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Abstract: The subject of this paper is the task of designing the
LMDS (Local Multipoint Distribution System) wireless broadband
data transmission system. The methodology of statistical kernel
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1. Introduction

The Local Multipoint Distribution System (LMDS) is applied by telecommu-
nications operators for wireless broadband data transmission purposes. The
dynamic development of information system applications observed in recent
years caused a considerable increase in such business activity, and a spectacular
example of that is a rapid increase in interest in gaining access to the Inter-
net. The LMDS system allows to connect the operator’s network node to the
buildings in which customers are located, without the necessity of constructing
an expensive cable infrastructure. Thus, data is transmitted between the base-
stations distributed across a metropolitan area, and those stations service the
regular connections with subscriber-stations located within the effective cover-
age of transceivers belonging to base-stations. Subscriber-stations installed on
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building roofs or facades then transmit data to customers through local, e.g.
cable, networks.

An essential factor which often decides about economic justification of the
LMDS system implementation is to determine base-station locations so that the
highest profit can be achieved, within the available investment funds. Presently,
there is no methodology to allow for a general solution of the problem formu-
lated in that way: in practice, heuristic methods are applied, largely based
on intuition, or other methods from related fields are adopted; see books by
Laiho, Wacker and Novosad (2001) and Rappaport (1996) and papers by Bsagni
(2001), Franceschetti, Cook and Bruck (2004), Gupta and Kumar (2000), Lee
and Kang (2000), Sherali, Pendyala and Rappaport (1996), Tran-Gia, Leibnitz
and Tutschku (2000), Tutschku and Tran-Gia (1998), Vohra and Hall (1993),
also to find rich bibliography. The task of LMDS base-station location planning
is not easy due to the requirement of taking into account a number of technical
conditions, as well as economic ones, also in the situation of data uncertainty
and non-stationarity.

Basic technical constraints include the theoretical, maximal coverage radius
of base-station transceivers, as well as their maximal bitrate, i.e. the largest total
data quantity which can be transmitted in a time unit. What is also required
for ensuring data transmission is the line of sight between the base-station and
the subscriber-station antennas. For that reason, due to complex land shaping,
or such obstacles as tall buildings in the base-station coverage area, there may
exist shadow areas, in which it is not possible to transmit between the base-
station and the buildings located in such areas. Thus, there is a limited number
of sites well visible due to their elevation, which can be selected as potential
locations for base-stations.

In addition to the above-mentioned technical constraints, another problem
facing planners constitutes the estimation of future demand. In practice, such
a process can be developed only on the basis of imprecise and incomplete data
concerning potential service users located in a given area. Despite such un-
certainty, estimation is indispensable in defining a spatial distribution of the
predicted demand. This problem gets even more difficult when planning is
long-term, especially with non-stationarity of data.

Consequently, the planning task requires a choice of those possible base-
station locations which ensure the maximum profit from services, while the
number of stations is limited by the availability of funds. This paper will present
an algorithm for designing optimal LMDS base-station locations. The method
of statistical kernel estimators has been applied for the purpose of describing the
spatial distribution of demand for data transmission services. Due to natural
uncertainty of demand values, fuzzy logic elements have also been used. In
addition, the issues of existence of shadow regions in the coverage areas of
base-stations and the problem of their limited bitrates have been taken into
account. It is also possible to apply that method when planning with a horizon
of several years.
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The preliminary version of this paper was presented as Kulczycki and Wa-
glowski (2003).

2. Estimation of the distribution of spatial demand:

statistical kernel estimators

The distribution of the spatial demand for data transmission services in the area
under consideration has strict point structure connected with particular poten-
tial customers. Such a model has, however, limited application significance since
it is practically unidentifiable in a metropolitan area. In this paper, statistical
kernel estimators will be applied for this purpose. Based on the most repre-
sentative objects, this approach allows for ensuring the continuity of the model
and proper average of spatial demand, making such an approach convenient for
optimization tasks.

Let the n-dimensional random variable X , with a distribution having the
density function f , be given. Its kernel estimator f̂ : R

n → [0,∞) is calculated
on the basis of the m-element random sample x1, x2, . . . , xm, obtained experi-
mentally from the variable X , and is defined in its basic form by the following
formula:

f̂(x) =
1

mhn

m∑

i=1

K

(
x − xi

h

)

, (1)

where the function K : R
n → [0,∞), which is Borelian and radially symmetrical

relative to zero, has a weak global maximum at this point, fulfilling the condition
∫

Rn K(x) dx = 1, and is called the kernel, whereas the positive coefficient h is
known as the smoothing parameter; for interpretation, see also Fig. 1. The
form of the kernel K and the value of the smoothing parameter h is selected
most often on the basis of the criterion of the minimum mean square error; for
proper algorithms, see books by Kulczycki (2005), Silverman (1986), Wand and
Jones (1994). It turns out that the form of the function K has no essential
importance from the statistical point of view, and for that reason, it is possible
when selecting this function to take into account primarily the features of the
estimator required in the case of a particular task.

