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COMMUNICATIONS

FINITE NUMERICAL SEQUENCES AS A
MATHEMATICAL MODEL OF DYNAMIC
STATES IN ELECTRICAL RLC CIRCUITS

Piotr Kowalski — Karol Krawiec
∗

The paper deals with methods of finding a solution in transient states. The method, which is the main subject of our

investigations, describes an electrical circuit using the finite numerical sequences [q0, q1, ..., q2n−1] , representing the charge

in this circuit with strictly defined rules and properties. The values of this sequences are independent of time and strongly

connected with a circuit topology.
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1 INTRODUCTION

The paper deals with three methods of finding a so-
lution in transient states. The first operator method is
based on the Laplace transform. The solution of the
model is the transfer function T (s) . The second method
is based on differential equations, as a result time func-
tions describing the current, are presented. The third
method, which is the main subject of investigations, de-
scribes an electrical circuit using the finite numerical se-
quences [q0, q1, ..., q2n−1] , representing the charge in this
circuit with strictly defined rules and properties. The val-
ues of this sequences are independent of time and strongly
connected with a circuit topology. The solving algorithm
can be translated into any programming language or into
simple microchips.

2 METHOD USING THE

LAPLACE TRANSFORM

In this method, the electrical circuit consisting only of
resistors, coils, capacitors and of course a power supply
is presented as a “black box” with an input and output.
Some input signals are attached, and the most impor-
tant information is what response of this circuit can be
obtained on the output. The relationship, the so-called
transfer function between the input and output signals is
given in the Laplace domain as a fraction with the output
signal as a numerator and the input signal as a denomi-
nator. The input signal is attached, all of the properties
of the circuit are hidden and represented by the transfer
function. As the output, the signal in the Laplace domain
is given.

Let the transfer function be defined by the formula (1).
Yn−1(s) is the (n − 1)-order polynomial of the output
signal in the Laplace domain, and Un(s) is the n -order
polynomial of the input signal in the Laplace domain.
The number n is the order of the model.

Tn(s) =
Yn−1(s)

Un(s)
=

∑n−1
i=0 bnis

i

∑n
i=0 anisi

=
bnn−1s

n−1 + bnn−2s
n−2 + ...+ bn1s+ bn0

annsn + ann−1sn−1 + ...+ an1s+ an0
(1)

where: ani, bni ∈ <
+

The transfer function allows to find the response of the
circuit. In our investigations, typical elements with their
own, strictly defined transfer functions are used. When
the electrical circuit contains many elements, finding the
main transfer function is necessary. It can be found by
grouping all of transfer functions with well defined rules
and properties. Very often in the investigations only two
of elementary properties are used. When the main trans-
fer function is found, the output can be obtained in a
simple way — the transfer function should be multiplied
by the input signal. Of course, the result is given in the
Laplace domain. In order to get the result in the time
domain, inverse Laplace transform is used.

3 METHOD USING TIME FUNCTIONS

This method is in a sense equivalent to the method
which uses Laplace transformation. For frequency chang-
ing electrical circuits there is no definition of a transfer
function in the time domain. In this method, linear elec-
trical circuits only with resistors, coils, capacitors and
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power supplies are considered. There are the input sig-
nals as time functions, so differential and integral equa-
tions are needed. Because of using differential and integral
equations, the solutions are sometimes hard to find, and
from this point this method of consideration the electrical
circuits is used in more simple cases.

4 METHOD USING FINITE

NUMERICAL SEQUENCES

Finite Numerical Sequences are the main subject of
this paper. By this method, in order to analyze electrical
circuits, special transforms are presented. The method
of analyzing contains only four mathematical opera-
tions: adding, subtraction, multiplication and division.
Let fn(t) denote the original of a transfer function. It
can be presented as Maclaurin’s sequence:

fn(t) =

∞
∑

k=0

cnktk =

∞
∑

k=0

1

k!
Anktn (2)

The coefficients Ank are the functions of all polynomi-
als coefficients, which are the transfer function (formula
(3)).

Ank(an0, an1, ..., ann−1, bn0, bn1, ..., b) (3)

On the other hand, the coefficients ani and bni are
the functions of all coefficients Ank :

ani = ani(An0, An1, . . . , Ank, . . . )

bni = bni(An0, An1, . . . , Ank, . . . )
(4)

There is a conclusion that there are some relation-
ships between Ank and ani and bni . These relationships
allow to find the way from the original of the transfer
function to the transfer function and inversely. First let
us consider transformation from the time function to the
transfer function. According to the theory of symmetrical
polynomials [1] it can be proven that relationships (4) for
the few first orders of the model are:
for n = 1

(

b10

b11

)

=

(

1 0
0 −A10

)−1

·

(

A10

A11

)

, (5)

for n = 2







b21

b20

a21

a20






=







1 0 0 0
0 1 −A20 0
0 0 −A21 −A20

0 0 −A22 −A21







−1

·







A20

A21

A22

A23






, (6)

for n = 3















b32

b31

b30

a32

a31

a30















=















1 0 0 0 0 0
0 1 0 −A30 0 0
0 0 1 −A31 −A30 0
0 0 0 −A32 −A31 −A30

0 0 0 −A33 −A32 −A31

0 0 0 −A34 −A33 −A32















−1













A30

A31

A32

A33

A34

A35















(7)

etc.

