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Abstract. The present paper deals with the time-optimal positional control for objects whose dynamics are described
by a random differential inclusion with discontinuous nght-hand side. Considerations include the speed limitation
problem.. The existence and characteristics of the almost certain time-optimal control, proved in recent works, are
commented upon. In compliance with the results obtained, the switching curve, well-known from the (deterministic)
classical case, has been "blurred” by the random factor introduced here to the switching area. Empirical examinations
confirm numerous advantages of the control systems designed, especially in the area of robustness.
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Résumé. Le présent article étudie le contréle de position optimal en temps des objets dont la dynamique est décrite
par l'inclusion différentielle al€atoire avec le coté droit discontinu. Ces considérations incluent la question de la

limitation de la rapidité. L'existence et la caractéristique du contréle optimal en temps presque sur, démontrés dans
des travaux recents, sont commentees. En accord avec les résultats obtenus la courbe de commutation, bien connue,
du cas classique (déterminuste), a été "délavée” par l'introduction du facteur aléatoire a l'aire des commutations. Les
expériences emptriques ont confirmés plusieurs avantages du systéme de contréle projeté, spécialement dans le cadre

de la robustesse.

1. INTRODUCTION

The dynamics of a broad class of time-optimal
controlled objects are described by the following

differential inclusion, given below in the 'op'erator
form:

ye H+u , (1)

where u is a bounded control function, y denotes the
position of the object, and the function / represents
a model of motion resistances. If one omits this
factor, i.e. when A =0, formula (1) naturally
expresses the second law of Newtonian mechanics
for straight-line or rotary motion. In many practical
problems the speed y has to be limited.

The simplest example of those objects consists of
various industrial automata and robots, reversing
mills as well as many other plants operating mainly
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In particular
mechanisms. Such devices are called positional.

through a change of position

The ume-optimal stabilization of system (1), or the
task of reaching the equilibrium  state
y(t) =y(t) =0 in a minimal and finite time, will be
considered 1n this paper.

The essential element of model (1) 1s the
multivalued (set-valued) function H describing
motion resistances. For the majority of practically
appearing types of these resistances, that function
can be expressed in the following form:

H(pt),y(t),t) =v(p@),y(t).t) F(y(t)) ,
(2)

where v denotes a real bounded continuous function,
and F is a real bounded piecewise continuous
function, additionally multivalued in the points of



discontinuities. (For example, suppose for the sake
of illustration the simplest form of this function

F(p(£))=SGN(v(1)) =

1 if y(t)>0 (3)
=<[=s.s] if y(£)=0
-1 if y(t)<0 ,

where the parameter s> 1 1s connected with static
friction.)

In many technical problems, the form of the applied
model of motion resistances has great influence on
the complexity or even the feasibility of a successful
analysis. In the model adopted here, it is assumed
that the function v introduced in equation (2) is the
realization of a given stochastic process V' with
almost all the realizations being continuous and
jointly bounded. Therefore, the dependence of the

x(t) € g(x(t),t) 4)
with the initial condition
x(to) - xo 9 (5)

where g: R"x7T = P(R"), P(A4) denotes the set of
subsets of 4, and x, € R". The function x: 7 —> R”
absolutely continuous on every compact subinterval
of the set T, 1s a solution of differential inclusion
(4):

— -1n the Caratheodory sense (C-solution), if it

fulfills inclusion (4) almost everywhere in 7,

— 1in the Filippov sense (F-solution), if

x(t)e F [g](x(t),t) almost everywhere in 7,
(6)

where the operator F is defined as

function v on y(t), y(t) and ¢, 1s replaced by the

dependence on a random factor. Moreover, such a
model also regards as probabilistic uncertainty the
dependence of motion resistances on a number of
other factors, not only y(t), y(¢#) and ¢, but also
those which are usually omitted in the deterministic
approach, due to the necessity to simplify the model.
The probabilistic concept proposed here also
considers perturbations and noise occurring in the
system.

The present paper constitutes a continuation of the
work described in (Kulczycki, 1992, 1993)
additionally supplemented with the task of the speed
limitation (Kulczycki, 1995).

