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Abstract

In many applications of motion control, problems associated with imprecisely measured or changing load (a mass or a
moment of inertia) can be a serious obstacle in the formation of satisfactory controlling systems. This barrier compels the
designer to include various kinds of uncertainties in engineering solutions. The present paper deals with the time-optimal
control for mechanical systems with uncertain load. A fuzzy approach is used in the design of suboptimal feedback controllers,
robust with respect to the load. The methodology proposed in this work may be easily adapted to other modeling uncertainties
of mechanical systems, e.g. parameters of drive or motion resistance. c© 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

The history of time-optimal (minimum-time)
control dates back as to early as to the introduction of
optimization theory in control engineering. The ba-
sic solutions for mechanical systems are well known
and can be found in many textbooks (see e.g. [2,
Chapter 7.2] or [4, Section 8]). However, these so-
lutions rely on precise knowledge of the model of
a plant; therefore, the performance of the standard
time-optimal control is sensitive to any mismatches
and uncertainties that may occur. This is the reason
why many authors have recently taken up the problem
of robustness for such control systems; cf. in partic-
ular classical mode control [5,15], where the current
state of the art can be found in [1,3,14,16,17] and
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also in [7,10]. One of the main sources of uncertainty
in models of mechanical systems is the load, or, to
be more precise, the value of a mass or a moment
of inertia. In practice, this value may be given with
only the degree of precision allowed by measurement
errors. Moreover, in many applications (e.g. shifting
or transport tasks) this value is not subject to mea-
surement at all, but rather is grossly estimated on the
basis of an assumed value. In still other cases, the
load may be variable, in tandem with the consumption
of fuel or other substances used in the technological
process. In the present paper, this problem has been
solved by the introduction of the fuzzy type of uncer-
tainty, which makes it possible to propose new types
of control structures that take into account uncertain
load, without the undue complication of a control law.
Empirical tests have conDrmed the satisfactory perfor-
mance of the structures proposed, indicating a consid-
erable number of advantages, especially with respect
to robustness.
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2. Preliminaries and problem formulation

The dynamics of single-degree-of-freedom me-
chanical systems is described by the second law of
Newtonian mechanics: m Gx(t) = u(t), restated as

ẋ(t) = y(t); (1)

ẏ(t) =
1
m
u(t); (2)

where x, y are, respectively, the position and the
velocity of an object, m¿0 is its load (mass or mo-
ment of inertia), and u is a control (either a force or
a torque); let the value of the control be bounded to
the interval [−1; 1]. The problem considered in this
paper is that of a time-optimal control, i.e. minimiz-
ing the value of the cost functional J (u) = tT − t0,
where t0 and tT are an initial time and a time to
reach an assumed target state, respectively. Denote
the target state as [xT; yT]T ∈R2, and suppose that
[x+; y+]T and [x−; y−]T are unique solutions [8]
of diKerential equations (1)–(2) with the condi-
tion [x+(0); y+(0)]T= [x−(0); y−(0)]T = [xT; yT]T,
deDned on the interval (−∞; 0], and generated by the
control u≡+1 or u≡−1, respectively. Moreover,
consider

K+ = {[x+(t); y+(t)]T for t ¡ 0}; (3)

K− = {[x−(t); y−(t)]T for t ¡ 0}; (4)

therefore, these are the sets of all states which can be
brought to the target [xT; yT]T by the control u≡+1
or −1, respectively. Let also

R+ = {[x; y]T such that there exists [x∗; y]T ∈ K
with x ¿ x∗}; (5)

R− = {[x; y]T such that there exists [x∗; y]T ∈ K
with x ¡ x∗}; (6)

where K=K− ∪{[xT; yT]T}∪K+ (see also Figs. 1a
and 2a). The time-optimal control is then expressed
by the following formula:

u(t) = ur(x(t); y(t))

=




−1 if [x(t); y(t)]T ∈ (R− ∪ K−);

0 if [x(t); y(t)]T = [xT; yT]T;

+1 if [x(t); y(t)]T ∈ (R+ ∪ K+)

(7)

and the set K constitutes a switching curve. More
details are found in [2, Chapter 7.2] or [4, Section 8].

