PARALLEL COMPUTING
FOR
UNDERGRADUATES

Colgate University
June 22-24, 1994

Sponsored by
Colgate University

Undergraduate Parallel Computing Consortium
(UparCC)

The National Science Foundation
(Grants USE-9154145 and USE-9156031)

Editor
Christopher H. Nevison

© Colgate University

Teaching Parallel Computing
without a Separate Course 1

Marcin Paprzycki and Janusz Zalewski
Dept. of Mathematics and Computer Science
The University of Texas of the Permian Basin
Odessa, TX 79762-0001
(915) 552-2258/2260
paprzycki_m,zalewski_j@gusher.pb.utexas.edu

Abstract. This paper discusses an approach to introduce parallel computing into the CS
curriculum. The basic assumptions are outlined, followed by @ discussion of topics and their
implementation in core courses. Several ezamples of ezercises, demos, and assignments are

given.

1 Introduction

Our objective in teaching parallel computing is to produce CS majors who are thinking in
terms of parallelism when developing applications, taking the concept of parallelism as a
system development paradigm. This goal requires a change in attitude toward computations
and cannot be reached by including just one or two courses on parallel computing in the
curriculum. [t requires a comprehensive approach to change the way students start attacking
computational problems as being inherently parallel.

This is in response to the definitive advances in high performance computing (sequential and
parallel) taking place over the last couple of years, that led to the formulation of the so called
Computational Grand Chailenges [27). Solutions to these problems will require substantial
progress in at least five areas:

¢ mathematical understanding of the problems posed,

o the development of new algorithms,

* improvement in software construction methods and tools,
¢ development in implementation techniques,

¢ development of new hardware.

One of the important issues that the educational commun:ty needs to address is to prepare
our students for these challenges. We argue that substantial changes in the computer science
education are necessary to properly prepare the next generations of graduates.

'Work supported in part by a grant from ARPA, via USAF Phillips Laboratory, Solicitation No. F29601-
94-K-0046.

This paper discusses one approach to meet this demand. In Section 2, basic definitions
and assumptions are presented. Section 3 outlines our understanding of the contents of the
curriculum. In Section 4, the proposed implementation is discussed, followed by detailed
examples in Section 5 and a conclusion in Section 6.

2 Basic Definitions and Para- digms

2.1 Definitions

Before we start explaining our approach, we think it is important to define the domain
of discourse, that is, the subject of parallel computing, in contrast to related areas, such
a$ concurrent programming, distributed processing, or computer networking. As we teach
courses on all these topics, we have to understand their boundaries. Their overlap, although
unavoidable, should be kept to a minimum.

The definitions we are using are presented below, based on those given in the IEEE Standard
610.12 Glossary on Software Engineering Terminology [16]):

Concurrent. Pertaining to the occurrence of two or more activities simultaneously within
the same interval of time.

Parallel. Pertaining to the occurrence of two or more activities simultaneously at the same
time instant.

Distributed. Pertaining to the occurrence of two or more activities simultaneously at
different points in space.

(From the above definitions it stems that parallel and distributed systems are concurrent,
however parallel and distributed systems are not identical. The practical distinction between
parallel and distributed systems is such that, if the communication time between Processors
is negligible then the system is parallel (if the communication time is not negligible, say
comparable with the computation time, then the system is distributed). Quite naturally,
this distinction has nothing to do with shared memory vs. message passing models. There
are shared memory computer systems which are distributed, as well as message passing
systems which are parallel. Computer networks fall into the distributed systems category.

It is worth noting, in particular, that for distributed systems, the notion of the same time
Instant does not exist, mostly because of the di ficulty to prove that two events occurring
at two different locations separated by a meaningful distance happened at the same time.
This is difficult because distributed processors have different execution times, in contrast
to parallel processors which have the same execution time line, by definition (due to the
negligible communication time).

These definitions help us to define the subject more clearly. We do not claim their general
applicability, though.

2.2 Paradigms

There exists a variety of approaches to teaching parallel computing. Most of them assume
that a special course will be devoted to a parallel computing subject area. Such a course (o1
courses) can be concentrated around vector-processor-based high performance computing,
an overview of software packages available on high performance computers, a senior leve]
undergraduate course or a course sequence [28, 33]. The literature on parallel computing
education has been very rich and growing over the last couple of years (1, §, 7, 9, 11-15,
17-20, 22, 25-26, 28-37).