In that transformation, there is a very important as-
sumption that the determinant of the so-called decision
matrix is not equal to zero. The presented transforma-
tion gives the possibility to look at the circuit from the
point of view of synthesis. There are some problems in
which only the time response function is given and we
are looking for parameters describing the circuit. One of
this is the transfer function. The presented transforma-
tion is very useful because the behaviour of the simplified
model is as exact as the real model. This method is also
useful in the investigations of the transient states, where
the most important are the first time periods of response
of the circuit. In practice, all numerical calculations are
connected with some errors. The source of these errors is
that we lose some part of information by calculating in a
finite range whereas the mathematical model consists of
an infinite number of desired elements or calculations.

Now let us think about the inverse transformation:
from the transfer function to its original in the time do-
main. This inverse transformation is quite equivalent to
the first one. It can be also proven, according to the the-
ory of symmetrical polynomials, that relationships (3) for
the few first orders of a model are:
for n = 1

(

A10

A11

)

=

(

1 0
a10 0

)−1

·

(

b10

0

)

(8)

for n = 2







A20

A21

A22

A23






=







1 0 0 0
a21 1 0 0
a20 a21 1 0
a20 a21 1







−1

·







b21

b20

0
0






(9)

for n = 3












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A30

A31

A32

A33

A34

A35















=












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1 0 0 0 0 0
a32 1 0 0 0 0
a31 a32 1 0 0 0
a30 a31 a32 1 0 0
0 a30 a31 a32 1 0
0 0 a30 a31 a32 1










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−1








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0
0
0















(10)

etc.

This transformation allows to look at the electrical
circuit in the time domain. It is a “user friendly” domain
because it can easily visualize the considered problem.

The main advantages of both presented transforma-
tions are:

– the fact that all calculations are performed with finite
numerical sequences and, which is the most important,
without losing any information,

– the presented transformations are very accurate,

– the way to get the results is fast and simple.
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5 ALGEBRA OF FINITE SEQUENCES

Let us have: X , Y finite sequences, q0, . . . , qs ,
w0, . . . , wr , items of decision matrix D (7). Let a be a
real number. The number of items in each sequence must
be always even.

Definition of zero-item (null sequence):

0 or [ ] . (11)

Definition of multiplication of a finite sequence by a real
number:

a · [q0, q1, . . . , qs] = [a · q0, a · q1, . . . , a · qs] (12)

Definition of finite sequence addition:
addition consists of three calculations:

– Expanding each sequence to r + s items,

Xexpand = [q0, q1, . . . , qs, qs+1, . . . , qs+r]

Yexpand = [w0, w1, . . . , ws, ws+1, . . . , ws+r]
(13)

– Elementwise addition — as a result a new s + r ele-
ments sequence is obtained:

Xexpand+Yexpand = [q0+w0, q1+w1, . . . , qr+s+wr+s]
(14)

– Contraction. New shorter sequence Xexpand + Yexpand

is needed.

X + Y = [c0, c1, . . . , c2k−1] 2k − 1 < r + s . (15)

The contraction and expanding operations are describ-
ing in [1].

Definition of derivative

The first order derivative of X is denoted by X ′ . If
X = [q0, q1, . . . , q2s−1] , then its derivative is

[q0, q1, ..., q2s−1]
′ = [q1, ..., q2s−2] . (16)

Derivatives of higher orders are based on the definition
of the first derivative of a finite sequence:

X(n) =
(

X(n−1)
)′

n = 1, 2, 3, . . . , X(0) = X (17)

6 CONNECTION OF FINITE

SEQUENCES WITH TIME FUNCTION

For time function, the derivative in point zero is very
well known because it is an algorithmic operation. Items

f(0), f ′(0), f ′′(0), . . . , f (2n−1)(0) are elements of finite se-
quence. The most important question is how many items
are needed. To answer this question, a decision matrix is
necessary. The first element which makes the determinant
of the decision matrix equal to zero, is left.