2. MAIN RESULTS

First, some notions used in the following will be
made more precise.

Let 7' be an interval with nonempty interior, {, € T,
and R denote the real space.

- Consider the deterministic differential inclusion

F [g](x(t),t) = | ] conv[g((x(t)+eB)\Z t)] .
ZCcR":
m(Z)=0

(7)
B denotes the open unit ball in the space K", m is
the Lebesgue measure, and conv[D] means the

convex closed hull of the set D. The C- or
F-solutions of deterministic differential inclusion (4)

with initial condition (5) are unique, if all C- or
F-solutions, respectively, are identically equal
functions. '

Let (€2, Z, P) be a probability space.

Suppose the random differential inclusion

X(o,t) e Glo,X(o,0),t) ,

with the 1nitial condition
X(w,t,)=X,(w) foralmostallweQ , (9)

where G: QxR xT—->P(R") and X, 1s an
n-dimensional random variable defined on
(0, Z,P). An n-dimensional stochastic process X
defined on (Q,%,P) and T, is an almost certain
C-.or F-solution of random differential inclusion (8),
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if almost all its realizations are C- or F-solutions,
respectively, of the related deterministic differential
inclusions received at the fixed w e Q. Almost
certain C- or F-solutions of random differential
inclusion (8) with initial condition (9) are unique, if
all almost certain C- or F-solutions, respectively, are
equivalent stochastic processes (i.c. P({ we (:
- X(o.1) = X(o,1) }) =] forevery t €1).

Finally, let U, C {u T - SR,”’} denotc a set of
admissible controls. Consider the function
G:OQxR"xR"xT - 2(R") which defines the
dynamics of the random system submitted to the
control U

X(o,t) e Glo, X (0,1),U(a,b),t) , (10)

and initial condition (9). Then, the m-dimensional
stochastic process U° defined on (Q2,%,P) and T,
will be called an almost certain time-optimal control,
if almost all its realizations are time-optimal controls
for proper deterministic systems obtained from
dependencies (9)-(10) at the fixed w € 2.

The theorem proved by Kulczycki (1995), whose
thesis constitutes the solution of the time-optimal
positional stabilization problem considered here, will
be presented now.

Theorem
Let:

(@ t,eR, T=[t,»w), w>0, x, € Rx[-w,w],
and (2, X, P) be a complete probability space;

(b) origin of coordinates constitute a target set;

) U,= {u: T — [—l,l]} represent a set of
admissible controls, and X, =R x[-w,w] a set
of admissible states;

(d) V mean a real stochastic process defined on

(QQ,X,.P) and T, with almost all realizations

being continuous and fulfilling the boundary

condition V(w,t) e [v_,v.] for te T, where
g#lv_,v.]c(-1,1);

(e) [:R —[-1,1] denote a piecewise continuous
function fulfilling locally a Lipschitz condition
except at discontinuity points and z-f(z)=20
forevery ze R, and also F : R — SP([—l,l]) be
such that
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f(z) if z=#z

F i orez (11)

F(z)={

where F.

!

and z, is any real number, fori=1,2,...,k;

y

means a subset of the interval [-1,1]

(f) the random differential inclusion describing the

dynamics of the system submitted to the control
U

X (0,)=X,(o,t) (12)

X,(o,t) € U(a,t) - V(o,t) F(X,(w,t)) (13)
with the initial condition

"Xl(a),to)

}= x, foralmostall @ e ) , (14)
X, (w,1,)

be given.

Then:

(A) there exists an almost certain time-optimal
control U°;

(B) realizations of this control take on the following
forms:

-1
U(w,t) =<V (w,t) F(—w)

for t € [to,tl(a)))
Jor t € [tl(w)rtz(a)))

+1 Jor t € [tz,(ao),w)
(15)
or
+1 for t € [ty,1(@))
U(w,t) =<V (w,t) F(w) for t € [tl(w)atz(m))
-1 for t € [tz,(a)),oo) :

(16)

where 1, <, (@) £ t, (@) <o for every @ € £2;

(C) the above control generates a unique almost
certain C-solution;