All those approaches have their advantages and disadvantages. The primary disadvantage
of most of them is the fact that this is Just one more course to be offered. There are two
possible ways of handling this. Either this course will be an elective and thus not all students
will take it or it will be a mandatory course. In the latter case there is a serious problem
that needs to be addressed: that of the total pumber of semester credit hours to be part of

the degree.

At our school, to graduate with a degree in computer science, a student needs to take courses
in a number of fields. There is a general education requirement (partially imposed by the
legislature, partially by the Texas Board of Higher Education and partially internally), which
consists of approximately 53 semester credit hours (3CH). The mathematics support adds
additional 12 SCH’s.

The courses in the degree program (two introductory courses, programming language, four
core courses, four electives and a senior research project) combine to a total of 39 SCH’s.
Adding to it 18 SCH’s for the academic minor makes about 122 SCH’s. This is under
a rather unrealistic assumption that the student is immediately ready to take Calculus I
without taking Precalculus first. We are quite close to what in the state of Texas is the
maximum number of SCH’s allowed for 2 degree. Adding one more course would therefore
most likely require to remove something from the current list.

Instead of going the way of adding new requirements we are suggesting a different approach.
This approach is based on the assumption that a single course is not enough in itself and
that deeper changes in the CS curriculum are required. Rather than introducing a new
course, elements of parallel computing should become, as far as possible, a part of each and
every course that is currently taught. Such an approach has been already proposed in the
literature and implemented in practice (18, 19], however, with slightly different assumptions
in mind.

In summary, our paradigm to reach the goals of parallel computing education can be char-
acterized by the following:

- 8tart as early as we can in the CS curriculum, possibly in CS1 or CS2,

- teach as much as we can in core courses, in a breadth-first manner.

3 Topics — Hierarchical Approach

3.1 Computing Curricula ’91

If one decides to introduce parallel computing, the next immediate question is what ma
terial to include. The usual source of such information and general guidance for compute
science programs, the ACM/IEEE Computing Curricula 91 [38], is not very helpful in thi
respect. All it contains is the following suggestion on Parallel Computing, in the sectior
Advanced/Supplemental Material:

Parallel and Distributed Computing

Topic Summary: This topic involves the design, structure, and use of systems having inter-
acting processors. It includes concepts from most of the njne subject areas of the discipline
of computing. Concepts from AL, PL, AR, OS, and SE are important for the basic support
of parallel and distributed systems, while concepts from NU, DB, A, and HU are important
in many applications.

Subtopics include concurrency and synchronization; architectural support; programming lan-
guage conctructs for parallel computing; parallel algorithms and complexity; messages vs.
remote procedure calls vs. shared memory models: structural alternatives (e.g., master-slave,
client-server, fully distributed, cooperating ob jects); coupling (tight vs. loose); naming and
binding; verification, validation, and maintenance 1ssues; fault tolerance and reliability; repli-
cation and avoidability; security: standards and protocols; temporal concerns (persistence,
serializability); data coherence; load balancing and scheduling: appropriate applications,

Juggested Laboratories. Programming assignments should ideally be developed on a multi-
processor or simulated parallel processing architecture.

Prerequisites: AL9, AR6, AR7, OS (all), PL11, PL12, SE3, SE5.

3.2 Owur Approach

In recognition of the fact that all technological progress, not only in parallel computing, is
driven by applications, our approach starts at the top level and includes five relatively well
separated layers of knowledge of parallel computing:

¢ understanding parallel applications

¢ parallel algorithms

¢ methodologies for paralle] software construction
¢ implementation techniques

¢ parallel hardware architectures.

It is important to note that across this selection of topics, we adopt another paradigm.
use and demonstrate, as far as possible, performance measures. Below we discuss the most
important aspects and emphasis on each level.

1. Applications. They should demonstrate to the students the usefulness of parallel com-
puting in a sense that there are no other methods to solve certain problems or that there
are no such efficient methods. The most successful applications of parallel computing, in
such fields as astronomy, molecular biology, quantum chemistry, fluid dynamics, theoretical
physics, structural modeling, atmospheric and ocean research, etc. can be overviewed, how-
ever, they are too big to be successfully demonstrated. These large examples can be only
described. Medium-size examples are needed, and we are taking them from the fields of
real-time systems and numerical computations.

