MATRIX MULTIPLICATION: A VERY SIMPLE PROGRAM

WITH SOME INTERESTING CONSEQUENCES

Marcin Paprzycki
Department of Mathematics and Computer Science
The University of Texas of the Permian Basin
Odessa, TX 79762

0. INTRODUCTION

Two major areas dominate the current research and teaching in Computer Science (CS).
The first is hardware design with its main goal of building more powerful computers to store
and process larger amounts of data in a shorter period of time. It is most frequently
associated with the School of Engineering. The second major area is theoretical CS which
deals with a variety of issues related to algorithm design. It will be typically housed in the
School of Liberal Arts in the departments of CS. Thus institutionalized gap between algorithm
design and hardware design is bridged by experimental CS, which seeks to establish the best
ways of implementing theoretically desi gned software on existing computers and to determine
performance characteristics of the existing computers by developing and running a variety of
benchmarks.

In {4], the authors argued for the importance and relative easiness of including
experimental CS into undergraduate curriculum. They have discussed a student research
project of comparing two search algorithms as an example. One of the compared algorithms
was based on a brute force approach, whereas the other was more subtle and was expected
to lead to an improvement over the former. Theoretical analysis allowed to determine that
there may be circumstances in which the old algorithm will still outperform the new one. The
series of experiments performed on a variety of computers in two programming languages
proved that the results depended (among other things) on: a) computer hardware, b)
characteristics of the compiler {e.g. the speed of the count controlled loop), ¢} level of
optimization requested, d) data type used in the implementation (e.g. short vs. long reals),
€) programming language used to implement both algorithms. They concluded that due to the
large number of factors influencing the performance of implemented algorithms, analytical
methods for predicting the relative value of the algorithms may be, for the time being,
unreliable. The only way to find out the better algorithm is to run the two codes on a given
machine in a given programming language and compare the results.

Their comments are in line with what is suggested in [5). With the advent of new
computer architectures (e.g. introduction of hierarchical memory, vector processors and
parallel computers), it becomes clear that the analytical tools developed so far have become
obsolete awaiting the development of new tools. It is also not clear whether analytical
methods will ever be able to catch up with the developments in other fields of CS.
Experimental CS has thus an important role to play in establishing ways of comparing
algorithms on particular computers as well as of comparing performance of different hardware

154

ESCCC-92

platforms.

The aim of this paper is to present another possible student research project that can be
used (and was used) for a variety of educational purposes in a variety of courses across the
CS curriculum. Section 1 outlines the project. Six methods of multiplying matrices and the
nature of the differences between them are described. Section 2 presents and discusses the
results of experiments performed on a VAX 8200 and a Cray Y-MP computers. The
concluding Section 3 shortly reviews the author’s experiences with using this project in a
classroom and offers some suggestions about its possible uses.

. SIX VERSIONS OF MATRIX MULTIPLICATION

Material and graphs presented In this section are primarily based on [2]. Matrix
muitiplication is & very simple process. The following Fortran code represents the way it is
done "by hand” (it is assumed that A, B and C are NxN matrices, C = A*B, and initially
C = 0)

1 do 10 1 = 1,N

2 do 10J=1N

3 do 10 K = 1,N

4 10 C(L,J} = C(L,J) + ALK *BK.J)

Permuting the order of loops generates Six programs (UK, JIK, K1J, 1KJ, JK! and KID). It
is easy to convince oneself (by working out a small example for instance) that each of the
thern will generate the same final result as well as that each performs the same number of
arithmetic operations. The only difference between them is the order in which data 1s
accessed. The UK and JIK algorithms are based on inner product calculations, the KL} and
[KJ methods — on row-vector updates, and the JKI and KJI programs — On column-vector
operations {cf. Appendix I, for more extensive discussion). As will be shown, this can greatly
influence the performance of the program on almost any computer architecture.

