PROCEEDINGS OF THE
TWELFTH ANNUAL

CONFERENCE
ON
APPLIED MATHEMATICS

University of Central Oklahoma
Edmond, Oklahoma
February 9-10, 1996

DEVELOPING AN ARTIFICIAL LIFE SIMULATION PACKAGE

Dionne Bailey '
Ann Cheek ?
Marcin Paprzycki '
' Department of Mathematics and Computer Science
? Department of Biology
University of Texas of the Permian Basin

Odessa, TX 79762

ABSTRACT: Recent publications suggest existence of a gap between computer science curricula
and industry necds. We show how a software engineering project for developing an Artificial Life
Simulation Package can help bridge this gap. The results of experiments investigating the influence
of the artificial life parameters: initial population, food, movement, survival, and birth are

presented and briefly discussed.

51

1. Imtroduction
It was recently suggested (Lawlis & Adams, 1995) that current CS curriculz do not

address the real needs of the industry:

“ ..industry needs software practitioners who understand the dynamics of developing and
reengineering large software systems, adeptly employing techniques such as analysis and

reuse.” (p. 5)

They also criticize the current CS curricula for putting too much attention on creating small pieces
of software from scratch. It is even suggested that in the modern CS curriculum there is no place
for creating software from scratch. Similar criticisms have also been made by Jones (1995) and
Khajenoor (1994).

The aim of this paper is threefold. First, to introduce a semester long software
development project that is currently being used in the CS 11 course at the University of Texas of
the Permian Basin (UTPB). Second to describe the software engincering issucs encountered when
three artificial life packages were combined into one. And, third, to discuss the experimental data

collected using the unified package.

2. Artificial Life

Mathematical models were the primary method used for predicting a population’s dynamics
and state at any given time in the future, Differcntial equations were formulated based on simple
models incorporating basic characteristics of the population and a minimal number of assumptions.
Some accuracy was sacrificed by the assumptions made in these simplistic models. Artificial life
simulations incorporate computational models which are not concerned with simplicity, rather a

complex, detailed analysis derived from characteristics of individual members of the community. Tt

52

is oaly due to the computer’s ability to perform fast calculations that such complex simislations
became feasible (Cliff et. al, 1994, Ditlea, 1994).

Artificial life simulations involve large software systems which must be maintained and
coastantly eshanced to achicve greater accuracy (and to prevent the software from becoming
outdated). In addition software requirements involving the user interface are an important part of
the Alife software quality which needs to be augmentcd. In improving the simulations and user
control, software recngincering consists of the analysis and reuse of the existing software packages

(Jones, 1995).

3. Software Development
3.1 Project description

At UTPB the CS I course is offered not only to the prospective CS majors, but also to the
students who plan to major in other scicnces: biology, chemistry, geology and mathematics use it to
satisfy their programming roquirement. The CS IT course caters primarily to the prospective CS
majors. It is a relatively small course, typically consisting of one section of approximately 15-20
students. A scmester long software development project was introduced two years ago in an
attempt to confront the future computer scientists with a larger software artifact and address the
industry noeds as described by Lawlis et. al, 1995 (for the details see Paprzycki & Zalewski,
1996).

The starting idea for the project is Conway's Game of Life (Gardner, 1970). The game
consists of tracing changes in the patterns formed by sets of “living” cells arranged o the grid
through time. Any cell in the grid may be in either of the two states: “alive” or “dead.” The state
of each cell changes from one generation to the next depending on the state of its eight immediate
neighbors. The four rules governing these changes are designed to mimic population change. First,

a living cell dies from isolation when it has no neighbors or only one living neighbor. Dying may

53

also be a result of overcrowding which occurs when a living cell has more than 3 neighbors. An
empty cell with exactly 3 living neighbors becomes alive, Finally, all other cells remain unchanged.
This relatively simple simulation game is, during the course of the semester, extended to a larger
artificial life simulation project. The project is based on group work, where the groups consist of
2-4 students — depending on the class arrangements and attrition rate, To mimic the real-life
situation of software engincers the project procecds in phases. Phase I, development of the original

game of life, consists of the following steps:

1. Formulation of the software requirements,

2. Wniting the design,

3. Instructor's comments on the design,

4. Implementation,

5. Testing and preparation of the User Manual,
6. Across-the-class comparisons,

7. Instructor's comments on the artifacts.

At the beginning of the process groups are formed and students study the original paper by
Conway. Then they are asked to specify and discuss the basic requirements of the project (with a
very strong emphasis being put on the proper development of human-computer interface). This
step is followed by each group writing a design (in the form that they were introduced to in the CS |
course). These designs are then commented on by the instructor.