In the time-optimal feedback controller equations,
i.e. formulas (3)–(7), the parameter m intervenes,
because it inLuences the form of the trajectories
[x+; y+]T, [x−; y−]T and therefore also the shape of
the switching curve K . The analysis of the system’s
sensitivity to the value of that parameter (cf. also
[10]), which is brieLy presented below, is conse-
quently of great importance. Thus, the value of the
parameter m occurring in the object is still denoted
as m; however, the value used in feedback controller
equations will be marked by M ; accordingly, the
parameter M can be interpreted as an (indeDnite)
knowledge about the parameter m needed for the
purpose of designing the feedback controller.

The case where the second co-ordinate of the target
state is equal to zero, i.e. with yT = 0, will be consid-
ered Drst.

If M=m, the control is time optimal (Fig. 1a). The
state of the system is brought to the switching curve,
and being permanently included in this curve here-
after, it reaches the target in a minimal and Dnite time.

The trajectory representative for M¡m is shown
in Fig. 1b. As a result of the oscillations around the
target, over-regulations occur in the system. The target
is reached in a Dnite time.

Fig. 1c, however, shows the trajectories that are rep-
resentative when M¿m. After the switching curve is
crossed, sliding trajectories [13] appear in the system.
Here, too, the target is reached in a Dnite time.

In both of the last two cases, i.e. with M �=m, the
time to reach the target state increases from the optimal
more or less proportionally to the diKerence between
the values M and m.

The remaining case, yT �= 0, will now be presented.
If M=m, the control is time optimal, and the phe-

nomena are identical as before for yT = 0 (see also
Fig. 2a).

When M¡m, the trajectories occurring in the sys-
tem generate cycles (Fig. 2b); the target is not reached
in a Dnite time.
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Fig. 1. The case yT = 0: (a) M =m (optimal control), (b) M¡m, (c) M¿m.
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Fig. 2. The case yT �= 0: (a) M =m (optimal control), (b) M¡m, (c) M¿m.
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Finally, Fig. 2c illustrates the situation for M¿m;
even though some of the trajectories temporarily di-
verge from the switching curve in the part between
the axis x and the target state, ultimately the target is
reached in a Dnite time. Sliding trajectories exist on
the switching curve. The time to reach the target in-
creases as the diKerence M − m grows.

As can be seen, a discrepancy in the correct value
of the parameter m, besides increasing the time to
reach the target, results in various phenomena: slid-
ing trajectories, over-regulations, or limit cycles.
Yet in many mechanical systems, sliding trajecto-
ries can have a very negative impact on the actuator
life and excite vibrations in elastic transmissions,
hence they should be avoided. In other applications,
over-regulations may be inadmissible due to spatial
limitations beyond the target, or to considerations of
convenience. Finally, in the case yT �= 0, limit cycles
eKectively cancel the practical usability of the system.
In order to construct a controlling structure eliminat-
ing these hindrances, the fuzzy approach is used in
what follows. The number m will be treated as a fuzzy
set M with a bounded support. By its very nature,
such an approach oKers the possibility to describe
a complex reality with a precision that exceeds classi-
cal modeling techniques. Allowing for the degree of
discomfort resulting from the uncertainty introduced
into the model (note e.g. that the state of the dynam-
ical system becomes fuzzy, too), one may obtain a
feature that is essential in modern engineering: the
robustness of the designed control system.

Finally, let

(A) [x0; y0]T ∈R2 and [xT; yT]T ∈R2 represent the
initial and target states, respectively;

(B) M denote a fuzzy set with a support such that
supp(M) = [m∗; m∗]⊂ (0;∞);

(C) the diKerence equation

Xj+1 = Xj + Yj; (8)

Yj+1 = Yj +
1
M
Uj (9)

and the initial condition

[
X0

Y0

]
=
[
x0
y0

]
(10)

describe the dynamics of a system with the fuzzy
state [Xj;Yj]T, subject to the control Uj bounded
to the interval [−1; 1].

The goal of this paper is to design a suboptimal
(with respect to time) feedback controller, whose
values directly depend only on the valid state of
the object, obtained by a real-time measurement
process.