In practical problems, additional procedures are used for improving the prop-
erties of kernel estimators. In the methodology investigated here, the so-called
modification of the smoothing parameter is preferred. The specific procedure
can be performed as follows:

(A) the kernel estimator f̂ is specified in accordance with formula (1);
(B) the modifying parameters si > 0 (i = 1, 2, . . . , m) of the form:

si =

(

f̂(xi)

s∼

)−1/2

(2)
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Figure 1. A kernel estimator with the modification of the smoothing parameter
(4) for the one-dimensional case (i.e. n = 1)

are calculated, where s∼ is the geometric mean of the numbers f̂(x1),

f̂(x2), . . ., f̂(xm), given by the logarithmic equation

log(s∼) = m−1
m∑

i=1

log(f̂(xi)) ; (3)

(C) the kernel estimator with the modification of the smoothing parameters
finally assumes the form of

f̂(x) =
1

mhn

m∑

i=1

1

sn
i

K

(
x − xi

hsi

)

. (4)

As a result of the introduction of the above concept, the areas where estima-
tor (1) takes on small values are additionally flattened, contrary to parts of its
large values where the characterization of specific features of distribution im-
proves; see Fig. 1. A broader discussion of the issues presented above can be
found in books by Kulczycki (2005), Silverman (1986), Wand and Jones (1994).
Exemplary applications of kernel estimators are described in papers of Kulczycki
(2000, 2001, 2002a,b), Kulczycki and Wisniewski (2002), Schiøler and Kulczycki
(1997).
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In the problem investigated here, the kernel estimator will be used for the
characterization of distribution of spatial demand for data transmission services
in the area under consideration. The variable X is therefore two-dimensional,
i.e. n = 2, while its particular coordinates represent longitude and latitude.
The kernel estimator with the modification of the smoothing parameter (4) will
be applied after additional mapping of the coefficients wi > 0 for i = 1, 2, . . . , m

to every kernel; therefore,

f̂(x) =
1

h2
m∑

i=1

wi

m∑

i=1

wi

s2
i

K

(
x − xi

hsi

)

. (5)

Because of the convenience of analytical calculations, the Cauchy kernel

K(x) =
1

π(||x||2 + 1)2
(6)

will be used.
Finally, the statistical kernel estimators methodology will be applied in this

paper, to identify the distribution of the spatial demand for data transmission
services in the whole area under consideration. With its use one can obtain a
continuous characteristic of such distribution derived from data with a point
feature, while taking into account the fundamental traits of quality of a consid-
ered area: density of client concentration and the corresponding expected level
of demand. Particular subscriber buildings in the data base are characterized by
their geographical position xi = [xi1, xi2]T and the coefficient wi representing
potential demand for data transmission services corresponding to this location
(i = 1, 2, . . . , m). The identified distribution is properly made continuous owing
to the properties of statistical kernel estimators. Moreover, due to the averaging
aspects of such estimators, it is possible to use a simplified data base, including
only the locations of main subscriber buildings, and taking into account in the
corresponding coefficients wi also smaller objects in their neighborhood. Thanks
to this, the influence of imprecise and/or incomplete identification of potential
subscriber location on the final result will be significantly lowered, as will the
cost associated with its execution. The smoothing and averaging properties of
statistical kernel estimators considerably simplify the most difficult and expen-
sive phase of the procedure of planning optimal locations of LMDS base-stations
investigated in this paper.

3. Base-station system performance index

In practice, it is not difficult to identify a limited number of sites for installing
base-stations, including e.g. tall buildings and telecommunications towers. Hav-
ing defined in the previous section the function f̂ which characterizes the spatial
distribution of demand for data transmission services, one can map for partic-
ular locations the values resulting from that function’s integration, within the



1154 P. KULCZYCKI, J. WAGLOWSKI

coverage areas of the respective transceivers. Next, in the case of a base-station
system, the integral for the whole area covered by the ranges of particular trans-
ceivers defines the capacity of meeting the total demand, being also a criterion
of the appraisal of the system’s quality. This section will present the basic
algorithm for calculating the integral’s value.

