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Abstract. The problem of identifying atypical elements in a data set presents
many difficulties at every stage of analysis. For instance, it is not clear which
traits should distinguish such elements, and what more we cannot know in
advance of their natural pattern, which even if it did exist, would in its nature be
significantly limited. The subject of the presented research is the procedure for
transforming the problem of detection of atypical elements from an unsuper-
vised task to a supervised one with equal-sized patterns. This allows a suitable
analysis, in particular the use of diverse well-developed methods of classifica-
tion. Elements are considered atypical by their rare occurrence, which when
coupled with the application of nonparametric methodology enables their
detection not only on the peripheries of the distribution, but also – in the
multimodal case – potentially located inside.
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1 Introduction

Atypical elements (often rashly referred to as outliers) can intuitively be considered as
significantly differing from the rest of a data set (Aggarwal 2013; Barnett and Lewis
1994). The immense diversity of interpretations of such an intuitive definition means
that even the concept of an atypical element itself is ambiguous, from the trivial, where
they are elements furthest away from the remaining population (outliers), to the
functional, when they have the greatest – or rather excessive – influence on a system
operation. This paper will apply the most universal frequency approach, whereby
atypical elements are rare, i.e. the probability of their appearance is faint. Thanks to the
application of distribution-free nonparametric methodology, we can identify atypical
observations not only on the peripheries of the population, but in the case of multi-
modal distributions with wide-spreading segments, also those lying in between such
segments, even if close to the center of the set.

A different problem results from the unsupervised nature of the task, which man-
ifests in the lack of a priori natural pattern of atypical elements. It is worth noting that
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even if it existed, it would obviously occur significantly less than the pattern of typical
ones. The subject of this paper is the transformation of an unsupervised task to a
supervised one with equal-sized patterns, which in consequence enables the use of a
well-developed valuable and distinctive classification apparatus.

The procedure investigated and presented here is ready-to-use without laborious
research. Its easy and illustrative interpretation is particularly valuable.

Section 2 presents the distribution-free statistical kernel estimators methodology.
Then, the basic formula of the procedure for identifying atypical, i.e. rarely occurring,
elements is described in Sect. 3. Due to difficult conditioning, mainly stemming from a
naturally very low number of elements considered atypical, the quality of the procedure
is considerably improved in Sect. 4 by significantly increasing the set of elements
representative for the population. Next, in Sect. 5, patterns of atypical and typical
elements, equal in size, will be generated, which among others form the basis for the
convenient application of classification methods, according to the researcher's prefer-
ences and specifics of the task under consideration. Final comments are shortly pre-
sented in Sect. 6.

A broader description of the concept worked out here and detailed results of
empirical verification can be found in the paper (Kulczycki and Kruszewski 2017a). In
the publication (Kulczycki and Kruszewski 2017b) the procedure design to submit the
result in fuzzy and intuitionistic fuzzy forms is investigated.

2 Nonparametric Kernel Estimators

In the presented method, the characteristics of a data set will be defined using the
nonparametric methodology of kernel estimators. It is distribution-free, i.e. the pre-
liminary assumptions concerning the types of appearing distributions are not required.
A broad description can be found in the monographs (Kulczycki 2005; Wand and Jones
1995). Exemplary applications for data analysis tasks are described in the publications
(Kulczycki et al. 2012; Kulczycki and Charytanowicz 2016; Kulczycki and Kowalski
2016); see also (Kulczycki and Lukasik 2014).

Let the n-dimensional continuous random variable X be given, with a distribution
characterized by the density X. Its kernel estimator f̂ : Rn ! 0;1½ Þ, calculated using
the experimentally obtained m-element random sample xi for i ¼ 1; 2; . . .;m, in its
basic form is defined as

f̂ xð Þ ¼ 1
mhn

Xm

i¼1
K

x� xi
h

� �
; ð1Þ

where m 2 Nn 0f g, the coefficient h[ 0 is called a smoothing parameter, while the
measurable function K : Rn ! 0;1½ Þ of unit integral R

R
n
f̂ xð Þdx ¼ 1, symmetrical with

respect to zero and having a weak global maximum in this place, takes the name of a
kernel.