(D) the above solution is also a unique almost
certain F-solution;

(E) the values of almost all realizations of these
solutions belong to the set X, forevery te 7. ®



In the proof of the above Theorem (Kulczycki,
1995), the set of admissible states X, has been
divided into the following disjoint subsets: Q,, O,
R_, R_, and the origin being a target (Fig. 1). First,

reaches the target in a minimum time ¢,, with
h<{i <t <t, <o, x(t,) e Q,, and if ¢ #¢, then
also x(t) € R x{—w} for t € [¢t,,£,]. Analogically, if
X, € R,, then there exist ¢, and £, such that the

let X, _, K_,, denote sets of all states from X, which
can be brought to the ongin by the control u = +1, if

v=v_ or v=yv,, respectively; analogically X__ and
K., for u=-1, if v=v_ or v=v_, respectively.

Next, let the following sets be given:

0. ={[x,x,]' € X, such that there exist
[x;,leT € K++ and [xln’xz ]T € K+- (17)

with x, <x, <x}

O ={[x,x,]" € X, such that there exist
[%,%,] € K_ and [x,x] e K, (18)

with x, <x, <x }

R, ={[x,x] € X,\Q such that there

| o | | (19)
exists [x,,x,] € Q with x, <x}
R ={[x,x,]" € X,\QO such that there (20)
exists [x,x,)' € O with x <x},
where O =0, U {[0,07}uQO_.
-1
X,

Fig. 1. Almost certain time-optimal control

Let now w € Q, or thereby V' (w,:) =v, be fixed. If
x, € R_ (Fig. 1), then there exist ¢, and £, such that
the solution generated by the control

-1 Jor t € [t,,1)
u’(t) =qv(t) F(-w) Jor t elt,t)
+1 for t € [t,,o0)

(21)
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solution generated by the control

+1 Jor t e [t,,4)
u’(t)=3v(t) F(w) for t e [4,t,)
=1 Jor t € [t,,0)

(22)

reaches the target in a minimum time ¢,, with
Lh<h <4 <t, <o, x(,)€ 0, and if £, #¢, then
also x(t)e Rx{w} for te[t,,]. Let x, e O
(F1g. 1); for particular @ € QQ the time-optimal
control can be of the form (21) or (22), with
additional conditions as above, or the following:

u’(t)y=-1 for t e [t,,0) . (23)
The case x, € O, is similar; the counterpart of
control (23) 1s

u’(t)=+1 for t € [t,,0) . (24)
The proof of the time-optimality of the above
described control functions «#° is based on the theory

of differential inequalities.

The function U°: Qx T — [-1,+1] defined by the
formula U°(w,-) = u®°, where u° was assigned above
at fixed w e Q, is a stochastic process and the
required almost certain time-optimal control
fulfilling the conditions formulated in the thesis of
the Theorem presented.

In assumption (d) of this Theorem there appears the

stochastic process V' with almost all realizations
being continuous and jointly bounded. The condition
of boundedness can be examined by one-dimensional

distributions of that stochastic process; however, the
Kolmogorov theorem formulates the sufficient
condition for the continuity of almost all realizations
of a stochastic process on the basis of properties of
distributions. the
requirements formulated above with respect to the
stochastic process / are thus mutually independent

two-dimensional Finally,



and identifiable on the basis of finite dimensional
distributions (Wong, 1971; Chapter II).

relation

The [v.,v.]c(-1,1) ensures the
controllability of the system. The assumption that
the function F fulfills Lipschitz condition has been

introduced to guarantee the uniqueness and equality

of C- and F-solutions.

The condition z-F(z) 20 included in assumption
(e) has been formulated only for the sake of clarity
of notation. At any rate, this inequality is physically
justified, because with positive values of the

stochastic process V it i1s consistent with the
property of the energy dissipation.