Let the set of k potential locations of base-stations at sites xj = [xj1, xj2]T,
with j = 1, 2, . . . , k, be given. The following notations are introduced:

Ej =

∫

Cj

f̂(x) dx (7)

Ej1,j2,...,jn
=

∫

Cj1
∩Cj2

∩...∩Cin

f̂(x) dx , (8)

where Cj denotes the j-th circle with the center at xj and the positive radius
rj (representing maximal range of the transceiver mapped to the j-th location),
and j1, j2, . . . , jn ∈ {1, 2, . . . , k} are different, while 2 ≤ n ≤ k. The total
demand characterizing the quality of the base-station system, is given by the
formula

E =

∫

C1∪C2∪...∪Ck

f̂(x) dx

=
k∑

j=1

Ej −
∑

{j1,j2}

Ej1,j2 +
∑

{j1,j2,j3}

Ej1,j2,j3 + . . . + (−1)kE1,2,...,k . (9)

The text below presents an algorithm for calculating the values of formulas (7)
and (8), which exhausts the procedure allowing to define the capacity of meeting
the demand for data transmission services within the fixed base-station system,
in accordance with formula (9), which characterizes system quality.

Due to the selection of the kernel in the form (6), it is possible to calculate
an analytical formula for the integral from the function of the single kernel Ki

with the parameters h, si and wi, on the circle Cj , with the radius rj and the
distance di,j between the centers of the circle and the kernel (for i = 1, 2, . . . , m

and j = 1, 2, . . . , k), expressed through

Ej =
1

2
m∑

i=1

wi

m∑

i=1

wi




r2
j − d2

i,j − h2s2
i

√

r4
j + 2(h2s2

i − d2
i,j)r2

j + (h2s2
i + d2

i,j)2
+ 1



 . (10)

For the purpose of the problem under consideration, the above formula may be
simplified to the form

Ej =

m∑

i=1

wi




r2
j − d2

i,j − h2s2
i

√

r4
j + 2(h2s2

i − d2
i,j)r2

j + (h2s2
i + d2

i,j)2
+ 1



 , (11)
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because the values calculated on that basis will be subject to comparison in
the search for an optimal element, therefore, multiplication of the performance
index by the positive constant 2

∑m
i=1 wi does not affect the results obtained

in such a task. Following the procedure proposed below one can successively
conclude that such operation results only in a “rescaling” of value of performance
index (7).

Next, the analytical calculation of the integral value, in the case when an
integration set is the intersection of any number of circles, is practically un-
executable. A practical approximate procedure will therefore be investigated
below.

First, the case of the kernel Ki and two circles Cj1 and Cj2 will be considered.
Owing to a possibility of renumbering, it can be assumed that rj1 ≤ rj2 . Let
Dj1,j2 denote the distance between the circles’ centers. One of the following
relationships may occur between those circles:

(A) Dj1,j2 ≥ rj1 + rj2 , implying disjunction of the circles or edge contact; then,
Ej1,j2 = 0;

(B) Dj1,j2 ≤ rj2 − rj2 , which means that the smaller circle is their intersection;
then, Ej1,j2 = Ej2 , whose value may be calculated from formula (11);

(C) neither of the previous cases occurs; the circle intersection has the shape of
a lens; the method of calculating the approximate value of Ej1,j2 is given
below.

This method is realized by replacing the lens with a circle, for which formula (11)
can be applied. By guaranteeing equal fields of the circle and the lens, and
with proper location of the circle’s center, the difference between the values of
function (5) on the areas of the lens and of the circle is not large, while the error
of integration (having the averaging nature) on them is fairly insignificant. It
is worth noticing that the largest values of the error occur when the lens is
considerably flattened, therefore, when its field, together with the value Ej1,j2 ,
is relatively small, in the region of few percent.

Let D̂j1,j2 denote the distance between the points of intersection of the cir-

cles Cj1 and Cj2 ; according to the assumptions of case (C): D̂j1,j2 > 0. The

calculation of the value D̂j1,j2 is not difficult, based on non-complex procedures
of analytical geometry (Waglowski, 2005). The field of the lens Lj1,j2 can be

defined, in the case of a flat lens, i.e. when rj2 ≥
√

r2
j1

+ D2
j1,j2

, by formula

Lj1,j2 =
D̂j1,j2

2






√
√
√
√r2

j1
−

(

D̂j1,j2

2

)2

+

√
√
√
√r2

j2
−

(

D̂j1,j2

2

)2





+ r2
j1arcsin

(

D̂j1,j2

2rj1

)

+ r2
j2arcsin

(

D̂j1,j2

2rj2

)