To show that the access pattern can play an important role let us examine a very simple
example. We will assume that: A. the program is running on a 486 PC with cache memory,;
B the communication between the cache memory and the processor is substantially faster than
the communication between the main memory and the cache memory; C. the program IS
written in Fortran so that the matrices are stored in a column major order; D. the cache is
able 1o store two columns of each of the three matrices at a time. The two row-oriented
versions of matrix multiplication will require frequent swapping of data between the cache and
the main memory. When the IKJ (or K1J) version of the program is running, two columns
of matrix C and two columns of matrix B need to be swapped every two steps of the inner {J)
do-loop. The two column-oriented versions, on the other hand, will require substantially
reduced amount of data movement. when the JKI (or KII) version of the program 1$
executed, two columns of matrix A need to be replaced by the next two columns of A after
finishing every two runs through the inner (f) do-ioop. The communication overhead can thus
hamper the performance of the KJ and KU versions of matrix multiplication substantially,
whereas it shouid have only minimal effect on the performance of the KJl and JKI versions.
The two inner product oriented versions should exhibit intermediate performance
characteristics, since when one of the matrices (4 or B) is accessed by rows, the second (B
or A, respectively) is accessed by columns.

When applied to a programming language tike C or Pascal where matrices are stored by
rows, the above explanation will lead to exactly opposite conclusions. 1In cases of Algol 60
and Adz, whose definitions contain no specification of the array implementation, and Algol
68, which allows for both storage methods, the results will depend on particular

155

ESCCC-92

implementation and/or programmers decisions.

2. EXPERIMENTAL RESULTS
2,1. VAX 8200

The first series of experiments was performed on a VAX 8200 mainframe with built-in
hardware floating point accelerator, running VAX VMS operating system. We implemented
all six versions of matrix muitiplication in Fortran. Al results presented here are averages
of multiple runs (the differences between the runs were rather small — up {0 3%). Timings
were obtained using system timers (VAX VMS Library LIBR$). Matrices were generated by
a system random number generator (MTH$SRANDOM routine from the MTHS library). We
ran our experiments for short and long integers and short and long reals for matrices of sizes
N = 50, ..., 350. Results are summarized in Tables 1 and 2 respectively.

As predicted above, the column-oriented versions outperform both the inner product and
the row-oriented versions of the algorithm. The differences between the results within each
of these categories are negligible. Times for long integers and short reals are quite similar,
which can be explained by the fact that VAX 8200 has a 4-byte processor. Operations on
short integers and long reals require some additional manipulations, moreover, the size of the
data object constitutes additional overhead for long reals.

We have calculated the ratio R between the number of operations (additions and
multiplications) needed to multiply two matrices of size NxN (ZN%) and the time to multiply
them.' Interestingly, R remained constant only for the column-oriented versions of the
program. [n all other cases, R was decreasing with the increase of matrix size. At the same
time, the number of page faults (indicated by the system timing routines) increased. This is
a clear indication that with the increase of the problem size the communication overhead starts
to play an important role by reducing the sustainable performance.

2.2. Cray Y-MP 8/864

The second series of experiments was performed on a Cray Y-MP 8/864 supercomputer.
All six versions of matrix multiplication were coded in Fortran and compiled by Cray’s cft77
optimizing compiler. Matrices were generated by Cray’s random nsmber generator {(function
ranf). The program performance was assessed by the perftrace utility, which was also used
to average multiple runs. Since perftrace measures the MFlop rate more precisely than time,
this measure is reported (cf. note 1}. As previously, we ran our experiments for four standard
elementary data types and for matrix sizes N = 50, ... , 400. The results are summarized in
Tables 3 and 4.

As was to be expected, the column-oriented versions outperform the others. As before,
the results can be split into three groups depending on the index of the innermost do-loop.
Since only operations on short reals are vectorized on the Cray, the performance of the
column-oriented versions is almost twice as good as that of any version of matrix
multiplication on the remaining data types. Of the three data types operated on in scalar
mode, operations on both types of integers are twice as fast as those on long reals since the
latter are approximately twice as long.’

