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Abstract The subject of Bayes classification of imprecise multidimensional
information of interval type by means of patterns defined through precise data (i.e.
deterministic or sharp) is investigated here. To this aim the statistical kernel esti-
mators methodology was applied, which avoids the pattern shape for the resulting
algorithm. In addition, elements of pattern sets which have insignificant or negative
influence on correctness of classification are eliminated. The concept for realizing
the procedure is based on the sensitivity method, used in the domain of artificial
neural networks. As a result of this procedure the number of correct classifications
and—above all—calculation speed increased significantly. A further growth in qual-
ity of classification was achieved with an algorithm for the correction of classifier
parameter values.
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1 Introduction

The current dynamic development in computer technology offers a continuous
increase in both capability and speed of contemporary calculational systems, thus
allowing ever more frequent use of methods which up to now had only been applied
to a relatively limited extent. One of these methods is the analysis of information
which is imprecise in various—depending on a problem’s conditioning—forms, for
example uncertain (statistical methods [8]) or fuzzy (fuzzy logic [10]).

Lately many applications have noted an increase in the use of interval analysis.
The basis for this concept is the assumption that the only available information on
an investigated quantity is the fact that it fulfils the dependence x ≤ x ≤ x̄ , and in
consequence this quantity can be associated with the interval

[x, x]. (1)

Interval analysis is a separate mathematical domain, with its own formal apparatus
based on an axiom of the sets theory [20].

A fundamental application of interval analysis was to ensure the required pre-
cision of numerical calculations, through monitoring errors arising from rounding
numbers [1], however as a result of its continuous development, this field is finding
ever wider uses in engineering, econometrics and other related areas [9]. Its main
advantage is the fact that by definition it models imprecision of a researched quantity,
using the simplest possible formula. In many applications interval analysis shows
to be absolutely sufficient, yet does not require many calculations (thus enabling its
application in highly complex tasks) and is easy to identify and interpret, while also
maintaining a formalism stemming from a convenient mathematical tool. Moreover,
it can be noted that its concept is related to statistical interval estimation, and analysis
of fuzzy numbers with rectangular membership functions.

Dynamic development is also currently taking place in information technologies in
the area of data analysis and exploration [16]. This is due not only to an increase in the
possibilities of themethodology used here, but above all to an increase in accessibility
of its algorithms, up to now a domain only available to a relatively small group of
specialists. Among the fundamental tasks of data analysis and exploration lies that of
classification [7]. It consists of assigning a tested element to one of several previously
selected groups. They are most often given by patterns, which are sets of elements
representative for particular classes. This means that in many problems—including
those where data containing imprecision is investigated—elements defining patterns
are defined precisely (e.g. deterministic in probability approach, sharp for the case
of fuzzy logic, or in relation to notation (1) fulfilling equality x = x).

This chapter offers a complete procedure for classification of imprecise informa-
tion, defined as the interval vector
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⎡
⎢⎢⎢⎣

[x1, x1]
[x2, x2]

...

[xn, xn]

⎤
⎥⎥⎥⎦ , (2)

where xk ≤ xk for k = 1, 2, . . . , n, when the patterns of particular classes
are given as sets of precise data (i.e. deterministic or sharp) elements, i.e. with
xk = xk (k = 1, 2, . . . , n). The classification concept is based on the Bayes
approach, ensuring a minimum of potential losses occurring through classification
errors. For a such formulated task the statistical kernel estimators methodology was
employed, thereby freeing the above procedure from arbitrary assumptions regard-
ing pattern forms—their identification becomes an integral part of the presented
algorithm. A procedure was also developed for reducing the size of pattern sets by
elements having negligible or negative influence on correctness of classification. Its
concept is founded on the sensitivity method, used in the domain of artificial neural
networks, although the intention is to increase the number of accurate classifications
and—above all—calculation speed. Furthermore a method was designed to ensure
additional improvements in classification results, obtained by correcting the values
of classifier parameters. Basic investigations are presented in the chapter [17]. First
research in this subject was described in the work [13].

2 Preliminaries

2.1 Statistical Kernel Estimators

Kernel estimators belong to the group of nonparametric statistical methods. They
allow calculation and clear illustration of characteristics of a random variable distri-
bution, without knowledge of its membership of a given class.