After receiving feedback on the designs, students work on improving them and
implementing the code, testing the code and writing the user manual. At this time, groups exchange
their artifacts: design, user manual, and code. Depending on the size of the class, each group
reccives the artifacts prepared by all other groups or some subset (up to two or three) of the other

34

groups. Each of the groups has the following tasks: commenting on the design and user manual,
venfying the code against the design, running the code and testing it, commenting on the user
interface - all tasks comprising a natural way of introducing independent verification and
validation. Students are instructed to concentrate their attention on particular verification criteria,
such as consistency and clarity. They are also informed that they should read the user manual from
the point of vicw of the prospective users, so that they concentrate their attention on all things that
are unclear or insufficiently explained. The improved documents are then commented on by the
instructor,

Phase [1, first modification of the system, is almost a repetition of the previous one, with
new requirements added to the problem specification. This time students work not on the new code,
but introduce modifications to their own, earlier developed, programming artifacts. This phase is

then repeated as many times as there is time during the semester.

3.2 The particular project
During the Spring 1995 semester three groups of 3 students have been working on the project.
Following the project description above they were able to create three packages with the following
Alfe parameters: initial population, aging, movement, gender, and food consumption parameters.
In populating the initial grid, the 3 groups chose different approaches. Group 1 allowed
the user to specify the number of males and females to be randomly placed on the grid. Group 2
did not give the user any control over the initial population, instead 25% of the initial grid was
randomly populated with males and another 25% of the grid consisted of females. Group 3 allowed
the user to give the percentages of the grid to be populated with males and females independently.
Groups 1 and 3 set the age of the initial population at 0 generations. Group 2 set the age randomly

between | and 10 generations. Groups 1 and 3 set the initial food concentration at 10 units per

55

cell, while Group 3 randomly filled each ccll with food at concentrations ranging from 1 to 10
units.

Rules for aging and food consumption varied slightly for all three groups. Groups [and 3
incremented the age of each organism by 1 unit each generation, while group 2 incremented the age
of each organism by 1 unit every 10 iterations. Group I was the only group to incorporate an user
changeable age limit specifying a maximum lifespan for the organisms. The rate of food
consumption was the same for all three groups: each organism consumed 1 unit of food each
geaeration. The regeneration of food in an unoccupiced cell was handled by a different set of rules
in each group. Group 2 allowed an unoccupied cell to generate 1 unit of food after it had remained
empty for 3 generations, while Group 3 required an unoccupied cell to remain empty for 5
gencrations before regeneration. Group 1 allowed an unoccupied cell to regenerate ! unit of food
every generation. The occurrence of food regencration was restricted by requiring the unoccupicd
cell’s current food supply to range between 1 and 9 units.

Rules for movement consisted of movement probability and type of movement. Movement
probability is the chance that movement will occur. Groups 1 and 3 allowed the user to change the
movement probability while Group 2 set the movernent probability at 100%. Group 2 provided the
user with the choice between random movement and random movement with age and food
restrictions. The random movement option would randomly choose a neighboring cell for the
organism to enter. The age and food restriction option specified that the age of the moving
organism could be at most 3 and the food supply of the organism’s current cell must be less than 5
units. Group 1 chosc to incorporate random movement similar to Group 2. Group 3 tried to give
the organisms “intelligence”™ by providing them with the ability to search for an empty neighboring
cell with a greater food supply. Groups | and 2 avoided conflict resolution since organisms did not
move simultaneously, but one at a ime. Group 3 allowed simultaneous movement of ali

organisms, so this group created a method for resolving movement conflicts. When two or niore

36

organisms tried to move into the same cell, a strength test was applied to determine the victor.
Strength consisted of an organism’s age basc, maturity boaus, and luck. Age Base was awarded on
the age of an organism: Young (10), Adolescent (25), Primer (35), Elder (20), and Ancient (15).
Maturity Bonus reflected the amount of increased wisdom acquired with age and the condition of
one’s reflexes which are required for battle. For the Young, Adolescent, and Primers, a maturity
bonus was randomly selected from 1 through 10 which increased their strength. The maturity
bonus for the Elder and the Ancient decreased their strength by an amount ranging between 1 and
5. Luck was not age dependent, thus each age group could achieve an additional amount of
strength due to luck which was randomly chosen from the range 1 through 20. The organism with
the greatest strength moved to the new cell while the other opponents remained in their previous
cells. This strength test was applicd until a triumphant winner was determined.