− D̂j1,j2Dj1,j2 , (12)
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however, in the case of a convex lens, i.e. when rj2 <
√

r2
j1

+ D2
j1,j2

, as

Lj1,j2 =
D̂j1,j2

2






√
√
√
√r2

j1
−

(

D̂j1,j2

2

)2

−

√
√
√
√r2

j2
−

(

D̂j1,j2

2

)2





+ r2
j1arcsin

(

D̂j1,j2

2rj1

)

− r2
j2arcsin

(

D̂j1,j2

2rj2

)

+ D̂j1,j2Dj1,j2 . (13)

Upon calculation of the lens field Lj1,j2 from formulas (12) or (13), one may
easily calculate the radius of the substitute circle rj1,j2 :

rj1,j2 =

√

Lj1,j2

π
. (14)

Its center can be defined in the following manner. The straight line crossing the
centers of the circles Cj1 and Cj2 is also crossing each of them at two different
points, one on each lens edge. Let the center between those points be the center
of the substitute circle. Calculation of its coordinates is not difficult using the
analytical geometry methods (Waglowski, 2005). Once the center and the radius
of the substitute circle are known, it is possible to calculate the value of Ej1,j2 ,
based on formula (11).

The above procedure may be easily generalized in the recurrent manner
in the cases of intersection of any number of circles, exceeding two. Upon
ordering circles according to increasing radius size, it is necessary to calculate
the substitute circle parameters for the lens obtained from the first pair, followed
by subsequent iterations for the substitute circle and subsequently considered
ones, repeating such iterations until the list of circles is exhausted. The result
is a substitute circle for the area being an intersection of all the circles under
consideration. It is possible to apply formula (11) to the resulting circle.

The above process completes the basic calculation algorithm necessary to
apply formula (9), allowing to characterize the quality of the given base-station
system. In the next two sections, the algorithm will be modified to take into
account shadow areas and limited bitrates of base-stations.

4. Performance index modification to account for shadow

areas

In the previous considerations, the integration set of the density function char-
acterizing spatial demand distribution, was assumed to be an area being the
union of circles resulting from base-station coverages (see formula (9)). As it
was mentioned in the introduction, within that area the shadow area occurs,
in which transmission is impossible due to uneven land or obstacles, e.g. tall
buildings. To account for a shadow area, it is necessary to subtract the integral
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value on those fields from the value given by formula (9). It should be pointed
out that the shadow area of one base-station may be covered, in whole or in
part, by another base-station, and, by the same, such a shadow area will not
be treated from the point of view of the whole system as a shadow, at least
partially.

In the practice of designing teletransmission networks, one may come across
various approaches to accounting for shadow areas. Maps resulting from the
spatial analysis software, obtained through aerial image processing, are often
applied for this purpose. Sometimes, however, to reduce cost and accelerate
analysis, only approximate sketches are produced, followed by the approxima-
tion of shadow areas by simple geometric figures, while those figures are treated
as circles, or, generally, circle unions. With this approach, the algorithm devel-
oped in the previous section allows for easy calculation of the integral from the
density function of the spatial distribution of the demand for data transmission
services in shadow areas, in analogy to formula (9), followed by subtraction of
that value from the index calculated in Section 3.

5. Performance index modification to account for limited

base-station bitrate

The performance index of the particular base-station system, defined by formula
(9), represents the capability of meeting the total demand for teletransmission
services provided within the system’s transceiver coverage. However, in espe-
cially attractive city areas, the coverage demand may not be met due to limited
transceiver bitrates. In this section, the procedure allowing to account for lim-
ited bitrates of particular base-stations will be worked out.

To reduce the dimensionality of the optimization problem considered below,
first, it is necessary to exclude from investigation those base-stations belonging
to the system whose bitrates are higher than or equal to the demand under
coverage, i.e. the value of

∫

Cj
f̂(x) dx. Moreover, if the set, being the union of

the areas within the coverage of the stations remaining after the above activity
is not connected (i.e. it is composed of disjoint subsets), it is necessary to de-
compose the task by conducting the considerations described below, separately
for each of such subsets.

Let bj > 0 with j = 1, 2, . . . , k∗ where k∗ ≤ k, mean maximal bitrates of
particular transceivers belonging to a subsystem of k∗ base-stations. The set,
being the union of the areas within the base-stations’ coverage, is divided by
the circles constituting coverage edges of particular transceivers into a finite
number of subsets with nonempty interior (the maximal possible number is
2k∗

− 1). Those sets, denoted further as Zi, will be numbered with the index
i = 1, 2, . . . , I. Using the algorithm presented in Section 3, the approximate of
the integral

∫

Zi
f̂(x) dx for each i = 1, 2, . . . , I, can be calculated.