2. Algorithms. The need and demand of applications, first of all, enforce the development
of new algorithms. This topic is especially rich in good examples and several classes of
algorithms can be distinguished for solving typical problems, such as:

¢ parallel selection and searching, merging and sorting algorithms,
e parallel graph algorithms,

¢ parallel numerical algorithms,

¢ computational geometry and image processing,

¢ parallel combinatorial algorithms,

¢ paralle] optimization,

¢ neural network and genetic algorithms.

What we emphasize to include in our curriculum is sequential and parallel sorting, sequential
and parallel searching, and parallel solutions to the optimization problems (such as dynamic
programming). An essential part of this topic is how the sequential algorithms can be
improved by their parallelization. To prove this, algorithm complexity and the big-O notation
should be enforced.

3. Methodologies. The transition from the knowledge of algorithms to the practice of
software development methodologies should be the key issue in this topic. In general, a
good software development methodology, for developing either traditional sequential or par-
allel software, should include three aspects: the method, techniques, and tools. The method
13 a set of paradigms and a notation to express and specify the intended software proper-
ties and their relationships. Techniques are mathematical transformations that support the
paradigms and enable software development in a systematic and rigorous manner, and fools
are software packages that help in automatic development.

For traditional sequential systems development, there are several methods and techniques,
well described in the literature and supported by tools. At the same time (to the best of our
knowledge) no such comprehensive methodology exists that would comprise all three neces-
sary components and aim parallel systems. Regarding methods and techniques, a promising
approach is represented by Petri nets [3], however, there seems to be a lack of commer-
cial tools supporting this approach. Among the environments which offer support for most

o

phases of the software development cycle, although their theoretical basis is unclear, there
are two worth mentioning: |

¢ CODE/ROPE [4]

¢ PPSE [23].

The major problem with adopting traditional methodologies to developing parallel systems
1s that they support exclusively functional (control} parallelism and not data parallelism,
necessary in parallel software development. For this reason, well established development
methodologies for real-time systems, for example, structured or ob ject-oriented, cannot be
used directly.

4. Implementation techniques. Implementation techniques form one of the best devel-
oped segments of parallel computing. They comprise languages for parallel computations
and respective operating system constructs, Based entirely on relatively well developed the-
ory of concurrency, they define models of concurrent and parallel computations and define
language primitives most suitable from the point of view of such models. Depending on the
assumed model of concurrency, whether shared memory or message passing, one can use in
teaching several primitives designed for concurrent programming: semaphores, signals, event
flags, critical regions, barriers, monitors, mailboxes, rendezvous, remote procedure calls, and
others.

There are several languages used for implementation of parallel systems, from traditional
languages, such as Fortran and C, through Ada, Occam, Linda, Modula-P, Concurrent C++,
Erlang, and functional, as well as, logic programming languages. Qur approach to the
language issue may be controversial but is based on an extensive industrial experience: it
does not matter very much which language we use - what is important are concepts. One part
of this attitude is mixing languages: in practice there are very few meaningful applications (if
any) written exclusively in one language. Therefore programming in a variety of languages
should be an essential component of computer science education.

9. Architectures. Hardware architectures for parallel computations comprise a variety of
approaches, mostly following the perpetual Flynn classification. Anp important issue which
needs to be addressed here is a distinction between shared memory (tightly coupled) multi-
processors and message passing (loosely coupled) multiprocessors. Another crucial problem
18 the type of interconnection, which includes three principal categories:

¢ bus
¢ point-to-point links
e crossbar switches.

Our approach to teaching this subject, again based on experience, favors standardization [42].
Backplane bus architectures and their evolution towards solutions such as SCI (Scalable Co-

herent Interface) or HIPPI (HIgh Performance Parallel Interface) are therefore emphasized,
although other architectures are not eliminated.

This broad coverage effectively means that we attempt to teach all aspects of parallel com-
putations, rather than focus on a single aspect such as Parallel algorithms or paralle] archi-

6

tectures. Following our definition of parallel computing, we do not include topics such as
communication, fault tolerance, etc., which fall into distributed processing.

4 Implementation

In this section we discuss the implementation of the approach outlined above, in the core
courses at our institution. We emphasize the initial courses, firstly because they are the
most important vehicle to spread the ideas outlined above, and secondly because we have
not done much for upper-division courses yet. The key issue in the implementation of the
program 1s how to map basic concepts of parallel computing onto the course sequence.