3. Main results

Consider fuzzy system (8)–(10). The real pa-
rameter m, natural in the second law of Newtonian
mechanics (1)–(2), happens to be the fuzzy set M
in the time-optimal control problem considered here-
inafter. A fuzzy set naturally cannot be used directly
to deDne a control in a real system. For this reason,
some elements of fuzzy decision theory [6] will be
used. Its aim is to make the optimal selection of
one element from all possible decisions on the ba-
sis of a membership function. Let the following be
given: a fuzzy set Z (with the membership function
�Z : R→[0;∞)) representing the state of reality, a
non-empty set D of possible decisions, and a loss
function

l : D × R→ R ∪ {±∞}; (11)

where the values l(d; z) can be interpreted as losses
occurring in the hypothetical case when the fuzzy set
Z is reduced to the real number z, and the decision
d has been made. Denote by lm : D→R∪{±∞} the
minimax loss function

lm(d) = sup
z∈supp(Z)

l(d; z): (12)

If additionally for every d∈D the integral
∫
R l(d; z)

�Z(z) dz exists, suppose also that the Bayes loss func-
tion lb : D→R∪{±∞} is deDned as

lb(d) =
∫
R
l(d; z)�Z(z) dz: (13)

Every element dm ∈D such that

lm(dm) = inf
d∈D

lm(d) (14)
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is called a minimax decision, and analogously, every
element db ∈D such that

lb(db) = inf
d∈D

lb(d) (15)

is called a Bayes decision. The procedures for obtain-
ing these elements are said to be minimax and Bayes
rules, respectively. The main diKerence between the
above rules appears in their interpretation. This results
directly from the forms of the functions lm and lb: the
“pessimistic” minimax rule assumes the occurrence of
the most unfavorable state of reality and counteracts
it, while the Bayes rule is more Lexible [10].

In the problem of the time-optimal control investi-
gated here, the parameter M∈D⊂ (0;∞) used in the
feedback controller equations will be treated as a de-
cision, and the number M occurring in system (8)–
(10) as the fuzzy state of reality. Loss function (11)
is deDned for (M;m)∈D×R, and its values are re-
lated to the time to reach the target, if the parameterM
was used in the feedback controller equations, while
hypothetically the value m is present in the object.

Once again the case yT = 0 will be considered Drst.
The following suggestions for the determination of the
value of the parameter M result from the sensitivity
analysis presented in the previous section.

If over-regulations can be allowed, it is worthwhile
using the Bayes rule with real values for the loss func-
tion. Such a choice is possible because the determina-
tion of the parameter M value that is either less than,
equal to, or greater than m allows the system state to
be brought to the target in a Dnite time. (However,
this time increases approximately proportionally to the
diKerence between the values M and m.)

If over-regulations are not allowed, this determina-
tion needs to be carried out on the basis of the minimax
rule, assuming inDnite values of the loss function for
M¡m. This enables over-regulations to be avoided,
because they occur only if M¡m.

Let now yT �= 0. The value of the parameter M
should be determined using the minimax rule with
inDnite values of the loss function for M¡m. This
choice is made in order to avoid the generation of in-
admissible limit cycles, which appear when M¡m.
If, however, this value is greater than m, the state of
the system is brought to the target in a Dnite time.
(Note that in the case yT �= 0, over-regulations cannot
be avoided; see Figs. 2a–c.)

Suppose, as an example, that loss function (11) is
described by the following formula:

l(M;m) =

{−p(M − m) if M − m6 0;

q(M − m) if M − m¿ 0;
(16)

where p; q∈R+∪{∞}, but only one of them can be
inDnite; in this case, let ∞· 0 = 0.

According to assumption (B) made in Section 2
and the above considerations, it is accepted that
D= [m∗; m∗].

With a Dxed value for the parameter M , the fol-
lowing results from the deDnition of the minimax loss
function (12):

lm(M) = max({−p(M − m∗); q(M − m∗)}): (17)

If p=∞, the inDmum of the function lm on the set D
is realized by

M = m∗: (18)

The above value constitutes the desired minimax de-
cision with inDnite values of loss function (16) for
M¡m.

In turn, since for the positive numbers p and q
the inequality 0¡p=(p + q)¡1 is true, there exists
a real number such that the following equation with
the argument M :

∫ M

m∗
�M(m) dm =

p
p+ q

∫ m∗

m∗
�M(m) dm (19)

is fulDlled. Denote this number as M̂ and observe that
it is unique because—as results from assumption (B)
formulated in Section 2—the function �M is positive
almost everywhere in the interval [m∗; m∗]. Now, by
inserting formula (16) into deDnition (13) one obtains

lb(M) =
∫ m∗

m∗
[q(M − m)�(−∞; M ](m)

−p(M − m)�[M;∞)(m)]�M(m) dm

= (p+ q)
∫ m∗

m∗
(M − m)

×
[(

1 − p
p+ q

)
�(−∞; M ](m)
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− p
p+ q

�[M;∞)(m)
]
�M(m) dm

= (p+ q)
∫ m∗

m∗
(M − m)