The choice of the kernel form has – from a statistical point of view – no practical
meaning and thanks to this, it becomes possible to take into account primarily
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properties of the estimator obtained or computational aspects, advantageous from the
point of view of the applicational problem under investigation; for broader discussion
see the books (Kulczycki 2005 – Sect. 3.1.3; Wand and Jones 1995 – Sects. 2.7 and
4.5). In the one-dimensional case (i.e. when n ¼ 1) the normal (Gauss) kernel

Kj xð Þ ¼ 1ffiffiffiffiffiffi
2p

p exp � x2

2

� �
ð2Þ

and the uniform kernel

Kj xð Þ ¼
1
2 dla x 2 �1; 1½ �
0 dla x 62 �1; 1½ �

�
ð3Þ

will be used in the following. The normal kernel is generally held as basic. The uniform
kernel has bounded support and assumes a finite number of values, which will be taken
advantage of later in this paper. In the multidimensional case, a so-called product
kernel will be applied in the following. The main idea here is the division of particular
variables with the multidimensional kernel then becoming a product of n
one-dimensional kernels for particular coordinates. Thus the kernel estimator (1) is then
given as

f̂ xð Þ ¼ 1
mh1h2. . .hn

Xm

i¼1
K1

x1 � xi;1
h1

� �
K2

x2 � xi;2
h2

� �
. . .Kn

xn � xi;n
hn

� �
; ð4Þ

where Kj j ¼ 1; 2; . . .; nð Þ denote one-dimensional kernels, e.g. (2) or (3), hj
j ¼ 1; 2; . . .; nð Þ are smoothing parameters individualized for particular coordinates,
while assigning to coordinates

x1
x2
..
.

xn

2
6664

3
7775 and xi ¼

xi;1
xi;2
..
.

xi;n

2
6664

3
7775 for i ¼ 1; 2; . . .;m: ð5Þ

The above kernels fulfill the additional requirements of the particular procedures used
in the following.

The fixing of the smoothing parameter has significant meaning for quality of
estimation. Fortunately many suitable procedures for calculating its value on the basis
of a random sample have been worked out. For the purposes of the research investi-
gated here, the simplified method (Kulczycki 2005 – Sect. 3.1.5; Wand and Jones 1995
– Sect. 3.2.1) will be applied, according to which

hj ¼ 8
ffiffiffi
p

p
3

W Kj
� 	

U Kj
� 	2 1m

 !1=5

r̂j for j ¼ 1; 2; . . .; n; ð6Þ
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where W Kj
� 	 ¼ R1�1 Kj xð Þ2dx and U Kj

� 	 ¼ R1�1 x2Kj xð Þdx, while r̂j denotes the
estimator of a standard deviation for the j-th coordinate:

r̂j ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

m� 1

Xm

i¼1
x2i;j �

1
m m� 1ð Þ

Xm
i¼1

xi;j

 !2
vuut for j ¼ 1; 2; . . .; n: ð7Þ

As shown in verification testing the presented procedure, this method seems to be
sufficiently precise, and furthermore it is simple and fast. The functional values
occurring in formula (6) are, respectively, for normal kernel (2)

W Kj
� 	 ¼ 1

2
ffiffiffi
p

p ; U Kj
� 	 ¼ 1 ð8Þ

and for uniform (3)

W Kj
� 	 ¼ 1

2
; U Kj
� 	 ¼ 1

3
: ð9Þ

For specific cases the more sophisticated yet effective plug-in method (Kulczycki 2005
– Sect. 3.1.5; Wand and Jones 1995 – Sect. 3.6.1) can be also proposed. It is provided
for one-dimensional tasks but, of course, this method can be also applied in the
n-dimensional case when a product kernel is used, sequentially n times for each
coordinate.

In practice, various modifications and generalizations of the standard form of the
kernel estimator presented above are possible, fitting its properties to specific realities.
It is worth remembering however, that they increase complexity of formulas, their
interpretation becomes more difficult and in consequence the problem is less conve-
nient for potential users to solve. For many aspects concerning the kernel estimators
method, see the classic monographs (Kulczycki 2005; Wand and Jones 1995).

3 Basic Version of Procedure

The basic idea of the presented procedure for identification of atypical elements stems
from the significance test proposed in the work (Kulczycki and Prochot 2002). Thanks
to the application of nonparametric methods it is unnecessary to introduce assumptions
concerning distribution type for an examined population.

Let the set be given, with elements representative for the population

x1; x2; . . .; xm: ð10Þ

Treat these elements as realizations of the n-dimensional continuous random variable X
with distribution having density f and calculate – in accordance with Sect. 2 (using a
normal kernel) – the kernel estimator f̂ . Next consider the set of its value for elements
of set (10), so
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f̂ x1ð Þ; f̂ x2ð Þ; . . .; f̂ xmð Þ: ð11Þ

It is worth noticing that, regardless of the dimension of the random variable X, the
values of set (11) are real (one-dimensional).