4.1 Lower-division Courses

1. Computer Science 1

Our teaching micro-paradigm in this course is the software engineering approach: De-
sign/Implement /Test, without Introducing parallelism explicitly, Therefore we cover prepara-
tory concepts which we consider important from the point of view of parallel computations:
local/global variables, information hiding (ADTs), separate compilation, vector and matrix
computations. The idea of parallelism can be discussed when introducing the concept of an

algorithm,

The idea of a computer with more thaz one processor has to be introduced. A good ex-
ample to convince students that the future of computing will consist of multiple processor
environments executing user applications is what can be already observed in top-of-the-line
PC’s, where we have the main processor, a video processor, the sound processor, floating
point processor and others.

2. Computer Science II

The emphasis is on parallelization of elementary searching and sorting, for example, following
practical applications [2, 8]. Optimization algorithms are introduced as those of extreme
practical importance. The concept of load balancing is briefly discussed.

Matrix multiplication, as a computation-intensive application especially suitable for perfor-
mance evaluation, is one of the major topics. On shared-memory multiprocessors, reschedul-
ing algorithms work well and exhibit good speed-up characteristics with an increase in the
number of processors. On message-passing architectures, matrices are decomposed into sub-
blocks and multiplied, and a regular communication pattern between the processing elements
helps minimize the overheads.

3. Discrete mathematics

Includes basic concepts that need to be used when designing and analyzing parallel algo-
rithms: introduction to Petri nets, introduction to cellular automata, graph theory, combi-
natorics.

4. Programming Languages

(or Operating Systems)

This is the place to teach implementation techniques of parallel computing, either on the
language or on the operating system level. There exists a number of possible selections that
can be categorized as follows:

¢ standard languages with parallel costructs built 1n, such as Ada, Fortran 90 and HP Fortran
¢ languages with parallel extensions, such as C

¢ languages designed specifically for parallel computing, such as Linda and others [6).

The implementation issues, such as multiple processes or tasks, and selected interprocess
communication constructs, can be covered in any of those languages. The decision on
whichever language is selected may be based on the anticipated needs to do the parallel
programming projects in upper-division courses.

4.2 Upper-division Courses

We are not prepared, yet, to give a comprehensive characteristics and discuss the four remain-
ing courses of our core. A preliminary description of the basic issues of parallel computing
which can be included, is given below.

3. Computer Architecture
Instruction-level parallelism, cache and cache coherepce problems, bus arbitration, paralle]
I/O. Hardware lab is essential for this type of course.

6. Data Structures and Algorithms

Advanced concepts of parallel algorithms, introduction to performance analysis of paral-
lel algorithms, formal analysis of time/space complexity of parallel algorithms, analysis of
problem scaling. An essential component of this course is comparative studies of parallel
algorithms.

7. Doftware Engineering, and
8. Senior Research Project
Parallel /concurrent software development methodologies, use of tools.

o Examples

What we consider crucial to the success of such ap approach is a set of carefully selected
examples (demos), exercises, assignments, and team projects from the cross-section of the
discipline. Qur former experience with other courses proved that this way of gradual intro-
duction of new concepts significantly enforces their understanding [40].

5.1 Demos and Exercises

A selection of demos for concurrent and parallel programming is based on the idea discussed
elsewhere [40]. The concept of demonstrating more realistic applications [39] has been also
successfully tested in practice. Below we present a sample of vector/vector exercises to be

used in CS I or CS II.
Example 1

Operation description:
Raak one update of azpy - a scaled vector added to another vector; it is assumed that z and

y are vectors of length n.

Basic algorithm (z and y are initialized):

DO 10 I =1,%
= X

10 X(I) (I) + a»Y(I).

Discussion topics:
1. How can the work be divided on a computer with more than one processor?

2. How would you measure the success of such division of work?

3. If you have p processors and the vector is of length n how are you going to divide the
work?

What to do if n is not divisible by P!
What will happen if one of the processors has more /less work that the other processors?

Concepts of pre-scheduling and self-scheduling.

Will it matter if there was one global memory or each processor would have individual
memory?

NS e

Exercise:
In class (closed lab) write a parallel program; show that it does work; show that for more
than one processor there is a time reduction.

Example 2

Operation description:
Calculate the dot-product of z and y, both vectors of length =n.