×
[
�(−∞; M ](m) − p

p+ q

]
�M(m) dm; (20)

where �A means the characteristic function of the set
A. In particular,

lb(M̂) = (p+ q)
∫ m∗

m∗
(M̂ − m)

×
[
�(−∞; M̂ ](m) − p

p+ q

]
�M(m) dm

= (p+ q)(M̂ −M)

×
∫ m∗

m∗

[
�(−∞; M̂ ](m) − p

p+ q

]
�M(m) dm

+ (p+ q)
∫ m∗

m∗
(M − m)

×
[
�(−∞; M̂ ](m) − p

p+ q

]
�M(m) dm; (21)

therefore, since M̂ fulDlls Eq. (19):

lb(M̂) = (p+ q)
∫ m∗

m∗
(M − m)

×
[
�(−∞; M̂ ](m) − p

p+ q

]
�M(m) dm: (22)

The combination of dependencies (20) and (22) yields

lb(M) − lb(M̂)

= (p+ q)
∫ m∗

m∗
(M − m)[�(−∞; M ](m)

− �(−∞; M̂ ](m)]�M(m) dm

= (p+ q)
∫ m∗

m∗
|M − m|[�(−∞; M ](m)

− �[M;∞)(m)][�(−∞; M ](m)

− �(−∞; M̂ ](m)]�M(m) dm (23)

and Dnally, elementary manipulations on the charac-
teristic functions give

lb(M) − lb(M̂) = (p+ q)
∫ m∗

m∗
|M − m|[�[M;M̂ ](m)

+ �[M̂ ; M ](m)]�M(m) dm¿ 0: (24)

The above dependence proves that the Bayes loss
function lb has the global minimum for M= M̂ . Fi-
nally, the value M that fulDlls Eq. (19) constitutes the
desired Bayes decision with real values of loss func-
tion (16). To calculate this value one can use the kernel
technique [11], according to the procedure presented
in [12], where neural networks have also been applied.

To summarize, for the loss function deDned by for-
mula (16), if the values of the parameter M are to be
determined according to the minimax rule with inDnite
values of the loss function forM¡m or the Bayes rule
with real values of this function, then they can be ob-
tained from dependencies (18) and (19), respectively.

Having the value M , the feedback controller equa-
tions can be calculated. Thus, the equations of the
switching curve K take on the form

x = −M
2

(y2 − y2
T) + xT for y ∈ [yT;∞); (25)

x =
M
2

(y2 − y2
T) + xT for y ∈ (−∞; yT]: (26)

Formula (25) deDnes the set K−, whereas dependence
(26) describes the set K+. The sets R− and R+ form
areas resulting from the section of the plane R2 by the
curve K , according to formulas (5) and (6). For the
sets K−, K+, R−, R+ obtained in this way, the value
of the control is simply deDned by the equation

Uj =




−1 if [Xj; Yj]T ∈ (R− ∪ K−);

0 if [Xj; Yj]T = [xT; yT]T;

+1 if [Xj; Yj]T ∈ (R+ ∪ K+);

(27)

where [Xj; Yj]T means the object state, obtained by
a real-time measurement process in the moment j.
Fig. 3 provide an illustration of the control structure
worked out here and the trajectories it generates.

The control designed above may lead to chattering,
i.e. frequent switchings between the two values +1
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Fig. 3. Fuzzy feedback controller (26) and trajectories: (a) yT = 0, (b) yT �= 0.

and −1 along sliding trajectories. As mentioned ear-
lier, in mechanical systems such a phenomenon should
be avoided, since it can have a negative impact on
the endurance of a device and user comfort. Under
the condition that the control may take any value in
the interval [−1; 1], this goal can be obtained by sub-
stituting a modiDed control law, rendered continuous
instead of discontinuous (27); cf. [10].

As before, the case yT = 0 will be considered Drst.
Initially, the next parameter M∼ can be introduced,
in addition to the constant M used so far, with the

condition M¡M∼. Apart from the sets K− and K+

deDned by formulas (3) and (4) for the parameter m
(or more precisely M), let similar sets K∼

− and K∼
+

be given for the constant M∼ (see Fig. 4a). DeDning,
moreover,

Q− = {[x; y]T such that there exists [x∗; y]T ∈ K∼
−

and [x∗∗; y]T ∈ K− with x∗ 6 x 6 x∗∗};
(28)
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Q+ = {[x; y]T such that there exists [x∗; y]T ∈ K+

and [x∗∗; y]T ∈ K∼
+ with x∗ 6 x 6 x∗∗};