Let the matrix A with the dimension k∗ × I and nonnegative elements,
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be given. Particular rows of the matrix are connected with subsequent base-
stations of the system under consideration, while columns – with particular
subsets Zi. If the i-th subset is outside of the range of the j-th station, one
should assume that aj,i = 0. The following performance index will be consid-
ered, and the decision variables will be all the elements of the matrix A whose
value was not assumed above as zero (the respective set will be denoted below
as {a∗

j,i}):

max
{a∗

j,i}

∑

j = 1, 2, . . . , k∗

i = 1, 2, . . . , I

aj,i , (15)

with the constraints

aj,i ≥ 0 for j = 1, 2, . . . , k∗ and i = 1, 2, . . . , I (16)

I∑

i=1

aj,i ≤ bj for j = 1, 2, . . . , k∗ (17)

k∗

∑

j=1

aj,i ≤

∫

Ci

f̂(x) dx for i = 1, 2, . . . , I. (18)

This is a typical linear optimization task. Calculations are facilitated by the fact
that the task is “sparse”: the elements of the matrix A have mostly the value
of zero. Moreover, by arranging the elements of the set {a∗

j,i} in a vector, the
task may be described in a canonical form and solved by the generally available
simplex method, see, e.g. Garfinkel and Nemhauser (1972), Wagner (1975).
Each of the elements aj,i, obtained in accordance with the above procedure,
indicates which portion of demand from the area Zi should be served by the
j-th station in order to meet the largest possible demand for telecommunication
services for the given base-station system, taking into account limited bitrates
of the respective transceivers.

6. Selection of the optimal base-station system

Once the base-station system performance index has been worked out in accor-
dance with Sections 3 to 5, one may start solving the basic task of the present
paper, i.e. selection of the optimal base-station system. For that purpose, the
methods originating from operations research (Garfinkel and Nemhauser, 1972;
Wagner, 1975) will be applied.

The utilization of radio frequencies made available to the telecommunications
operator requires the application of devices with essentially different functional
parameters. In the model presented here, a possibility of selecting, in each
potential location, one possible version of transceivers, from among p options,
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while p ∈ N\{0}, is assumed. Particular versions are represented with the
following positive parameters: ri – coverage radius, bi – maximal bitrate, and
ci – cost of equipment and its installation, where i = 1, 2, . . . , p. The case when
no equipment is installed at a location is reflected by i = 0 and c0 = 0.

Let the k-dimensional decision vector







g1

g2

...
gk








(19)

be given. Particular coordinates represent potential base-station locations, and
assume the values gj ∈ {0, 1, . . . , p} for j = 1, 2, . . . , k. To be more precise: if
the j-th coordinate is 0, i.e. gj = 0, it means that the transceiver installation
at the j-th location is not planned; however, if that coordinate takes on the
value i from the range 1,2,. . . ,p, it means that the i-th version of such device is
installed at the j-th location. The optimization task consists here of searching
for the maximum of the expression

max
g1,g2,...,gk

E([g1, g2, . . . , gk]T) (20)

with the constraint

k∑

j=1

cgj
≤ C̃, (21)

where the positive number C̃ means the maximal amount of available funds,
while E([g1, g2, . . . , gk]T) denotes the value of function (9) for a system of
transceivers distributed in accordance with the value of the decision vector
[g1, g2, . . . , gk]T.

The above issue can be reduced to the classical form of a decision tree. Thus,
let the k-level decision tree be given (see Fig. 2): particular levels represent
subsequent potential base-station locations. Decision tree nodes are assigned
subsequently one of the possible values gj ∈ {0, 1, . . . , p} for j = 1, 2, . . . , k; if
the j-th level is assigned the value gj, the node represents the case in which
the gj-th version of a transceiver is installed at the j-th location. That also
implies assigning to that node the cost cgj

of the given version of a transceiver,
which is necessary to verify constraint (21). The solution of the problem under
consideration consists in the determination of a path from the first level node
to the k-th level node, described by the vector [g1, g2, . . . , gk]T, for which the
function E reaches the maximum, and constraint (21) is fulfilled. To solve so
formulated a task, the classical branch-and-bound method has been applied; for
an intuitional illustration, see Fig. 2.

