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Abstract. The task for detection of atypical elements is one of the fundamental tasks 

of contemporary data analysis, finding applications in numerous problems in 

practically all areas of sciences and engineering. As an example, in the classic 

approach of automatic control, e.g. fault detection problems, the appearance of an 

unusual value of a vector describing a system's technical state may testify to the 

occurrence of a malfunction. This paper presents a procedure for the detection of 

atypical elements, understood in the sense that they happen rarely. Particularly, in the 

case of multimodal distributions with more distant factors, such an approach allows 

atypical elements to be located not only in peripheral regions, but also potentially 

inside, between modes. The outcome indicating whether an examined observation 

should be classed as atypical is defined here in fuzzy and intuitionistic forms.  

Keywords: rare element, atypical element, outlier, fuzzy evaluation, intuitionistic 

evaluation.  

1. Introduction  

Imagine a single number, or vector of quantities characterizing the technical state of a 

system. Assume we have a representative sample of its values. If the subsequent 

tested element seems to be atypical, it most often proves the appearance of some 

anomaly. Depending on the type of problem, it can be for example a malfunction 
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(fault) of a supervised device or an error in information processing. In medical tasks a 

similar situation may point to a condition of illness or pathology, in marketing that an 

examined object is uncommon and so should be treated differently, in banking it can 

signal a fraud attempt, while in sociology it indicates the arrival of a new, unusual 

trend.  

There is no one universal definition of atypical elements [Aggarwal, 2013; 

Barnett and Lewis, 1994]. In the most popular, distance-based approach it is 

considered that they are "outliers" – elements lying far from the others. This paper 

will apply the frequency approach, whereby atypical elements are rare, i.e. the 

probability of their appearance is faint. Thus, we can discover atypical observations 

not only on the peripheries of a data set, but in the case of multimodal distributions 

with wide-spreading segments, also those lying in between these segments, even if 

close to the center of the population. An evaluation of whether the tested element 

should be termed atypical will be given in the fuzzy [Kacprzyk, 1986; Klir and Yuan, 

1995] and intuitionistic [Atanassov, 1999; Szmidt, 2014] forms. The investigated 

procedure is designed on the basis of the nonparametric kernel estimators method 

[Kulczycki, 2005; Wand and Jones, 1995], which frees it from a distribution 

characterizing the data set under consideration. Its broader description can be found in 

the paper [Kulczycki, Kruszewski; 2017], currently in press. Here can be found a 

comprehensive set of formulas for direct application, without laborious research or 

literary study.  

The structure of this paper is as follows. Section 2 presents the statistical 

kernel estimators methodology. Then, the basic formula of the procedure for detection 

of atypical elements is described in Section 3. The quality of this procedure is 

considerably improved in Section 4 by significantly increasing the set of 

representative elements. Next, Section 5 provides formulas for fuzzy and intuitionistic 

evaluations. The results obtained in this way will be illustrated in the final Section 6.  

2. Nonparametric Kernel Estimators  

In the presented method, the characteristics of a data set will be defined using the 

methodology of kernel estimators (also called Parzen or Rosenblatt estimators). It is 

distribution-free, i.e. the preliminary assumptions concerning the types of appearing 

distributions are not required. A broad description can be found in the monographs 
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[Kulczycki, 2005; Wand and Jones, 1994]. Exemplary applications for data analysis 

tasks are described in the publications [Kulczycki and Charytanowicz, 2010, 2013; 

Kulczycki and Daniel, 2009; Kulczycki and Kowalski, 2016; Kulczycki and 

Waglowski, 2005]; see also [Kulczycki and Lukasik, 2014; Kulczycki et al, 2017].  

Let the n-dimensional continuous random variable X  be given, with a 

distribution characterized by the density f . Its kernel estimator ),0[:ˆ ∞→nf R , 

calculated using the experimentally obtained  

m-element random sample ix  for mi  , ... ,2 ,1= , in its basic form is defined as  
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where }0{\N∈m , the coefficient 0>h  is called a smoothing parameter, while 

the measurable function ),0[: ∞→nK R  of unit integral 1d)(
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symmetrical with respect to zero and having a weak global maximum in this place, 

takes the name of a kernel. The choice of form of the kernel K  and the calculation 

of the smoothing parameter h  value is made most often with the criterion of the 

mean integrated square error.  