Examples of time functions:

f(t) = 0←→ [ ]

f(t) = 1←→ [1,0]

f(t) = t←→ [0,1,0,0]

f(t) = t2 ←→ [0,0,2,0,0,0]

f(t) = sin(t)←→ [0,1,0,-1]

f(t) = e−t ←→ [1,-1]

f(t) = e−2t ←→ [1,-2]

f(t) = e−t sin(2t)←→ [1,1,1,-2,1,0,1,-2,1,0]

(18)

7 EXAMPLE

In this serial circuit, the resistor (R = 5Ω), capacitor
(C = 1/6 F) and coil (L = 1 H) are given. The capacitor
C and the coil L have their initial conditions: the current
I in the coil and the charge q on the capacitor. Knowing
that the charge is the first derivative of the current, a
change of the initial condition to a charge function is
needed. The equation of the circuit is given:

Lq′′ +Rq′ +
1

C
q = 0

q(0) = 2 and q′(0) = 3 (19)

In this example initial conditions have a special func-
tion. After switching on a jumper there are a source of
power and input signal. The current in the circuit as a re-
sponse is needed. The following formula shows how many
elements in sequence are wanted. K =number items =
2∗(order diff. eq. + order of supply). In this example K =
2∗ (2+0) = 4 items. The first and second elements of the
sequence are known from the initial conditions q(0) = 2,
q′(0) = 3, next elements are computed from differential
equation (19): q′′(0) = −5q′(0)−6q(0) = −27. The fourth

and fifth element are q′′′(0) = [q
′′

(0)]
′

= −5q
′′

−6q
′

= 117

and qIV (0) = [q
′′′

(0)]
′

= −5q
′′′

− 6q
′′

= 423. In this way
the full sequence is given: [2, 3,−27, 117] .

7.1 Transfer Function

By using formula (7), the decision matrix is made,
but to check the order of the model higher determinant
unequal to zero must be made. Decision matrix [2]

D1 =

(

1 0
0 −q1

)

=

(

1 0
0 −2

)

,

detD1 = −2,

D2 =







1 0 0 0
0 1 −q0 0
0 0 −q1 −q0

0 0 −q2 −q1






=







1 0 0 0
0 1 −2 0
0 0 −3 −2
0 0 −27 −3






,
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detD2 = −63,

D3 =















1 0 0 0 0 0
0 1 0 −q0 0 0
0 0 1 −q1 −q0 0
0 0 0 −q2 −q1 −q0

0 0 0 −q3 −q2 −q1

0 0 0 −q4 −q3 −q2















=















1 0 0 0 0 0
0 1 0 −2 0 0
0 0 1 −3 −2 0
0 0 0 27 −3 −2
0 0 0 −117 27 −3
0 0 0 −423 −117 27















,

detD3 = 0,
(21)

From formula (10), by using the inverse of the decision
matrix the coefficients of the transfer function are given.







b1

b0

a1

a0






= D−1

2







q0

q1

q2

q3







=







1 0 0 0
0 1 −2 0
0 0 −3 −2
0 0 −27 −3







−1

·







2
3
−27
117






=







2
13
5
6






(22)

The transfer function is based on coefficients from (22)

Q(s) =
b1s+ b0

a2s2 + a1s+ a0
=

2s+ 13

s2 + 5s+ 6
. (23)

7.2 Time Function

Each time function can be presented as a sum of in-
finite elements which are decreasing like Maclaurin’s se-
quence.

q(t) = q0 + q1t+
q2

2!
t2 +

q3

3!
t3 + . . .

q(t) = q0 + q1t+
q2

2!
t2 +

q3

3!
t3 = 2 + 3t−

27

2
t2 +

117

3!
t3 .
(24)

From classical calculation based on inverse Laplace trans-
form (L−1) the time function is given:

L−1[Q(s)] = q(t) = 9e−2t − 7e−3t . (25)

Using the definition of Maclaurin’s sequence for exp(t)
each element of (25) can be computed.

9e−2t = 9
(

1− 2t+ 4t2

2 −
8t3

6

)

−7e−3t = −7
(

1− 3t+ 9t2

2 −
27t3

6

)

(26)

As a result of the last operation, the “finite” time
function like (24) is given. In this part of calculation some
kind of approximation is presented but on the other hand
all information about the circuit is saved. Coefficients
from the time function are necessary to make a finite
sequence [3] or a transfer function describing our circuit
without any approximation. The coefficients q4, q5 . . . are
linear combination of q0 to q3 , this observation is called
a fractal effect [1].

8 CONCLUSIONS

The finite numerical sequences can be used to solve lin-
ear differential equations. This method is very useful as a
substitute for finding Laplace Transform. In classical way
integration and differential operations are needed. Solv-
ing some of them in analytic calculations are not possi-
ble. In this model only few operations on matrix are uses:
adding, subtracting, inverting, checking determinant and
multiplying by a number or by a vector. This method can
test the initial phase in the transient states. The transient
states are interesting in the first phases after switching on
or switching off the current in a circuit. These algorithms
can be implemented in assembler programs, which can
check parameters of a circuit on-line.
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