An important element affecting the rate of calculation is the effective fath-
oming (“closing”) of those nodes from which a better path than previously
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Figure 2. An illustration of the decision tree for k = 3, p = 2; the available funds
are adequate for the purchase of not more than two transceivers, including only
one of a more expensive kind; the dotted line marks the paths omitted owing
to the fathoming of proper nodes; the black spots mark nodes included in the
optimum path.

found cannot be generated. Let the numbering of particular transceiver ver-
sions be such that c0 ≤ c1 ≤ . . . ≤ cp, and the numbering of tree levels such

that
∫

C(x1,rmax) f̂(x) dx ≥
∫

C(x2,rmax) f̂(x) dx ≥ . . . . . . ≥
∫

C(xk,rmax) f̂(x) dx,

i.e. according to the demand level met by a given location for the transceiver
version with the largest range rmax; (C(x, r) denotes in the above notations a
circle with the center x and the radius r). If the node under consideration is
located in layer j ∈ {1, 2, . . . , k − 1}, it will not be difficult to calculate the
number J ∈ N stating how many cheapest transceivers may be installed within
the available funds, i.e.

J = int








C̃ −
j∑

i=1

cgi

cg1








, (22)

where int(a) denotes the integer part of the number a ∈ R. Let a fragment of
the path above the level j describe the partial decision vector [g1, g2, . . . , gj ]T.
If the value E, characterizing according to formula (9) the base-station quality
for the decision vector

[g1, g2, . . . , gj, grmax
, . . . , grmax

︸ ︷︷ ︸

J factors

, 0, . . . , 0]T, (23)
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where grmax
, representing the version of transceivers with the largest coverage,

is smaller than or equal to the maximum of previously calculated value E,
then such a node should be fathomed because decision vectors of the form
[g1, g2, . . . , gj , any]T may not produce a better path than the one found.

7. Long-term planning horizon

The task previously considered was stationary in nature. Its characteristic val-
ues, i.e. size and the distribution of spatial demand, available investment funds,
prices and parameters of transceivers, and a set of potential base-station loca-
tions, were not subject to the changes occurring over time. However, one can
expect increased transmission to current customers and inclusion of new cus-
tomers with time. Also, a gradual increase of funds can be expected owing to
current income and the operator’s growing creditworthiness. In addition, the
parameters of transceivers are also changed. After signing new agreements and
expanding urban infrastructure, new base-station locations will become avail-
able. The methodology presented in this paper allows for accounting easily for
the time factor and for all the above-mentioned aspects.

If the project is considered within T ∈ N\{0, 1} time periods (not necessarily
equal ones, although in practice these refer to particular periods, and most often
T = 2 or T = 3), the decision vector (19) should be generalized to the form

[g1,t=1, g2,t=1, . . . , gk1,t=1, g1,t=2, g2,t=2, . . . , gk2,t=2, . . . ,

g1,t=T , g2,t=T , . . . , gkT ,t=T ]T , (24)

where the parameter t = 1, 2, . . . , T characterizes particular time periods (the
above notation also allows for the number of potential base-station locations
k1, k2, . . . , kT to change in particular periods). Constraint (21) assumes the
form of T independent conditions

kt∑

j=1

cgj ,t ≤ C̃t for t = 1, 2, . . . , T, (25)

where the parameters occurring above were correspondingly indexed by t, char-
acterizing transceiver prices cgj ,t and the maximal value of available funds C̃t

in particular years. Performance index (20) becomes a linear combination of
subsequent components corresponding to particular time periods

max
g1,t, g2,t, . . . , gi,t

t = 1, 2, . . . , T

T∑

t=1

dtEt( [g1,t, g2,t, . . . , gk,t]
T) , (26)

while the re-occurring parameters are indexed by t = 1, 2, . . . , T , and the positive
weights dt represent the meanings of particular periods. These parameters are
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of special importance when the time periods are unequal and in the case when
the periods considered in a long-term perspective are less significant in the
planning process due to the possibility of making strategic changes in the future.
The values of the particular factors Et may be calculated on the basis of the
diverse functions f̂t characterizing a predicted spatial distribution of demand
for data transmission services in the area under consideration, as well as diverse
transceiver parameters ri,t, bi,t, and ci,t.

If a replacement of installed device versions is not assumed, the appearance
of the element gj,t 6= 0 at any position of the decision vector implies the same
value of decision vector elements representing a given location for t + 1, t +
2, . . . , T , which effectively reduces the number of paths in the decision tree.
In the opposite case, however, if such a replacement is accepted, then, in the
year of a change, the parameter cgj ,t represents, not – as before – the price of
equipment and its installation, but the cost of the change itself.