Basic algorithm (z and y are initialized):
TEMP = 0.0
DO 10 I = 1,K

10 TEMP = TEMP + X(I)*Y(I).

Discussion topics:

. What is the difference between this example and the azpy example?

. How would you divide work?

|
2
3. Can self scheduling be achieved and how (what mechanism is necessary)?
4. What will happen if p is large in comparison to n?

3

. What will be the effect of having a computer with local memories?

Exercise:
Write a program that performs the operation in parallel; discuss it; show that it works.

5.2 Assignments and Projects

Team projects are very important from the software engineering point of view which we
advocate, and can be implemented as suggested in [41]. However, we are not ready yet to
test this idea in a classroom.

On the issue of assignments, we adopted two basic ways of conducting them. QOne very
efficient way is to extend exercises to a full assignment, same for the entire class. Another
way, that is more effective but involves an instructor to a much larger extent, is to assign
a problem to sclve individually per student. An example of the individual assignment in
concurrent programming, to control access to a one-way tunnel, written in Ada, is presented
in the Appendix. It has been written by a CS II student with an extensjve help of an
instructor. Sample assignments for the algorithms course are also available, for example
[24]. Below we present one way of extending exercises mentioned above to a full assignment.

Sample Assignment:
For the azpy and dot product exercises, run experiments for various values of n and p (system
dependent numbers) and observe the performance.

Questions to be addressed by the students:

1. What happens to performance for fixed p and increasing n?
2. What happens to performance for fixed n and indreasing p?

3. How can you explain what you see?

6 Conclusion

Our approach to teaching parallel computing without a separate course can be characterized
as follows:

¢ Understand parailel computing
¢ Define your teaching objective

¢ Select a range of topics

10

¢ Map topics onto courses.

In this paper we do not address the issue of the method (how to teach), except of mention-
ing the demuﬂ/exerciaes/asaignmentsfpmject sequence. The fundamental question, in this
respect, is obviously the existence and usefulness of a parallel computing laboratory. Such
a lab is currently being developed. Its major function will be to serve as a teaching aid in
developing the concept of Closed Labs.

One interesting experience, so far, was that we found very useful the idea of recursive concepts
[38]. For instance, in parallel computing, one can use the notion of multiple entities compet-
ing for a single resource, on virtually all levels of a hierarchy of topics, in various forms, such
as: job partitioning (algorithm level), resource allocation {(development level), task schedul-
ing (implementation level}, bus arbitration (architecture level}. Two other notions which
can be used this way, across the entire parallel computing curriculum, are: performance
evaluation (of algorithms, development methods, implementations, and architectures) and
heterogeneity (mixing programming environments, mixing languages, and mixing architec-
tures).

First response from the students, though very limited, is rather positive. Most of them
are excited about being able to use and develop paralle] applications to meet the market
demands. We are aware, however, that the implementation of the entire project will undergo
a very lengthy and painful process.

One interesting question is: which textbook to use if parallel computing topics are spread
over the entire curriculum? In our opinion, using a textbook in a classical way does not make
much sense, and we are seeking less traditional ways of enhancing each particular course.
One very important method of doing this is to use multimedia and similar type of course

materials [10, 21]

It would be also interesting to compare our approach and results with other comprehensive
attempts to integrate parallel computing with the entire CS curriculum, such as the one
published in [18, 19].

References

[1] Bachelis G., B. Maxim, Tutorial: Introducing Parallel Algorithms in Undergraduate
Computer Science Course, SIGCSE Bulletin, Vol. 22, No. 1, p. 255, 1990

[2] Boykin J. et al., Programming under Mach, Addison-Wesley, Reading {(MA), 1993

[3] Braunl T., Parallel Programming. An Introduction. Prentice Hall, Englewood Cliffs
(NJ), 1993

(4] Browne J.C., M. Azam, S. Sobek, CODE: A Unified Approach to Parallel Programming.
[EEE Software, Vol. 6, No. 4, pp. 10-18, August 1989

11

[5] Butler R.M., R.E. Eggen, S.R. Wallace, Introducing Parallel Processing at the Und;r-
graduate Level, SIGCSE Bulletin, Vol. 20, No. 1, pp. 63-67, 1988

[6] Cheng D.Y., A Survey of Parallel Programming Languages and Tools, Report RND-93-
005, NASA Ames Research Center, Moffett Field (CA), March 1993