There are, however, some important differences in the performance on the two computer
architectures. As on the VAX, the performance rate R was either constant or steadily
decreasing, this is not the case on the Cray. For all data types a sudden drop in performance
can be observed for N = 400. To determine the reasons for the performance degeneration
we have run another series of experiments for N = 1215, ..., 1249. The results are
summarized in Figure 1.

156

ESCCC-92

-SpUOSSS Ul $inses 'srees Buot pue PoUs ‘0028 XYA T $laelL

pu—— [————

50601 | 0a'lse |sezss || Lozze
peze9 | 1oes |21ees | 1082
Lvg6e 8S66C | B2'80€ |sz608 § ¥EIC)
o110z | 8520 | sessr |escs E vzoe
oeeg | eove | 1009 |stoo [ois2
gL0oz |2e0e |evsl 1 i9sl 1 £5°8

102 T_._m /81 | 104

A

157

an operation performed in one

overlapping executes more than one
without being stored in the register. For

L

_like architectures contribute to its high level of
ults of

result per cycle;
. chaining allows the res

To explain this strange behavior we need to consider the Cray’s hardware in a little more
functional unit to be fed into another functional unit

detail.’ Three important features of Cray

erformance:; pipelining delivers one

instruction concurrently

P

"o U sinedy ‘s Bus) PLe LOUS yOR/g dWHA ARID C¥ d1qeL

fg25 |95 ises |ses [@0s |e0s §SLZ (92 [Sste [Ei9 1Z98 [l98 K ooF

095 |64S 225 |Lis |T¥S [T¥S ei02 |Le0e |ecer |osel (TeEl | veEl
ves |09s (228 [¥is |ges |8es R SYOZ [L¥0Z [TvEL [S¥EL (SRl | 8Pl
wes |99 |»es |ves |9es |9fs [ez |i02 |v98. |csal |682L |eeal
095 |ess |zes |ees |£os |cos Qsoel |seel |1zob |oZor lzoor | sood
29e [t9s |1es {195 |6y |66y JZvBL |9€8L |[9991 [§99L [000L |6E6

zos |19e |ess |sas |eur |er Jeai | el m.qj €981 |1'6L |€6L

095 |66 |6S6 |195 | ier fiew [eove [eser |oeck |2vel |9ve |6ve

Lo BN ra | e | o i
T3y LUOHS XIHLYW

‘sdo 4y W Sunses 'sefieiu Guo) pue pous [YRE dW-A ABJD ‘£ BIGBL

SCCC-92

-
oy
o

4

ve2y | Ldzr |eie {Zie |ges | 986 Zize |02zl |sie g |ges | 2ee oY
L8821 h 1821 M LA | A ¢ Bl 1 8L ! 1'8dl & Bél vidl SLdl il 8Ll n.mn
cezt |seal |e€zt |zver (et |ezur | 9mes |9eer lewel |eces (et |2zt § boe
[B2L (sezl &4z (oer (ses teewl QBoszr joezr [2@ |62t 9gll [sEil || os2
LB ﬁ.m: v80L | 2P0 (296 |296 ZeiL |€8LL | ¥60L |¥6OL | £96 re6 B o002
6oLL {601t |9SLL |6SLL | BSE L'96 /1l |z¥Lr |2ZetL |Zotr |29 | 096 051
E¥LL {LSLL [OLLL [POLL | 1R 6'LL 9Sil |asil |goK |ELiL | 1B |08 00k
0s0L |9v0l |60l [220L | 865 | €8S 660l | ¥'SOL | 0L | ¥EOL | 109 | 009 5
- .o SHERUN{DROT T T Uhecenizn . SHUIDIIN|LWONG , YMIVIN