(29)

Q = Q− ∪ {[xT; yT]T} ∪ Q+ (30)

and slightly altering formulas (5) and (6) to

R+ = {[x; y]T ∈ R2\Q such that there exists

[x∗; y]T ∈ Q with x ¡ x∗}; (31)

R− = {[x; y]T ∈ R2\Q such that there exists

[x∗; y]T ∈ Q with x ¿ x∗}; (32)

the time-optimal control can now be given by

Uj =




−1 if [Xj; Yj]T ∈ R−;

−z(−Xj;−Yj) if [Xj; Yj]T ∈ Q−;

0 if [Xj; Yj]T = [xT; yT]T;

z(Xj; Yj) if [Xj; Yj]T ∈ Q+;

+1 if [Xj; Yj]T ∈ R+;

(33)

where the function z : R2→R is continuously and
strictly increasing from the value −1 on the sets
K− and K∼

+ to the value 1 on the sets K∼
− and

K+. A suitable value for the parameter M∼ can
be determined heuristically; in general, the diKer-
ence M∼−M should be proportional to the delay
in the system. The trajectories generated by con-
trol (33) are shown in Fig. 4a for yT = 0. Thus,
this control law constitutes the continuated vari-
ant of control (27), which is of the “bang–bang”
type.

Now, the second case yT �= 0 will be elaborated.
As previously, in addition to the parameter M deDned
earlier, the further constant M∼ must be determined
heuristically according to the delay in the system, sub-
ject to the conditionM¡M∼. The concept introduced
in the preceding paragraph, expressed by formula (33),
should be applied here twice in a natural way. An

illustration of the control structure obtained, along
with the trajectories it generates, is provided in
Fig. 4b

The correct functioning of the suboptimal structures
described in this paper has been veriDed experimen-
tally using numerical simulation programs. The object
was a mechanical system (1)–(2) with a load whose
initial value was unknown (deDned at random) and
could change—likewise at random—with the passage
of time. Typical results obtained for control structures
(27) and (33) elaborated in this paper are shown in
Figs. 3 and 4, respectively. These results conDrmed the
correctness of the theoretical considerations presented
earlier, providing additional information regarding the
properties of the proposed control system. Two gen-
eral observations can be formulated. The Drst is that
shorter times to reach the target were achieved in those
situations where it proved possible to reduce a priori
the assumed support of the number m, i.e. when the
given diKerence m∗ − m∗ diminished, and so the un-
certainty of the load was reduced. The second is that
fulDlling the additional requirements, e.g. eliminating
over-regulations or sliding trajectories (by continuat-
ing structure (27)–(33)), results in a certain increase
in the time to reach the target set, and thus has a some-
what deleterious eKect on the basic operating goal:
time-optimality. It can easily be deduced, however,
that both of these observations are fully justiDed the-
oretically. The reduction of uncertainty as well as the
worsening of results with respect to the basic goal,
when one wishes to achieve other collateral goals in
addition, are natural and obvious features, and not just
in engineering.

Thus, the application of continuated structure (33)
made it possible to eliminate sliding trajectories, al-
beit at a cost of 1–3% increase in the time to reach the
target, as against the discontinuous one (27). In the
case yT = 0, if it is assumed that over-regulations are
undesirable, then they did not occur in the controlled
object, though the times to reach the target were also
up to 3% greater than those obtained without this con-
dition.

Finally, in the case yT �= 0—in accordance with
requirements—limit cycles deDnitively did not appear.

In conclusion, it should be strongly emphasized
that the control structures presented in this paper turn
out to be only slightly sensitive to the inaccuracy re-
sulting from identiDcation. Such robustness should be
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Fig. 4. Fuzzy feedback controller (32) and trajectories: (a) yT = 0, (b) yT �= 0.

emphasized as a very valuable property of uncertain,
especially fuzzy, control systems [9,10].

4. Generalizations

In Section 2, the problem addressed in this paper
has been formulated in a fundamental version for the
sake of clarity in the investigations. However, the ma-
terial presented here allows for the easy introduction
of generalizations to forms that are frequently used in
engineering applications.