Thus, the choice of the kernel form has – from a statistical point of view – no 

practical meaning and thanks to this, it becomes possible to take into account 

primarily properties of the estimator obtained or computational aspects, advantageous 

from the point of view of the applicational problem under investigation; for broader 

discussion see the books [Kulczycki, 2005 – Section 3.1.3; Wand and Jones, 1994 – 

Sections 2.7 and 4.5]. In the one-dimensional case (i.e. when 1=n ) the normal 

(Gauss) kernel  
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and the uniform kernel  

−∉

−∈
=

]1,1[for   0 

]1,1[for   
2

1
 

)(

x

x
xK j  (3) 

will be used in the following. In the multidimensional case, a so-called product 

kernel will be applied hereinafter. The main idea here is the division of particular 
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variables with the multidimensional kernel then becoming a product of n  one-

dimensional kernels for particular coordinates. Thus kernel estimator (2) is then given 

as  
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where jK  ( nj  , ... ,2 ,1= ) denote one-dimensional kernels, e.g. (2) or (3), jh  (

nj  , ... ,2 ,1= ) are smoothing parameters individualized for particular coordinates, 

while assigning to coordinates  
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3. Basic Version of Procedure  

The basic idea of the presented procedure for detection of atypical elements stems 

from the significance test proposed in the work [Kulczycki and Prochot, 2002]. Let 

the set be given, with elements representative for the population  

mxxx  , ... , , 21   . (6) 

Treat these elements as realizations of the n -dimensional continuous random 

variable X  with distribution having density f  and calculate – in accordance with 

Section 2 (using a normal kernel) – the kernel estimator f̂ . Next consider the set of 

its value for elements of set (6), so  

)(ˆ , ... ),(ˆ ),(ˆ
21 mxfxfxf   . (7) 

Particular values )(ˆ
ixf  characterize the probability of occurrence of the element 

ix , therefore the lower the value )(ˆ
ixf , the more the element ix  can be 

interpreted as "less typical", or rather happening more rarely.  

Define now the number  

)1,0(∈r  (8) 

Detection of atypical elements with fuzzy and intuitionistic evaluations 777



establishing sensitivity of the procedure for atypical elements detection. This 

number will determine the assumed proportion of atypical elements in relation to the 

total population, and therefore the ratio of the number of atypical to the sum of 

atypical and typical elements. In practice  

1.0 ,05.0 ,01.0=r  (9) 

is the most often used, with particular attention paid to the second option.  

Let us treat set (7) as realizations of a real (one-dimensional) random variable 

and calculate the estimator for the quantile of the order r . The positional estimator of 

the second order [Parrish, 1990; Kulczycki, 1998] will be applied in the following, 

given by the formula  
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where ]5.0[ += mri , while ][d  denotes an integral part of the number R∈d , 

and iz  is the i -th value in size of set (7) after its sorting, thus  

)}(ˆ),...,(ˆ),(ˆ{},...,,{ 2121 mm xfxfxfzzz =  (11) 

with mzzz ≤≤≤ ...21 .  

Finally, if for a given tested element nx R∈~ , the condition rqxf ˆ)~(ˆ ≤  is 

fulfilled, then this element should be considered atypical; for the opposite 

rqxf ˆ)~(ˆ >  it is typical.  

The above procedure for atypical elements detection, combined with the 

properties of kernel estimators, allows in the multidimensional case for inferences 

based not only on values for specific coordinates of a tested element, but above all on 

the relations between them.  

4. Extended Pattern  

Although, from a theoretical point of view, the procedure presented in the previous 

section seems complete, when the values r  are applied in practice – see condition 

(9) – and the size m  is not big, the estimator of the quantile rq̂  is encumbered with 
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a large error, due to the low number of elements iz  smaller than the estimated value. 

To counteract this, a data set will be extended by generating additional elements with 

distribution identical to that characterizing the subject population, based on set (6).  

The methodology for enlarging a set representative for the investigated 

population is suggested using von Neumann's elimination concept [Gentle, 2003]. 

This allows the generation of a sequence of random numbers of distribution with 

support bounded to the interval ],[ ba , while ba < , characterized by the density f  

of values limited by the positive number c , i.e.  

cxf ≤)(      for every  ],[ bax ∈   . (12) 

In the multidimensional case, the interval ],[ ba  generalizes to the n-dimensional 

cuboid ],[...],[],[ 2211 nn bababa ××× , while jj ba <  for nj  , ... ,2 ,1= .  

First the one-dimensional case is considered. Let us generate two 

pseudorandom numbers u  and v  of distribution uniform to the intervals ],[ ba  

and ],0[ c , respectively. Next one should check that  

)(ufv ≤   . (13) 

If the above condition is fulfilled, then the value u  ought to be assumed as the 

desired realization of a random variable with distribution characterized by the density 

f , that is  

ux =   . (14) 

In the opposite case the numbers u  and v  need to be removed and steps (13)-

(14) repeated, until the desired number of pseudorandom numbers x  with density 

f  is obtained.  

In the presented procedure the density f  is established by the kernel 

estimators methodology, described in Section 2. Denote its estimator as f̂ . The 

uniform kernel will be employed, allowing easy calculation of the support boundaries 

a  and b , as well as the parameter c  appearing in condition (12). Namely:  
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The last formula results from the fact that the maximum for a kernel estimator with 

the uniform kernel must occur on the edge of one of the kernels.  

In the multidimensional case, von Neumann's elimination algorithm is similar 

to the previously discussed one-dimensional version. The edges of the n -dimensional 

cuboid ],[...],[],[ 2211 nn bababa ×××  are calculated from formulas comparable 

to (15)-(17) separately for particular coordinates. The kernel estimator maximum is 

thus located in one of the corners of one of the kernels; therefore  
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ˆmax      following all combinations of ±   .(18) 

The number of these combinations is finite and equal to n2 . Using the formula 

presented, n  particular coordinates of pseudorandom vector u  and the subsequent 

number v  are generated, after which condition (14) is checked.  

