki M., Incorporating High-Performance Compulers into Mathemat-
ics Curriculum, Proc. Fifth Ann. Coni. on Technology in Collegiate Math-
ematics, pp. 862-868, Addison-WVesley, Reading (MA), 1993

Paprzycki M., J. Zalewsk), Introduction to Parallel Computing Education,
Journal of Computing in Small Colleges, Vol. 9, No. 5, pp. 85-92, May 1984

18]

[20]

[21]

202

Paprzycki M., 1. Zalewski, Teaching Parallel Computing without a Separate
Cousse, Proc. NSF Workshop on Parallel Computing for Undergraduates,
pp. 19/1-18, C. Neveson (Ed.), Colgate University, Hamilton, NY, June
22-24, 1994

Sunderain V.S, et al.,, The PV M Concurrent Computing System: Evolution,
Experiences, and Trends, Parallel Computing, Vol. 20, pp. £31-545, 1994

Tucker A.B. (Ed.), Computing Curricula '01, Report of the ACM/IEEE-CS
Joint Curriculum Task Force, ACM/IEEE, New York, 1891

Umar V.N. (E4.), Computational Science Education Project, Mosaic Uni-
versal Record Locator (URL}: http:/,-‘csep1.phy.ﬂrnl.gm'/’cscpﬁtml

Wann K.C.. J. Zalewski, Scheduling Messages in Real Time with Apph-
cation to the SSC Message Broadcast System. IEEE Trans. on Nuclear
Science, Vol 41, No. 1, pp. 213-215, February 1994

Zalewski 1., A Real-Time Systems Course Rased on Ada, Proc. Tth Annual
Ada Software Enginecring Education and Training Symposium (ASEET),
pp. 25-49, Monterey, A, January 12-14, 1933

Zalowski J., Cohesive Use of Canmercial Toals in a Classrooru, Proc. Tih
ST Conl. on Software Engineening Education, pp. 65-75, 5an Antonio, TX,
Jaunary 5-7, 1994, 1.L. Diaz-Herrera (Ed.}, Springet-Verlag, Berlin, 1994

Zalewski 1. {12d.), Advanced “fultimicroprocessor Bus Architectures, IEEE
Compnter Society T'ress, Los Alamitos {CA), 1894

203

Appendix 1. Odd-even Transposition Sort [8]

We want to sort n elements (n1s even). The odd-even {ransposition sort is an
extension of the bubble sort and needs n steps io sort the data. In the first
phase elements (a1, a2), (@3, 84)y - {@n_1,0n) &IE compared and exchanged.
In the second phase, the pairs (3211:13),(&4,-:15]...,{ﬂ,ﬂ_g,an_l] are compare-
exchanged. The process is then repeated. After n sleps, the data are sorted so
that the algorithim’s complexity 1s O(n?). The pseudocode for this algorithm is
as [ollows:

Procedure ODD _EVEN(n)

for 1 := 1 to n do
begin
if 1 is odd then
for j := 0 te n/2 - 1 do

cempare—exchanga(a2j+1, an+2};
if i is even then
for j := 1 te n/2 - 1 do
compare-exchange(a2], a2j+1);
end

To parallelize this algorithm one peeds to observe that the compare-exchange
aperation can hie perfurmed in parallel. Assmme that there are n processors, and
that ¢l is the processar auinher. In the odd phase, each processor wilh cdd label
compare-exchanges elements with the processor with an id by one larger {"tlo
its right”). In the even phase, cach processor with an even id (except the nth
ane} compare-cXchanges data with its right neighbor (processor with an id by

ane larger). The preuda-cade for this routine is as follows:

Procedure ODD_EVEN(n)
id := processor’s label
for 1 := ! te n do
begin
if i 1s odd then
if id is ¢dd then
compare-exchange(with id+1);
if 1 s even then
if id is even then
compare-exchange(with id+1);

end

Assuming that the compate-exchange operation is of the order O(1) and since n
steps of the algorithm will be performed, the paralle! complexity of this algorithm
is O(n). In case when ‘here are mote data elements than processors the data
need to be initially divided equally between processors and sorted using a fast
sorting algorithmn (e.g. quicksort). Then, processors perform p phases of odd-
even compate-split operations,

204

Appendix 2. Partial List of Cnncurrent/ParallEI/Distributed
Systems (in Public Domain)

{. Multi-Pascal (Interpreter and Debugging Tool)
Host operating system: M5-DOS
pAvailability: &.26-inch disketle attached to a hook
Documentation: "The Art of Parallel programming” by B. Lester,
Prentice-Hall, 1993, ISEN 0-13-045923-2
2. Pascal-FC {Functionally Concurrent)
Host operating system: KS-DO5
Availability: ftp.brad.ac.uk:fsnftwarefmsdnsfpfc“pc.zip
Documentation: "Concurrent Programming” by 4 .Burns and G.Davis,
rddison-Wesley, 1993, 13BN 0-201-54417-2
3. Modula-P (+ Parallaxis, and Petri nets simulater)
Hoat operating system: Unix
Availability: ftp.infcrmatik.uni—atuttgart.da:fpubfm¢du1a~p
/pub/parallaxis and /pub/petri-nets
Documentation: "Parallel Programming™ by Thomas Braunl,
Prentice Hall, 1993, ISBN 0-13-336827V-0
4. SR (Synchronizing Rescurces)
Host operating system: Unix
Availability: ca.arizona.edu:/sr
Documentation: "The SR Programming lLanguage” DY G.R. Andrews
and R.4&. Dlsson,
Benjamin/Cummings, 1993, TSBN 0-8053-0083-X
5. Erlang (not Public Domain but freely distributed)
lost cperating system: Sunls anud Solarie
Availability: enagate.eua.ericssﬂn.sa:fpubfeuaferlangfinfa
(for information how to obtain a COpPY)
Documentation: "Concurrent Programming in Erlang"
by J. Armstreng, M. williams & R. Yirding,
Prentice Hall, 1993, ISBN 0-13-285752-8
5. P4 (Portable Programs for Parallel Procegsors)
llost operating sysiem: Unix
Availability: info.mcs.anl.gov:/pub/pd
Documentaticn: Yser’s Guide to the P43 Programming Systeme,
by R, Butler and E. Lusk, Report ANL-82/17,
Argonne National Laboratory, Dctober 1992
7. PYM (Parallel Virtual Machine)
Host operating system: Unix
Availability: E-mail the command: send index from pvma
to netlib@ornl.gov te receive instructions,
Docurientation: PVYM¥ 3.0 User’s Guide and Reference Manual,
by A. Geist et al., Report ORNL/TH-1218T7,
Dak Ridge National Laboratory, February 1893

	sig copy.gif
	sig0001 copy.gif
	sig0002 copy.gif
	sig0003 copy.gif
	sig0004 copy.gif
	sig0005 copy.gif
	sig0006 copy.gif
	sig0007 copy.gif
	sig0008 copy.gif
	sig0009 copy.gif
	sig0010 copy.gif
	sig0011 copy.gif
	sig0012 copy.gif
	sig0013 copy.gif
	sig0014 copy.gif
	sig0015 copy.gif
	sig0016 copy.gif
	sig0017 copy.gif
	sig0018 copy.gif