8. Fuzzy nature of demand

The coefficients wi for i = 1, 2, . . . , m introduced in formula (5) represent the
demand for teletransmission services assigned to particular subscriber-station
locations. Their value is estimated in practice by the analysis of the nature of
particular service users, based on their affiliations with consumer groups defined
for common features. Identification of such uncertainty is in practice conducted
on the basis of expert opinions expressed verbally, often on intuitional premises.
Consequently, the description of the predicted demand for teletransmission ser-
vices by a subscriber-station will require fuzzy logic elements (Kacprzyk, 1986).
What should also be taken into account is the specific nature of the task under
consideration: a lot of fuzzy numbers (equal to the number of subscriber-stations
m) necessary to identify and to use in subsequent analysis, as well as the fact
that incidentally, the coefficients wi may be deterministic owing to previously
signed agreements. In that situation, especially suitable are fuzzy numbers of
the type L-R, whose membership function is assumed here in the following form:

µ(wi,αi,βi)(x) =







L

(
wi − x

αi

)

for x ≤ wi

R

(
x − wi

βi

)

for x ≥ wi

, (27)

where wi, αi, βi > 0, the fixed function L : (−∞, 0] → [0, 1] is nondecreasing
as well as R : [0,∞) → [0, 1] is nonincreasing, and L(0) = R(0) = 1. The
parameter wi may be interpreted as a modal value, while αi and βi describe
left- and right-hand concentration around that value, respectively.

The fuzzy number A of the type L-R may, therefore, be identified by three
parameters, which will be denoted as

A = (w, α, β) (28)
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and, consequently, the process of identification requires only determination of
the values which are close to intuitional interpretation. Algebraic operations on
fuzzy numbers of the type L-R are defined as follows:

A + B = (wA, αA, βA) + (wB, αB, βB) = (wA + wB, αA + αB, βA + βB) (29)

A− B = (wA, αA, βA) − (wB, αB, βB) = (wA − wB, αA + αB, βA + βB) (30)

c · A = (cwA, cαA, cβA), (31)

where A and B denote fuzzy numbers, while c is a positive real number. If one
adopts the notation in which the real number a is described in the form of three
parameters a = (a, 0, 0), those operations may be generalized to addition and
subtraction of the fuzzy and real numbers. Moreover, formulas (29)-(31) express
then correctly also the operations on two real numbers. Finally, the result is
that the fuzzy number of the type L-R in the above range is a generalization of
the real number. In this paper

L(x) = R(x) =

{
1 − x2 for x ∈ [−1, 1]
0 for x ∈ (−∞,−1) ∪ (1,∞)

(32)

has been assumed, in a form typical for the natural expression of experts’ opin-
ions in similar tasks, where the values in the neighborhood of an extreme one
are treated as not much less likely.

Finally, for each of m locations of subscriber buildings, the coefficient wi

representing potential demand for data teletransmission services, introduced in
formula (5), was generalized to the three-parameter fuzzy number suitable for
identification and calculations in practice, denoted below as Wi = (wi, αi, βi),
where wi − αi ≥ 0 for every i = 1, 2, . . . , m. In a special case, Wi = (wi, 0, 0)
may represent the real (”non-fuzzy”) number wi.

As one can infer from formulas (9), (11), and the modifications presented
in Sections 4 and 5, the performance index of the base-station system under
consideration has a form of linear combination of three-parameter fuzzy numbers
Wi, and, therefore, due to formulas (29)-(31), it also becomes a three-parameter
fuzzy number, denoted below as E . To allow for the comparison of qualities of
particular base-station systems, the methodology of fuzzy preference theory
(Fodor and Roubens, 1994), will be applied. The preference function P of the
fuzzy number E , with the bounded support of the membership function, will be
adopted in the form resulting from the decision-making practice (Berger, 1980):

P (E) = δ

max supp µE∫

min suppµE

xµE(x) dx

max suppµE∫

min supp µE

µE(x) dx

+ (1 − δ) min supp µE , (33)

where δ ∈ [0, 1], µE means the membership function of the fuzzy number E ,
while supp µE denotes its support. The value of the membership function is
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therefore a linear combination with weights δ and 1 − δ of the average value of
the fuzzy number and the minimum value of its support. The average number
corresponds to the Bayes decision rule and expresses a “realistic” operation,
while the minimum value of the membership function support results from the
minimax rule and represents the “pessimistic” point of view. The parameter δ

determines therefore the company’s strategy in the range from realistic (assum-
ing average predicted demand) for δ = 1, to pessimistic (assuming the lowest
level of predicted demand) for δ = 0. When clear preferences are missing, the
value δ = 0.5 can be proposed.