Restrictions placed on the rules for survival were either age-based or number-of-neighbors-
based. All three groups required that the food supply for each organism could not be zero. Group |
created an age-based rule for survival which required all organisins 1o be less than their maximum
age. Group 2 created a number-of-neighbors-based rule for survival that restricted the number of
neighbors per organism to 1, 2, or 3 neighbors. Group 3 restricted the number of neighbors of
surviving organisms to 2 or 3.

All the groups incorporated similar rules for birth. Each established a 100% birth
probability where 50% of the births would be male and 50% would be female. Births had to occur
In an unoccupied cell with a nonzero food supply. The groups differed in the neighbor requirement
for birth. Group I had a requirement of 1 or more neighbors, Group 2 had a 3 neighbor
requirement without any stipulations on the gender of the neighbors, and Group 3 required 1 male

and 1 female only.

57

3.3 Software Integration

During the Fall 1996 Semester a software integration project was undertaken. The merging
process was accomplished using the bottom up design which begins with the individual subroutines
and then builds the program up. Additional subroutines had to be added in order to give the user
more control of the rules and the initial set up of the game.

For the Initial Population, the user was allowed to determine the density of the initial food
supply and set the initial age of the population. Food regeneration rules were changeable such as
the number of steps necded for an unoccupied cell to produce 1 unit of food. If a cell’s food
supply became exhausted, the user could establish the length of time required for the food in the
cell to regencrate. In addition, the user was allowed to establish a maximum level of food to
prevent cells from producing an infinite amount of food.

Two additional types of movement rules were added to the user’s sclection: Companion
Based Movement and Age Based Movement. Companion Based Movement admitted a requirement
on the number of neighbors surrounding a potential cell. Movement which depended on the age of
the immediate neighbors of an empty cell was accessible through the Age Based Movement option.
This option allowed the user to establish age groups which simulated the congregation of peers.

The probability of movement was also changeable by selccting Age Based Probability or Random
Probability. Age Based Probability made it possible for the user to set different probabilitics for
various age groups. A randomly chosen probability of movement for each iteration was the other
option.

The user was allowed to manipulate the survival and birth rules by sctting restrictions on
age, neighbors, and/or food. For example, a requircment concerning the number of neighbors in
conjunction with the age of these neighbors could be set up as a survival rule. Child Care was
another option which required the parents and child to remain immobile until the child reached the
age of adulthood. The age of adulthood is a user determined paramcter.

58

The next step in software integration was establishing the effects of each subroutine on the
others as well as connecting the subroutines by way of parameter lists. The final stage for the
construction of the software was including all the user rules into the subroutine which executes
cach life generation. The life subroutine controlled the life cycles by regulating movement,
survival, birth, food, and age with the rules established during the set up by the user.

A large number of software engineering type difficulties have been encountered. Most of
them were related to the maniputation of a large software artifact. The final code had increased
from 4,823 lines to 9,797 lines, or double in length. Merging multiple programs is complex due to
various programming styles, variable names, and diffcring data structures. All three of the
programs were different even though they progressed in a similar manner. A detailed design had to
be constructed and followed so that the majority of the existing subroutines remained functional
within the large software package. Varied programming styles as well as defined types slowed the
merging process down. Many subroutines had to be altered so that the subroutines could be
reused, but others were not salvageable and had 1o be rewritten more efficiently. The main
emphasis of this artificial life package was expanding the user interface 1o create a program which
could be tailored to each user. Due to the dependencies of the subroutines upon each other and the
generalized user control, the number of variables and the parameter lists increased dramatically.
With the broad amount of variables came the increased compilation time due to undeclared
variables. One reason is misspelling since variable names were between $ and 15 characters in
length to allow for descriptive names to aid in using the broad range of variables in the large code.
Debugging also became more tedious due 10 the number of variables and length of code.
Initializing and resctting variables was a debugging error which arose most often and detection of
this error was time consuming. Array indices which were out of range and infinite loops were other

run-time errors that needed to be debugged. The most constraining error involved the memory

59

allocation of the network. Memory had to be increased in order to run the program for multiple

generations,

4. Results

The final phase is experimentation with the program parameters to determine which life
characteristics are most and least influential upon the survival of the popuiation, The first
experiments involve changes in initial population parameters while keeping all other parameters
constant. The same process is followed for each of the other parameters: age, food, movement,
survival, birth, and death.