First, let u introduced in Eqs. (1) and (2) mean the
moment obtained from the drive, which is treated here
as an inertial element with the constant T , i.e.

u̇(t) = − 1
T
u(t) + v(t); (34)

where v is a bounded control; for the engineering ba-
sics and interpretation, see e.g. [2, Chapter 7.4]. If
the number T is treated as the fuzzy set T, the con-
cept of the feedback controller presented here can
easily be generalized to a system constructed in this
way. An analysis of sensitivity to the value of the
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parameter T produces results similar to those pre-
sented in Section 2: namely, an overly large value used
for the feedback controller equations implies sliding
trajectories, while too small a value generates limit cy-
cles. Of course, due to the increase in the dimension
of the vector state to 3, the switching curve crosses
into the switching surface, and the analysis becomes
much more complex, but the basic principles remain
unchanged in terms of the fundamental concept pre-
sented earlier in this paper.

Once again, let the basis for considerations con-
stitute the fundamental system described at the
beginning of Section 2. If it is supplemented
with the discontinuous model of motion resistance
−w sgn(ẋ(t)), i.e.

m Gx(t) = u(t) − w sgn(ẋ(t)); (35)

where w∈ [0; 1), then under- or overestimating the
value of the parameter w will have the similar eKect
as raising or lowering the parameter m. In this case,
however, the engineering interpretation somewhat ex-
ceeds the strict mathematical formalization presented
to this point. The parameter w introduced above, in
fact, reLects the variety of physical phenomena, re-
duced to a single constant due to the necessity to sim-
plify the model. Then the issue here consists not so
much in approaching the unknown real value (since
no such thing exists), as in specifying the best possi-
ble characterization of these phenomena using a fuzzy
number W. This issue is discussed more fully in [10].
It proved possible to transfer directly many of the el-
ements introduced there to the material presented in
this paper.

With respect to these aspects also, the correct func-
tioning has been checked numerically, providing con-
clusions identical to those described at the end of the
previous section. The application of the concept pre-
sented in this paper simultaneously to diKerent causes
of uncertainty (i.e. load, inertia of a drive, motion re-
sistance) did not hinder the operation of the system: on

the contrary, over- and underestimations of diKerent
parameters showed a tendency to mutual compensa-
tion. In this situation, the increase in the time to reach
the target set was signiDcantly less than the simple
sum of such increases resulting from the uncertainty
of particular factors.

References

[1] J. Ackermann, Robust Control, Springer, Berlin, 1993.
[2] M. Athans, P.L. Falb, Optimal Control, McGraw-Hill, New

York, 1966.
[3] S.P. Bhattacharyya, H. Chapellat, L.H. Keel, Robust Control,

Prentice-Hall, Upper Saddle River, 1995.
[4] W.G. Boltianski, Mathematical Methods of Optimal Control,

Nauka, Moscow, 1969.
[5] A.F. Filippov, DiKerential Equations with Discontinuous

Righthand Sides, Kluwer, Dordrecht, 1988.
[6] J. Kacprzyk, Fuzzy Sets in System Analysis, PWN, Warsaw,

1986.
[7] P. Kulczycki, Almost certain time-optimal positional control,

IMA J. Math. Control Inform. 13 (1996) 63–77.
[8] P. Kulczycki, Some remarks on solutions of discontinuous

diKerential equations applied in automatic control, Indust.
Math. 46 (1996) 119–128.

[9] P. Kulczycki, Random time-optimal control for mechanical
systems, European J. Automation 33 (1999) 115–140.

[10] P. Kulczycki, Fuzzy controller for mechanical systems, IEEE
Trans. Fuzzy Systems 8 (2000) 645–652.

[11] P. Kulczycki, An algorithm for Bayes parameter identi-
Dcation, J. Dyn. Systems, Measurement, Control (special
issue. IdentiDcation Mech. Systems) 123 (4) (2001)
611–614.

[12] H. SchiHler, P. Kulczycki, Neural network for estimating
conditional distributions, IEEE Trans. Neural Networks 8
(1997) 1015–1025.

[13] J.-J.E. Slotine, W. Li, Applied Nonlinear Control,
Prentice-Hall, Englewood CliKs, NJ, 1991.

[14] C.-C. Tsui, Robust Control System Design, Dekker, New
York, 1996.

[15] V.I. Utkin, Sliding Modes in Control Optimization, Springer,
Berlin, 1992.

[16] A. Weinmann, Uncertain Models and Robust Control,
Springer, Vienna, 1991.

[17] K. Zhou, J.C. Doyle, K. Glover, Robust and Optimal Control,
Prentice-Hall, Englewood CliKs, NJ, 1996.


	Fuzzy controller for a system with uncertain load
	Introduction
	Preliminaries and problem formulation
	Main results
	Generalizations
	References