3. CONCLUSIONS AND APPLICATIONS

The switching curve y, well-known from the
classical case of time-optimal transfer of a mass
(Athans and Falb, 1966; Section 7.2), has been
generalized in the above Theorem to a switching
area Q (y=0 ' v_=v_=0 and w= ). Namely,
the function A, defined in the Introduction and
representing the model of motion resistances, has

been decomposed into two factors: F(3(z)) and
- V(w,t). The former, deterministic one, having only
insignificant influence on the complexity of the
theoretical analysis, made it possible to incorporate
the properties of discontinuity and multivalence of
friction phenomena. The latter one, thanks to its
probabilistic nature, includes among other things

approximations and identification errors (of the first
factor too), motion resistances dependence on
as well

position, tme and temperature,

perturbations and nois¢ naturally occurring in real

as

systems. The switching curve (even more general
than y, 1e. only wth the condition
v.=v, € (-1,1)) which is implied by the first,
determumnistic factor, has been "blurred" by the

second, random one to the switching area.

An almost certain time-optimal control ensures the

- realization of the minimum of the expected value of
the time for reaching a target set; however, it is
additionally dependent on the random factor, in
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practicec unknown a priori. The result of this
dependence is that the above control is difficult to
apply directly, but it constitutes a useful basis for the
creation of technical constructions of suboptimal
structures 1n which the direct dependency of the
control function on the random factor is eliminated.

Namely, according to the results of the Theorem
presented, the suboptimal feedback controller
function, independent of a random factor, can be
defined by the following formula:

if X(w,t)e R UR x(~x,~-w)
iff X(w,t)e R NRx[w-e,w]

. I X(e,t)e 0,

if X(o,1) e {[0,017]

if X(w,t)e O

if X(w,t)e RNRx[-w,—w+e]
if X(w,t)e R UR X (w,oo) ,

(25)

U*(X(@,t)) =

where ~-1<d, <1, 0<d, <1, and O0<e <w (Fig. 2).
In practice these values can be obtained heuristically.

the d would be
approximately equal to the mean of motion

Particularly,

parameter

resistances; however, the parameter 4, should be
close to 1. Only almost certain F-solutions occur in
the system thus obtained; C-solutions do not exist in
general case. These F-solutions are unique.

Q] Ix

.1 -1

I — ~—S 0K lwe
R
, .1

:

X4

+1

Fig. 2. Suboptimal control with constant parameters d,
and d,

The parameters d, and d, can be constant as in the
above concept, but they can also vary, increasing

continuously from the value 1-v, +v_ on the set
K, K ., from -1 on

+4+ 2
K_, to-l+v_-v_on

up to the value 1 on the set
K

-—— Y

and from -1 on the sets




R NRx{w}, RR_NARx{-w+e} to the value 1 on
R N x{w—e}, R_NRx{-w}, respectively (Fig.
3). This makes it possible to achieve a result similar
to the bicycle-racing track or bob-sleigh track, which
are horizontal on the intenor part., and become more
vertical the farther they go to the outside. The value
of the parameter d, should be equal to 1 even in the

neighborhood of the sets K., and X__, with the aim

the stochastic process V. Almost certain F-solutions
occur 1n a system thus designed. Moreover, the rules
for variations of the parameters d, and d, values
postulated above ensure also the existence of almost
certain C-solutions, equal to those F-solutions. Both
types of the above solutions are unique.

-]l
Ry nRx{w) : -1

R

Fig. 3. Suboptimal control with inconstant parameters d,
and d,

If the constraints of an actuator limit the control to
the extreme values of the admissible set, the results
of the Theorem may be modified according to the
physical observation that the influence of motion
resistances in both periods of time - before and after
a switching - can be averaged. Thus, after

of neutralizing the most unfavorable realizations of

performing a detailed analysis of the sensitivity of

the control system to the values of motion
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resistances, one can use elements of statistical
decision theory, where a loss function is connected
with extending the time for reaching the target if the
control switching has been too late or too early. A

detailed description of such a control structure will
be the subject of a separate publication. In the
general case there are no C-solutions in the system
thus obtained; almost certain F-solutions exist, and

they are unique.

The probabilistic concept of the control systems
designed in the present paper have been successfully
empirically verified (Kulczycki, 1995). It should be
underlined that the control system constructed
turned out to be only slightly sensitive to the
resulting from identification and
perturbations - robustness is a very valuable property
of random control systems.

Inaccuracy
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