Let (�,�, P) denote a probability space. Let also an n-dimensional random
variable X : � → Rn , with distribution density f , be given. Its kernel estimator
f̂ : Rn → [0,∞) is calculated on the basis of an m-elements random sample
{xi }i=1,2,...,m and defined—in the basic form—by the formula

f̂ (x) = 1

mhn

m∑

i =1
K

(
x − xi

h

)
, (3)

where the positive coefficient h is known as a smoothing parameter, while the mea-
surable function K : Rn → [0,∞) symmetrical with respect to zero, having at this
point weak global maximum and fulfilling the condition

∫
Rn K (x)dx = 1 is termed

a kernel. The choices of form for the kernel K and value for the smoothing parameter
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h are most often made based on the criterion of minimization of integrated square
error [15, 21, 23].

Thus, the formof the kernel K has practically no influence on the statistical quality
of estimation. This chapter applies the generalized (one-dimensional) Cauchy kernel

K (x) = 2

π(x2 + 1)2
, (4)

in the multidimensional case defined using the product kernel concept

K (x) = K

⎛
⎜⎜⎜⎝

⎡
⎢⎢⎢⎣

x1
x2
...

xn

⎤
⎥⎥⎥⎦

⎞
⎟⎟⎟⎠ = K (x1) · K (x2) · ... · K (xn) , (5)

where K denotes here the one-dimensional kernel given by formula (4).
The value of the smoothing parameter h can be calculated in practice with con-

firmed algorithms available in literature. The effective and convenient plug-inmethod
[15, Sect. 3.1.5]; [23, Sect. 3.6.1] is recommended here. In themultidimensional case,
regarding application of the product kernel in this chapter, the smoothing parameter
will be naturally denoted as h1, h2, . . . , hn respectively for subsequent coordinates,
and can be obtained separately for each of them by the above suggested method.

In practice one employs additional procedures to generally increase the quality of
the kernel estimator andfit its features to those of the considered reality. In this chapter
the modification of the smoothing parameter [15, Sect. 3.1.6]; [21, Sect. 5.3.1] will
be applied, thereby significantly improving the properties of the kernel estimator,
particularly in areas where it assumes small values. In classification tasks this takes
place especially near boundaries of specific classes, which makes this procedure
particularly useful here.

Consider therefore nonnegative modifying coefficients

si =
(

f̂∗(xi )

s̄

)−c

for i = 1, 2, . . . , m, (6)

where the constant c ≥ 0 is called a modification intensity, f̂∗ denotes the kernel
estimator in its basic form (3), and s̄—the geometrical mean of the quantities f̂∗(xi )

with i = 1, 2, . . . , m. The final definition of estimator (3) with product kernel (5)
then takes the form:

f̂ (x) = 1

mh1h2... hn

m∑
i = 1

1

sn
i
K

(
x1 − xi,1

h1si

)
K

(
x2 − xi,2

h2si

)
... K

(
xn − xi,n

hnsi

)
,

(7)
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where the natural notations

x =

⎡
⎢⎢⎢⎣

x1
x2
...

xn

⎤
⎥⎥⎥⎦ , xi =

⎡
⎢⎢⎢⎣

xi,1
xi,2
...

xi,n

⎤
⎥⎥⎥⎦ for i = 1, 2, . . . , m (8)

are used, and together with formula (4) will be employed later in this chapter. The
case c = 0 determines the lack of smoothing parameter modification, while together
with an increase in the value c its intensity grows. Corollaries resulting from the
mean-square criterion primarily point to the value

c = 0.5 . (9)

Statistical kernel estimators are dealt with in the monographs [15, 21, 23]. Informa-
tion on the subject of their applications in standard classification tasks can be found
in the books [2, 3, 18, 19].

2.2 Sensitivity Analysis of Neural Networks

When modeling multidimensional problems using artificial neural networks [22],
particular components of an input vector most often are characterized by diverse
significance of information, and in consequence influence variously the result of
the data processing. In order to eliminate redundant—from the point of view of the
investigated task—input vector components, a sensitivity analysis of the network
with respect to particular learning data is often used. A basic factor for network
reduction is sensitivity of the output function with regards to particular input data.