Define now the number

r 2 0; 1ð Þ ð12Þ

establishing sensitivity of the procedure for identifying atypical elements. This number
will determine the assumed proportion of atypical elements in relation to the total
population, therefore the ratio of the number of atypical to the sum of atypical and
typical elements. In practice

r ¼ 0:01; 0:05; 0:1 ð13Þ

is the most often used, with particular attention paid to the second option. In certain
applications it is possible to use other, approximate values of the above parameter.

Let us treat set (11) as realizations of a real (one-dimensional) random variable and
calculate the estimator for the quantile of the order r. The positional estimator of the
second order (Parrish 1990) will be applied in the following, given by the formula

q̂r ¼ z1 for mr\0:5
0:5þ i� mrð Þzi þ 0:5� iþmrð Þziþ 1 for mr� 0:5

�
; ð14Þ

where

i ¼ mrþ 0:5½ �; ð15Þ

while d½ � denotes an integral part of the number d 2 R, and zi is the i-th value in size of
set (11) after its sorting, thus

z1; z2; . . .; zmf g ¼ f̂ x1ð Þ; f̂ x2ð Þ; . . .; f̂ xmð Þ
 � ð16Þ

with z1 � z2 � . . .� zm. Application of the positional quantile estimator guarantees its
value does not exceed beyond support of the random variable under investigation, or
rather to be more precise, thanks to the use of kernel (2) with positive values, the
condition q̂r [ 0 is fulfilled.

Generally there are no special recommendations concerning choice of sorting
algorithm (Canaan et al. 2011) used for specifying set (16). However, let us interpret
definition (14) and (15), taking into account condition (13). So, it is enough to sort only
the iþ 1 smallest values in the set z1; z2; . . .; zmf g, therefore about 1-10% of its size.
One can apply a simple algorithm that subsequently finds the iþ 1 smallest elements of
the set z1; z2; . . .; zmf g.

Finally, if for a given tested element x̂ 2 R
n, the condition f̂ ~xð Þ� q̂r is fulfilled, then

this element should be considered atypical; for the opposite f̂ ~xð Þ[ q̂r it is typical.
What is noteworthy is that for the correctly estimated quantities f̂ and q̂r, the above
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guarantees obtaining the proportion of the number of atypical elements to total pop-
ulation at the assumed level r.

The above procedure for identifying atypical elements, combined with the prop-
erties of kernel estimators, allows in the multidimensional case for inferences based not
only on values for specific coordinates of a tested element, but above all on the
relations between them.

4 Extended Pattern of Population

Although, from a theoretical point of view, the procedure presented in the previous
section seems complete, when the values r are applied in practice – see condition (13) –
and the size m is not big, the estimator of the quantile q̂r is encumbered with a large
error, due to the low number of elements zi smaller than the estimated value. To
counteract this, a data set will be extended by generating additional elements with
distribution identical to that characterizing the subject population, based on set (10).

The methodology for enlarging a set representative for the investigated population
is suggested using von Neumann’s elimination concept (Gentle 2003). This allows the
generation of a sequence of random numbers of distribution with support bounded to
the interval a; b½ �, while a\b, characterized by the density f of values limited by the
positive number c, i.e.

f xð Þ� c for every x 2 a; b½ �: ð17Þ

In the multidimensional case, the interval a; b½ � generalizes to the n-dimensional cuboid
a1; b1½ � � a2; b2½ � � . . .� an; bn½ �:, while aj\bj for j ¼ 1; 2; . . .; n.

First the one-dimensional case is considered. Let us generate two pseudorandom
numbers u and v of distribution uniform to the intervals a; b½ � and 0; c½ �, respectively.
Next one should check that

v� f uð Þ: ð18Þ

If the above condition is fulfilled, then the value u ought to be assumed as the desired
realization of a random variable with distribution characterized by the density f , that is

x ¼ u: ð19Þ

In the opposite case the numbers u and v need to be removed and steps (18) and (19)
repeated, until the desired number of pseudorandom numbers x with density f is
obtained.