In the case of the three-parameter number E = (e, α, β) for the functions L

and R given by formula (32), the value of preference function (33) is expressed
by

P (E) = δ

(

e +
3(β-α)

8

)

+ (1 − δ)(e− α) = e− α + δ

(
5α + 3β

8

)

. (34)

Finally, when two base-station systems characterized by fuzzy performance in-
dexes are considered, the one for which the preference function (34) is larger
should be recognized as a “better one”.

The preference function may also be used to generalize constraints (16)-(18),
treating the real numbers occurring there as three-parameter fuzzy numbers
with α = 0 and β = 0.

9. Verification of methodology

The operation of the procedure described in this paper has been positively
verified using a computer program written in Delphi.

The results obtained were correct both in the case of artificial data (selected
tendentiously to achieve intuitionally obvious results) as well as for a small data-
base of the capital city of Warsaw. In the second case, the simplification of data
by replacing several subscriber buildings with one properly balanced represen-
tation did not significantly change the result obtained. Owing to the averaging
properties of statistical kernel estimators, the effect achieved is especially worth
highlighting, in particular when large metropolitan areas are studied.

The convergence of the investigated algorithm itself is guaranteed thanks to
a finite number of steps carried out at every stage of the method proposed.

While testing the procedure a significant dependence of the calculation time
on the parameters m (the number of subscriber buildings available in the data
base) and k (the number of potential locations of base stations) was clearly no-
table. Thus, an increase in the value of the parameter k by 1 results in a growth
in calculation time of about 70-percent, while a tenfold increase in m causes
a growth of around 6-times. In the case of real values for these parameters,
the number of potential base station locations k – even for large cities – is in
the teens, whereas the number of buildings in which institutional clients can be
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located, m, ranges from a few hundred to a few thousand. Moreover, the speed
of result generation is influenced by the parameters p (the number of versions of
transceivers) and C̃ (the value of available funds). In practice, the value of the
parameter p results directly from the number of radio frequencies allocated for
use, and – due to their strict rationing and relatively high cost connected with
rental – does not exceed 2. Tests carried out on a normal class of PC computer
(processor Pentium 233MHz, 64MB RAM), for m = 1000, k = 12, p = 2, and
the basic version of the task presented in Section 3, allowed the solution to be
achieved in around 3 minutes. Additional increase in calculation time is ob-
served when taking into account shadow areas, as well as, to a lesser degree, the
limited bitrate and the fuzzy nature of demand. A long-term planning horizon,
however, has notable influence on increase in this time.

The calculations in planning problems are not carried out in real time, and,
moreover, they do not require multiple repetitions; therefore, application of this
method for tasks with parameters existing in practice is completely possible.
The presented procedure may demand – particularly in the case of a long-
term planning horizon – the use of computers with relatively large calculation
capacity, which are, however, generally applied for GIS packages or database
processing.

10. Conclusions

The goal of the research presented in this paper was to develop a practical
method allowing for finding an optimal base-station system for the LMDS wire-
less data transmission system. The respective planning process must take into
account a number of constraints related to radio technology conditions, as well
as the considerable uncertainty of predictions based on incomplete market data
and the resulting investment risk. Due to a combination of all those aspects and
the assumptions contained in the operator’s strategy, the indication of optimal
base-station locations constitutes a very complex problem, while the level of
complexity rapidly increases in the case of long-term planning. The methods
used in practice until now did not allow for solving such problems, and in many
cases, planning decisions were based on intuition.

This paper presents an algorithm that, despite the complexity of the prob-
lem, allows to find an optimal system with respect to assumed criteria, within
the framework of the existing technical constraints. The algorithm comprises
the availability of diverse equipment options, with various parameters (price,
coverage, and bitrate), the existence of shadow areas with nominal coverage by
transceivers, a possibility of long-term planning, and the existence of demand
inaccuracy considered in relation to various operator strategies based on invest-
ment security. Owing to the application of statistical kernel estimators, the
spatial demand distribution characteristics were averaged, which reduced the
method requirements with respect to the potential customer database size, and
that in turn is reflected in the efficiency and low costs of the planning process.
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The procedure investigated here is based on the elements originating from
various fields of science and technology: telecommunications, mathematical sta-
tistics, fuzzy logic, operations research, and numerical methods. The procedure
presented here is universal in nature and can be easily adapted to related tasks,
e.g. planning customer-service points in metropolitan areas.

The current paper comprises the contents of the Ph.D. dissertation of Wa-
glowski (2005) – complete software allowing for the direct use of the methodology
presented above is available therein.
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