[7] Duckworth R.J., Introducing Parallel processing Concepts Using the MASPAR MP-1
Computer, SIGCSE Bulletin, Vol. 26, No. 1, pp. 353-356, March 1994

[8] Ellis C.S., Concurrent Search and Insertion in AVL Trees, IEEE Trans. on Computers,
Vol. 29, No. 9, pp. 811-817, September 1980

[9] Fisher A.L., T. Gross, Teaching the Programming of Paralle] Computers, SIGCSE Bul-
letin, Vol. 23, No. 1, pp. 102-107, 1991

[10] Gloor P.A. et al. (Eds.), Parallel Computation — Practical Implementation of Algorithms
and Machines (CD-ROM). Telos/ Springer-Verlag, Santa Clara (CA), 1994

(11] Guha R.K., J. Hartman, Teaching Parallel Processing: Where Architectures and Lan-
guage Meet, Proc. IEEE Conf. Frontiers in Education, 1992

[12] Hartman J., D. Sanders, Data Parallel Programming: A Transition from Sequential to
Parallel Computing, SIGCSE Bulletin, Vol. 25, No. 1, pp. 96-100, 1993

[13] Hartman J., D. Sanders, Teaching a Course in Parallel Processing with Limited Re-
sources, SIGCSE Bulletin, Vol. 23, No. 1, pp. 97-101, 1991

[14] Hintz T., Introducing Undergraduates to Paralle] Processing, IEEE Traus. on Educa-
tion, Vol. 36, No. 1, pp. 210-213, 1993

[15] Hyde D.C., A Parallel Processing Course for Undergraduates, SIGCSE Bulletin, Vol.
21, No. 1, pp. 170-173, 1989

[16] Institute of Electrical and Electronics Engineers, IEEE Std 610.12 Glossary of Software
Engineering Terminology. IEEE, New York, 1990

[17] Jipping M.J., J.R. Toppen, S. Weeber, S., Concurrent Distributed Pascal: A Hands-on
Introduction to Parallelism, SIGCSE Bulletin, Vol. 22, No. 1, pp. 94-99, 1990

(18] John D.J., Integration of Parallel Computation into Introductory Computer Science,
SIGCSE Bulletin, Vol. 24, No. 1, pp. 281-285, 1992

[19] Jokn D.J., NSF Supported Projects: Parallel Computation as an Integrated Component,
10 the Undergraduate Curriculum in Computer Science, SIGCSE Bulletin, Vol. 26, No.
1, pp. 357-361, March 1994

[20] Katsinis C., The Development of a Multi-Processor Personal Computer in a Senior
Computer Design Laboratory, SIGCSE Bulletin, Vol. 26, No. 1, pp. 349-351, March
1994 '

12

[21] Kennedy K. et al., Parallel Computation: Practice, Perspectives and Potential. CRPC
Short Course (7 videotapes). California Institute of Technology, Pasadena {CA), 1994

[22] Kitchen A.T., N.C. Schaller, P.T. Tymanrn, Game Playing as a Technique for Teaching
Parallel Computing Concepts, SIGCSE Bulletin, Vol. 24, No. 3, pp. 35-38, 1992

[23] Lewis T.G., W.G. Rudd, Architecture for Parallel Programming Support Environments.
Proc. COMPCON '90, pp. 589-594, IEEE Computer Society Press, Los Alamitos (CA),
1990

[24] Litwin W, Y. Sagiv, K. Vidyasankar, Concurrency and Trie Hashing, Acta Informatica,
Vol. 26, pp. 597-614, 1989

[25] Luque E., R. Suppi, J. Sorribes, A Quantitative Approach for Teaching Parallel Com-
puting, SIGCSE Bulletin, Vol. 24, No. 1, pp. 286-298, 1992

[26] Meredith M.J., Introducing Parallel Computing into the Undergraduate Computer Sci-
ence Curriculum, SIGCSE Bulletin, Vol. 24, No. 1, pp. 187-191, 1992

[27] Messina P., T.Sterling (Eds.}, System Software and Tools for High Performance Com-
puting Environments, SIAM, Philadelphia (PA), 1993

[28] Miller R., The Status of Parallel Processing Education, Draft Report, SUNY Buffalo,
September 1993

[29] Mims T., A. Hoppe, Utilizing a Transputer Laboratory and Occam?2 in an Undergrad-
uate Operating Systems Course, SIGCSE Bulletin, Vol. 23, No. 1, pp. 317-323, 1991