Moreover,

In a Cray-like architecture, the

memory cycle is substantially longer than the processor cycle. In order to feed in data to the

independent banks between which the data is

distributed. A memory bank conflict occurs when consecutive requests are made for the data

. the performance will be enhanced by the availability of pipelining
stored in the same memory bank. Let us assume that we have 4 memory banks and a 4x4

may be diminished by the inapplicability of chaining.

but 1t
performance can be hampered by memory bank conflicts.
processor fast enough, memory is divided into

the problem in question
and overlapping,

158

ESCCC-92

MFLOPS

240

220

FIGURE 1. MATRIX MULTIPLICATION

SHORT REALS: FORTRAN

3 5 38 8 8 B

| { 1 T [| ! [T } [T | | 1 I

215 1217 1219|1221 22ahz2sie2r 1229123 122312381237]1239) 1241 1243 124512471249

S 00 1222 1224 1226 1228 1230 1232 1234 1206 1281240 1242 1244 [246 1248
MATRIX SIZE

3 KR - XKl o Kid A IKJ w R v LK

matrix is stored in a column oriented fashion.

159

ESCCC-92

X{(1,1) X{2,1} X(3,1) X(4,1)
X{1,62) X(2,2} Xi3,2}) X{4,2)
X(1,3) X{(z2,3) X(3,3) XxX{4,3)
X(1,4} X(2,4) X{3,4) X(4,4)
I II IT1 v

If matrix X is accessed column-wise data will be accessed from memory banks [, II, [Ii, 1V,
... .. In the case of row-wise access, on the other hand, the data will be sought from the
same memory bank creating a memory bank conflict which causes the processor to wait for
the data. All matrices of sizes divisible by the number of memory banks (4, in this case)
would be susceptible to the same problem.

The inner product based versions of the algorithm are primarily affected by the lack of
chaining. At every step, a value of C(/.J) is updated. To assure that every time the most
current copy of this element is updated this operation cannot be chained. Since the current
C(.Jy needs to be stored in the register before it can be reaccessed by another update, time
necessary to perform one store and one load will be “lost™ at every step. The UK and JIK
versions are also susceptible to memory bank conflicts as one of the matrices is accessed by
TOWS.

The row-oriented versions of matrix muitiptication allow chaining but are highly
sensitive to the matrix size {memory bank conflicts). For all odd matrix sizes, IKJ and KIJ
outperform the inner product oriented versions. For even matrix sizes, the number of
memory bank conflicts generated increases as the matrix size becomes divisible by increasing
power of 2. Largest performance decrease occurs for A divisible by 32.*

It is also worth mentioning that for large matrices the MFlop rate obtained oscillates
around 230-240 MFlops. At the same time, the theoretical peak performance of a one
processor Cray Y-MP, as reported by the manufacturer, is 333 MFlops. Given the fact that
column-oriented matrix multiplication operates on very long vectors and uses chaining
extensively (thus satisfying Cray’s optimat performance conditions), it can be stipulated that
240 MFlops (70% of the theoretical peak) is a practical peak performance for programs
running on a one processor Cray Y-MP [3].

3. CONCLUSIONS

We have presented results of experiments with six versions of matrix muitiplication
performed on two radically different computers. A project of this kind was used in couple
of classes offered at UT Permian Basin. We have assigned it in a Data Structures course
(VAX version).” It had two goals: to expose students to the consequences of different array
implementations and to the effects that different elementary data types used to construct arrays
have on the program’s performance. In the Programming Languages class, it was used mn a
comparative study between two {or more) programming languages. In Numerical Linear
Algebra, it was used to break the ice between students and the Unix-based Cray {(most of our
seniors are VMS literate but are rarely exposed to Unix). It also gave the students aa
interesting background in Cray’s hardware. The project can be used in other courses as well.
It is appropriate for a Digital Computer Organization course, for instance.