Results from experimentation with parameters durning multiple runs can be gencralized by
the effect that they had on the dynamics of the population. For example, manipulation of necighbor
parameters for birth and survival could affect the population both by creating overpopulation or a
population consisting of isolated organisms. Overpopulation and isolation had the most dramatic
effect on the lifc expectancy of the population by destroying the organisms in 10 to 50 generations.

Food shortage could be a result of overpopulation or food parameters. With
overpopulation the number of unoccupicd cells decreased which kept food regencration to a
minimum, thus the food density could not sustain the population. Food parameters which lead to a
food shortage are a time delay greater than 10 iterations for the production of 1 unit of food and/or
a time of unproductiveness greater than 15 gencrations. When food shortage and overpopulation
were used in conjunction, the population would survive between 5 and 15 gencrations. When
overpopulation, isolation, and starvation were a -oided by sctting the survival parameters to range
from 2 to 3 neighbors and the birth parameters to 2 neighbors or 3 neighbors, the population was
able to sustain itself in a cyclic pattern or a stable population of about 30% occupancy. A sparse
and a dense population were able to stabilize themselves under these conditions within 15
generations. Parameters such as grid size, movement, over abundance of food, and age restrictions

60

did not affect the length of the population survival in a noticeable way. Companion Movement did
slow the dying process by enabling the organisms to remain in suvitable locations, but death was

inevitable since a patchy food supply developed.

5. Conclusion

Software enginecring is a field which is evolving according to the needs of the users,
therefore the software engincers must be able to produce applicatioﬁs which meet the needs of the
users within a short period of time. Only if we provide students with the appropriate training will
industry needs be satisfied. The presented project here is one of the possibilities for addressing
such needs.

Our experiments show that even a set of rules create ad hoc leads to the development of an
Artificial Life simulation package that relatively well matches the real population dynamics
relatively well. We have found that overpopulation, isolation, and food shortage are most
damaging to any population. Future work will involve an artificial life simufation based upon real
population cycles in snowshoe hares. Modifications will be made to the current software package
to mimic the 10 year cycles in hare populations (Krebs et al., 1995). Predators will be introduced

in this simulation in order to understand the effects that they have on the hare population cycles.

Acknowledgment

This paper was prepared under the guidelines of the ARPA grant {via USAF Phillips Laboratory)

F29601-94K-0046.

References

Ditlea, S. (1994). Imitation of life, Upside, November 1994, 6(11), 48-60.

61

Gardner, M. (1970). The Fantastic Combination of John Conway’s new solitaire game “life,”

Scientific American, October 1970, 120-123.

CLUff, D., Husbands, P., Meyer, J-A. and Wilson, S, W., (1994). From Animals to Animats 3, MIT

Press, Cambridge.

Krebs, C.J., S. Boutin, R. Boonstra, A R_E. Sinclair,] N.M. Smith, M.R.T. Dale, K. Martin, and
R. Turkington, (1995). Impact of food and predation on the snowshoe hare cycle, Science, 269:
1112-1115.

Jonces, C. (1995). Gaps in Programming Education, Computer, 28(4), 70-71.

Khajenoori, S. (1994). Process-Oriented Software Education, /EEE Software, 99-101,

Lawlis, P.K. and Adams, K.A. (1995). Computing Curricula vs. Industry Needs: A Mismatch,

Proc. 9th Annual ASEET Symposium, Morgantown, 5-19.

Paprzycki, M., and Zalewski, J, (1996). Software Development Project in CS 11, in preparation.

62

	sig.BMP
	sig0001.BMP
	sig0002.BMP
	sig0003.BMP
	sig0004.BMP
	sig0005.BMP
	sig0006.BMP
	sig0007.BMP
	sig0008.BMP
	sig0009.BMP
	sig0010.BMP
	sig0011.BMP
	sig0012.BMP