[30] Nevison C., An Undergraduate Parallel Processing Laboratory, SIGCSE Bulletin, Vol.
20, No. 1, pp. 68-72, 1988

[31} Nevison C. et al. (Eds.), Laboratories for Parallel Computing, Jones and Bartiett Pub-
lishers, Boston (MA), 1994

[32] Paprzycki M., Incorporating High-Performance Computers into Mathematics Curricu-
lum, Proc. Fifth Ann. Conf. on Technology in Collegiate Mathematics, pp. 862-868,
Addison-Wesley, Reading (MA), 1993

[33] Paprzycki M., J. Zalewski, Introduction to Parallel Computing Education, Journal of
Computing in Small Colleges, Vol. 9, No. 5, pp. 85-92, May 1994

[34] Rifkin A., Teaching Parallel Programming and Software Engineering to High School
Students, SIGCSE Bulletin, Vol. 26, No. 1, pp. 26-30, March 1994

[35] Posch R., F. Pucher, M. Welser, Using a Transputer Cluster in a Classrom Environment,
Computer Communications, Vol. 16, No. 3, pp. 192-196, March 1993

[36] Sanders D. J. Hartman, Getting Started with Parallel Programming, SIGCSE Bulletin,
Vol. 22, No. 1, pp. 86-88, 1990

13

[37] Torsone C.M., Introducing Parallel Programming to a Programming Language Concepts
Course, Journal of Computing in Small Colleges, Vol. 9, No. 2, pp. 66-70, February 1993

[38] Tucker A.B. (Ed.), Computing Curricula ’01. Report of the ACM/IEEE-CS Joint Cur-
riculum Task Force, ACM/IEEE, New York, 1991

[39] Wann K.C., J. Zalewski, Scheduling Messages in Real Time with Application to the
SSC Message Broadcast System. IEEE Trans. on Nuclear Science, Vol. 41, No. 1, pp.
213-215, February 1994

(40] Zalewski J., A Real-Time Systems Course Based on Ada, Proc. 7th Annnal Ada Software
Engineering Education and Training Symposium (ASEET), pp. 25-49, Monterey, CA,
January 12-14, 1993

[41) Zalewski J., Cohesive Use of Commercial Tools in a Classroom, Proc. 7th SEI Conf, on
Software Engineering Education, pp. 65-75, San Antonio, TX, January 5-7, 1994, J.L.
Diaz-Herrera (Ed.), Springer-Verlag, Berlin, 1994

[42] Zalewski J. (Ed.), Advanced Multi- microprocessor Bus Architectures. A Tutcrial. IEEE
Computer Society Press, Los Alamitos (CA), 1994 (in print)

14

Appendix

-— Program Tunnel. Design by: Teresa Spraggins --
~~ University of Texas-Permian Basin, April 28, 1994 -
=~ This program keeps track of a one way tunnel's traffic light. -
-=- It only allows N cars (constant below) te be in the tunnel at a time. --
-= Loosely follows the specification (Exercise 1.3, p. 22) from: -
~— Concurrent Programnming, by Tom Axford, John Wiley and Sons, 1991 --

-~ Global declarations

MaxCars : constant INTEGER := 6; -- only that many car tasks may exist
N_Vehicles : INTEGER := O; -— protected by the Semaphore
.= SEMAPHORE TASK --

=- This task will protect the variable N_Vehicles (of cars in a tunnel)

task body Semaphore is
begin
loop
accept Lock;
accept UnLock;
end loop;
end Semaphore;

e Ll ——— bl Al gl =l TEF T CEE A - A el syl TR W TEEE WS T A W N R . S B - A ol BN o e ol A S miple o SN

e b Ll R L ——— i e e e R R T ey

=- This task will protect the screen against simultaneous writes

task body Display_Sema is
begin
loop
accept Lock;
accept UnLock;
end loop;
end Display_Sema;

T ———— A el —— . Y ———— —— -y e A ralk =i b i o . — 0 vk ki W W - S S A o I i e i N A N S N S o A A A A

b e i L R R e —— L2 B L Lk I ¥ Ty r o rrTYT T TrTrmmmTrTa I I Tr ™ r'r 1 or

== This task records all vehicles ENTERING the tunnel.