5. Fuzzy and Intuitionistic Evaluations  

Let us consider set (6) introduced in Section 3, consisting of elements representative 

for an investigated population, and extended as described in accordance with Section 

4. In taking its subset comprising these observations ix  for which ri qxf ˆ)(ˆ ≤ , one 

can treat it as a pattern of atypical elements. Denote it thus:  
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Similarly, the set of observations for which ri qxf ˆ)(ˆ >  may be considered as a 

pattern of typical elements:  
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Take the mean values of the kernel estimator f̂  on atypical elements (19):  
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Let us define so-called reference values for sets of atypical atw  as well as typical 

tw  elements  

0=atw  (25) 
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Let for any nx R∈ , the functions ),0[: ∞→n
atd R  and ),0[: ∞→n

td R  

be given as  
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informally (they do not fulfil the conditions of a metric or even semi-metric) 

illustratively interpretable as "distances" from reference values (25)-(26), 

standardized by variances (23)-(24), in sets of atypical and typical elements. With the 

above notations, the membership function for the set of atypical elements 

]1,0[→
n

at:Rµ  is defined by the formula  
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where the parameter 0>fc  makes for the degree of fuzziness (standard assumed 

1=fc ). Concerning correct interpretation it is worth modifying in formulas (27)-

Similarly, consider mean squares of deviations for both patterns representing 

atypical and typical elements respectively  
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(28) the parameters atv  and tv  inversely proportional, i.e. atv  is replaced by 

atav  and tv  by avt , while 0>a . Initially it is assumed that 1=a , after which 

its value respectively increases or decreases to get 5.0)( ≅yatµ , where y  is such 

element that rqyf ˆ)(ˆ ≅ .  

The above procedure can be supplemented to generate intuitionistic evaluation. 

Similar to formulas (25)-(28) the "distance" from the quantile estimator 

),0[:)( ∞→n
hm yd R  transposed through the reference point 0>hmw  can be 

introduced, given by  
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Particular functions defining an intuitionistic set are described by the following 

formulas:  

– the function ]1,0[→
n

at:Rµ  of membership to the set of atypical elements  
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– the function ]1,0[→
n

at :Rν  of non-membership to the set of atypical 

elements (membership to the set of typical elements)  
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– the function ]1,0[→
n

at:Rπ  hesitation margin  

)()(1)( xxx atatat νµπ −−=   , (33) 
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where 0>fc  is a parameter indicating the degree of fuzziness (standard 1=fc

). The parameters atv  and tv  are modified inversely proportional, i.e. atv  is 

replaced in formulas (27)-(28) and (30) with atav , and tv  with avt , while 

0>a . Initially it is assumed that 1=a , after which its value respectively increases 

or decreases, to get )()( yy atat νµ ≅ , where y  is such an element that rqyf ˆ)(ˆ ≅

. The value of the parameter hmw  should be established on the basis of individual 

conditions for the task under investigation. Initially one can assume 001.0=hmw , 

and then increase depending on the desired level of )( yatπ , where y  as previously 

is such an element that rqyf ≅)(ˆ ; for instance 5.0)( =yatπ .  

6. Verification Results  

This section presents the results of illustrative numerical verification, which positively 

confirmed the correct functioning of the procedure for detection of atypical elements. 

Consider therefore the one-dimensional case, where the distribution characterizing the 

data in set (6) is bimodal with the following normal (Gauss) components and shares  

)1,3(−N      40%   ,          )1,3(N      60%  . (34) 

Figure 1 displays the fuzzy evaluation. The membership functions to the sets of 

atypical and typical elements were shown there. The results are in line with intuition. 

It is worth noting that part of the membership function for the set of atypical elements 

in the region of the component )1,3(−N  assumes slightly lower values than in the 

region of the component )1,3(N  with a greater and therefore more distinct share. 

Similar conclusions concern the intuitionistic evaluation shown in Fig. 2. 

Additionally, the hesitation margin function in the area of less distinct component 

)1,3(−N  is bigger than in that of the clearer component )1,3(N . Local maximums for 

the hesitation margin function are located on the assumed level 0.5.  
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to the size 
*m , as does the entire procedure, whose particular algorithms are linear or 

quadratic. However, after defining the model's parameters, the actual application of 

the procedure with respect to a single tested element is of linear complexity. It is, 

therefore, worth stressing the possibility of the problem decomposition, and for 

practical uses it is to be recommended that the time-consuming computation of the 

model parameters values be carried out earlier, leaving only rapid testing to be done 

on-line.  

A broader description of the concept presented here, in particular proofs 

of correctness of definitions introduced by formulas (21)-(33), and detailed 

results of verification research, also based on experimental data from medical 

tasks, can be found in the paper [Kulczycki, Kruszewski; 2017]. 
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