In the presented procedure the density f is established by the kernel estimators
methodology, described in Sect. 2. Denote its estimator as f̂ . The uniform kernel will
be employed, allowing easy calculation of the support boundaries a and b, as well as
the parameter c appearing in condition (17). Namely:
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a ¼ min
i¼1;2;...;m

xi � h ð20Þ

b ¼ max
i¼1;2;...;m

xi þ h ð21Þ

c ¼ max
i¼1;2;...;m

f̂ xi � hð Þ; f̂ xi þ hð Þ
 �
: ð22Þ

The last formula results from the fact that the maximum for a kernel estimator with the
uniform kernel must occur on the edge of one of the kernels. It is also worth noting that
calculations of parameters (20)–(22) do not require much effort. This is thanks to the
appropriate choice of kernel form.

In the multidimensional case, von Neumann’s elimination algorithm is similar to
the previously discussed one-dimensional version. The edges of the n-dimensional
cuboid a1; b1½ � � a2; b2½ � � . . .� an; bn½ � are calculated from formulas comparable to
(20)–(22) separately for particular coordinates. The kernel estimator maximum is thus
located in one of the corners of one of the kernels; therefore

c ¼ max
i¼1;2;...;m

f̂

xi;1 � h1
xi;2 � h2

..

.

xi;n � hn

2
6664

3
7775

0
BBB@

1
CCCA

8>>><
>>>:

9>>>=
>>>;

following all combinations of � : ð23Þ

The number of these combinations is finite and equal to 2n. Using the formula pre-
sented, n particular coordinates of pseudorandom vector u and the subsequent number v
are generated, after which condition (18) is checked.

The results of verification presented in Sect. 6 show that for the properly extended
set (10), the procedure investigated here for identifying atypical elements allows us to
obtain a proportion of this type of element throughout the whole population, with great
accuracy, sufficient from an applicational point of view.

5 Equal-Sized Patterns of Atypical and Typical Elements

Let us consider set (10) introduced in Sect. 3, consisting of elements representative for
an investigated population, and extended as described in accordance with Sect. 4. In
taking its subset comprising these observations xi for which f̂ xið Þ� q̂r:, one can treat it
as a pattern of atypical elements. Denote it thus:

xat1 ; x
at
2 ; . . .; x

at
mat

: ð24Þ

Similarly, the set of observations for which f̂ xið Þ[ q̂r may be considered as a pattern
of typical elements:

xt1; x
t
2; . . .; x

t
mt
: ð25Þ

Sizes of the above patterns equal respectively mat and mt. Of course mat þmt ¼ m; we
also have
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mat

mat þmtð Þ ffi r ð26Þ

In this way, unsupervised in its nature, the problem of identifying atypical elements has
been reduced to a supervised classification task, although with strongly unbalanced
patterns – taking into account relation (26) with (13), set (24) is in practice around
10-100 times smaller than (25). Classification is relatively conveniently conditioned and
can use many different well developed methods. However most procedures work much
better if patterns are of similar or even equal sizes (Kaufman and Rousseeuw 1990).
Using once again the algorithm presented in Sect. 5, the size of the set can be increased
to mt, so that mat ¼ mt, thus equaling patterns of atypical (24) and typical (25) elements.

Finally, a method for the unsupervised identification of atypical elements, has been
thus brought to supervised classification with two patterns of equal, relatively large
size, thereby creating the conveniently conditioned task with rich and diverse
methodology, allowing for the selection of the best procedure regarding the character of
the problem and user preferences.

6 Final Comments

The operation of the procedure was tested in details. First with the use of generated data
the quantitative aspects were verified, in particular suggestions for fixing parameters.
Figure 1 presents an exemplary decision tree attained for the bimodal distribution:

N �3; 1ð Þ 40%; N 3; 1ð Þ 60%: ð27Þ

This classification method offers an illustrative interpretation of a problem. Thanks to
the equal-sized patterns, the results obtained in this way are close to those obtained
with an unsupervised procedure of identification for atypical elements, however the
potential fundamental analysis of decision trees brings great additional possibilities to
enhance a model as information concerning its correctness is obtained, and flexibly
adapt it to a changing environment.

Fig. 1. Decision tree for bimodal distribution (27); r ¼ 0:1, m ¼ 1; 000, m
 ¼ 10; 000.
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Next, real experimental data taken from medicine (National Health and Nutrition
Examination Survey 2016; National Cancer Institute 2016) were applied to demon-
strate the comprehensive application of the presented procedure. The obtained results
fully positively confirmed the correct functioning of the procedure presented in this
paper. A detailed description of the experimental verification is presented in the paper
(Kulczycki and Kruszewski 2017). The concept’s independence from a distribution
characterizing an analyzed set (in particular multimodality) as well as the dimension-
ality of a problem (within a reasonable range) should be underlined.
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