We believe that a project of this nature has an important educational value. Since there
are no predetermined answers students find it interesting and challenging. As 1t is more than
simple to implement, students can concentrate on analyzing the results, which is typically one

160

ESCCC-Y2

of their weak points. At the same time, the hardware requirements are not extremely high
since it can be carried out on any hierarchical memory computer, which will soon become the
standard even for PC’s. It is enough to have a 486 based PC and a compiler capable of taking
advantage of the cache memory to run the simplest version of this project.

We hope that this paper will be able to convice some of the readers that experimental
computer science is worth including into the curriculum. It can be a valuable experience and
fun for both students and teachers.

NOTES:

{. Divided by 10°, R approximates what is defined as the MFlop rate of the processor. For
single precision reals, the VAX 8200 processor was running at approximately 0.2 MFlops.

2. It should be noted that Cray’s arithmetic does not follow IEEE standards. Single precision
real provides about 14 digits, and double precision real about 28 digits of accuracy.

3. The discussion of Cray’s hardware is based on [1] and [2] which are recommended as
source of more information,

4 This is not to suggest that Cray Y-MP has 32 memory banks (For more detalled
discussion, cf. [1,2]).

5. A word of caution is in place. As is evident from Tables t and 2, matrix multiplication
is rather time consuming. When this project was assigned for the first time to a class of 25
with a special credit of finding three largest square matrices that can be multiplied on our
VAX, the machine was running 100% CPU load for about two months!

REFERENCES

1. Dongarra, J.1., Duft, [.§., Sorensen, D.C., and van der Vorst, H., Solving Linear
Sysrems on Vecror and Shared Memory Compuiers, (Philadelphia: SIAM, 1991).

2. Dongarra, J.J., Gustavson, F.G., and Karp, A, “Implementing Linear Algebra
Algorithms for Dense Matrices on a Vector Pipeline Machine,” SIAM Review 26 (1984),
91-112.

3. Paprzycki, M., Cyphers, C., “Multiplying Matrices on the Cray — Practical
Considerations,” CHPC Newsletter 6 (1991), 77-82.

4. Paprzycki, M., Khosraviyanti, F., Wagaman, M., “Binary Search on 2 L.inked List —
a Research Project in Experimental Computer Science,” Proceedings of The Third
Annual South Central Small College Computing Conference (1992), 16-21.

Ly

Rice. J.R., Mathematical Aspects of Scientific Software, (New York: Springer-Verlag,
1G88).

161

ESCCC-92

APPENDIX 1,
Memory access patterns for matrix multipiication

. inner product based versions {(UJK, JiIK)
If we assume that 7 and J remain constant, the inner (K) do-loop performs the following
operation:

0 -

c(I,J) AlI,*) B{*,)

In UK, matrix C is calculated in a row by row fashion where each row is obtained from a
sequence of inner products of one row of A with all columns of B. JIK generates C column
by column from a sequences of inner products of all rows of A with one column of B.

1. Row-oriented versions {1KJ, KII)

The remaining four versions of our prﬂg}{amcire based on a vector update of the form
L) -+ .

If I and K are constant the operation performed by the J loop can be represented as:

. 0o«

C(I,*) CiI,*) A{I, K) B(K,*)

In K1J, all rows of C are updated by a row of B scaled by elements of a column of A. In IK],
one row of C is calculated at a time by accumulating in it rows of B scaled by elements of a
row of A,

Ul. Column-orienred versions {JKI, KJI}
If J and K are constants the inner () do-loop performs the following operation:

B

C{*,J) Ci*,J} Al* K} B{(K,J)

= + -

In K1, all columns of C are updated by a column of A scaled by the elements of one row of
B. In JKI, a column of C is calculated at a time by accumulating in it columns of 4 scaled
by elements of a column of B.

162

	aig copy.gif
	aig0001 copy.gif
	aig0002 copy.gif
	aig0003 copy.gif
	aig0004 copy.gif
	aig0005 copy.gif
	aig0006 copy.gif
	aig0007 copy.gif
	aig0008 copy.gif