15

task body Entrance_Process is
begin
loop
accept Car_Entering;

Semaphora.Lock;
HN_Vehicles := N_Vehicles + 1;
Semaphore.Unlock:
end loop;
end Entrance_Process:

e L F R e — T i S ol A o e - L 1 K | -h-—--—-——— i - - - --—-.—_—--—---—-----——- sl -

-— Thia task records all vehicles LEAVING the tunnel.

task body Exit_Procaess is
begin
loop
accept Car Exiting;

Semaphore.Lock;
N_Vehicles := N_Vehicles - 1;
Semaphore.UnLock;
end loop;
end Exit_Process:

b 1 F F ¥ ---—---—--——-—--—-——---—-- L. L 3 ¥ " ---——.-—“--—— ----——----—.--——-_ -“‘---_—_-—.---_-

-~ This task will display the car running through the tunnel
task body Car_Running is

== This procedure does the job
procedure Display_Car is
Temp : INTEGER := Random mod 4;
begin
if Temp = 0 then -- Car of first type
for I in 1..69 loop
Display_Sema.Lock:
Put_Truck(I, 20); == proceduref from
Blank EX(I-1, 20); -~ Screen package
Display_Sema.Unlock:
end loop;

16

end if;

-- There is three more loops for other types of cars displayed that way

Exit_Process.Car_Exiting;

for F in 69..71 loop -- to drop the car from screen
Display_Sema.Lock;
Put_Blank(F, 20);
Display_Sema.UnLock;

end loop;

end Display_Car;

begin =~- of Car_Running tasks
Display_Car;
end Car _Running;

Tl I A LA S W B N A T WE S S S L S S mhle e S W W e e R L e p—— bl T T S A S S R S N A A ol enlle wler - -

ﬂ---—-ﬂ---‘-ﬂ‘_-— A R i eple T W T S S S S oI Tma I - . . S ol bl . . sl ol e - S L B E B R L ———

-= This task will control the traffic light.

task body Traffic_Light is

X : INTEGER;
N : constant := 4; -- Maximum number of cars allowed in the tunnpel

-- Define GREEN_LIGHT and RED_LIGHT procedure
begin -- Traffic_Light process
loop
Semaphore.Lock;
X := N_Vehicles; -- cannot be unlocked directly after this assign
-~ because N_Vehicles may change before the light
-- 13 changed based on current N_Vehicles
if (X >= N) then
Red_Light; -
else
Green_Light;
delay DURATION(N); -— to separate cars on screen
GENERATE_CARS.GoAhead; -- only after the light has turned green
end if; ~= a new <car can be launched

Semaphore.Unlock;
end loop;

END Traffic_Light;

17

—------—-—-----——-----———-- L I X ¥ X 7 | T — S el -y S S i il e T T --—-----——----h-——-—-ﬂ-—-------

-~ This task randomly adds cars attempting to enter the tunnel.
task body Generate_Cars is
Ind : Integer;
Counter : Integer := 0;
begin
-~ Imitialization: display the tunnel and set light to GREEN
loop
Counter := Counter + 1; - theoretically may overflow
delay Duration(Float(Random)/8.0 + 0.2);:

Ind := Counter MOD MaxCars;
if Ind = Q0 then

Ind := MaxCars;
end if;

if Counter > MaxCars then

Dispose(RunningCara(Ind)); -~ Remove a car task from memory
end if;
accept GoAhead; -— Permission to generate a new
Entrance_Process.Car_Entering; == €ar to enter the tunnel:
RunningCars(Ind) := new Car_Rumning; -- Here!! Starts displaying.

end loop;
end Generate_Cars;

--—---—:--———-----—----—- - S ey - S T NS B R R S e e e L L T R Y U e — e e B L R L R g p——

18

	PCfU_94 copy.gif
	PCfU_940001 copy.gif
	PCfU_940002 copy.gif
	PCfU_940003 copy.gif
	PCfU_940004 copy.gif
	PCfU_940005 copy.gif
	PCfU_940006 copy.gif
	PCfU_940007 copy.gif
	PCfU_940008 copy.gif
	PCfU_940009 copy.gif
	PCfU_940010 copy.gif
	PCfU_940011 copy.gif
	PCfU_940012 copy.gif
	PCfU_940014 copy.gif
	PCfU_940015 copy.gif
	PCfU_940016 copy.gif
	PCfU_940017 copy.gif
	PCfU_940018 copy.gif
	PCfU_940019 copy.gif