The essence of the sensitivity method [24] consists in defining—after the network
learning phase—the influence of the particular inputs ui for i = 1, 2, . . . , m on the
output value y, which is characterized by the real coefficients

Si = ∂y(u1, u2, . . . , um)

∂ui
for i = 1, 2, . . . , m. (10)

Next, one aggregates the particular coefficients S(p)
i originating from successive

iterations of the previous phase and corresponding to the sensitivity of subsequent
learning data, with p = 1, 2, . . . , P . The result is the final coefficient S̄i given by
the formula

S̄i =
√∑P

p=1 (S(p)
i )2

P
for i = 1, 2, . . . , m. (11)
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After the sorting operation for the vector S̄i according to decreasing values, an
analysis of the relevance of particular components to the result of network oper-
ation is performed, and then the least important inputs are eliminated.

In the general case the above algorithm can be used repeatedly to achieve further
reduction. However, during empirical testing of the classification method developed
here, such action did not bring positive results and so was forsaken.

The application of the above method led to an increase in speed, as well as
reduction of errors of learning and generalization, while at the same time reduc-
ing the input dimension of the artificial neural network by removing information
of little significance or even elimination of data (input vector components) having
unfavorable influence on the obtained result’s correctness. Detailed considerations
concerning the above procedure are found in the publications [4, 24].

3 An Algorithm for Interval Classification

3.1 One-Dimensional Case

This section considers the one-dimensional case, i.e. when n = 1. Let therefore
be given the quantity having undergone the classification procedure, for the case
currently being considered, represented by the (one-dimensional) interval

[x, x] , (12)

while x ≤ x̄ ; if x = x̄ then the classic case is obtained where the quantity is precise
(e.g. deterministic or sharp). Assume also that the real number sets (patterns):

x11 , x12 , . . . , x1m1
(13)

x21 , x22 , . . . , x2m2
(14)

...

x J
1 , x J

2 , . . . , x J
m J

(15)

represent subsequent J marked classes. The upper index, introduced in the above
notation, characterizes membership of an element to a given class. As stated before,
the task of classification consists of deciding to which of these groups tested element
(12) should be assigned.

Let now f̂1, f̂2, . . . , f̂ J denote kernel estimators of probability distribution den-
sity, calculated successively based on sets (13)–(15) treated as random samples—a
description of the methodology used for their construction is contained in Sect. 2.1.
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In accordance with the classic Bayes approach [3], the classified element x̃ ∈ R

should then be given to the class for which the value

m1 f̂1(x̃), m2 f̂2(x̃), . . . , m J f̂ J (x̃) (16)

is the biggest. In the case of information of interval type, represented by element
(12), one can infer that this element belongs to the class for which the expression

m1

x − x

x∫

x

f̂1(x)dx,
m2

x − x

x∫

x

f̂2(x)dx, . . . ,
m J

x − x

x∫

x

f̂ J (x)dx (17)

is the greatest.
Considering the limit transitions x → x̃ and x → x̃ for the fixed x̃ ∈ R, then due

to the continuity of the function K used here, given by formula (4), consequently
implying the continuity of the kernel estimator f̂ j , one obtains

lim
x → x̃
x → x̃

1

x − x

x∫

x

f̂ j (x)dx = f̂ j (x̃) for j = 1, 2, . . . , J. (18)

The expressions specified in formula (17) reduce therefore to the classic type (16).
In formula (17), the positive expression 1/(x − x) can be omitted as irrelevant in

an optimization problem, and so it is equivalent to

m1

x∫

x

f̂1(x)dx, m2

x∫

x

f̂2(x)dx, . . . , m J

x∫

x

f̂ J (x)dx . (19)

What is more, for any j = 1, 2, . . . , J one can note

x∫

x

f̂ (x)dx = F̂(x) − F̂(x) , (20)

where

F̂(x) =
x∫

−∞
f̂ (y)dy . (21)

Taking into consideration dependence (21) substituting equalities defining kernel
estimator (7) (for n = 1) and kernel (4) used, one can analytically calculate that
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F̂(x) =
m∑

i = 1

⎡
⎣ (x2 − 2xxi + x2i + h2s2i ) arctg

(
x−xi
si h

)
+ hsi (x − xi )

x2 − 2xxi + x2i + h2s2i
+ π

2

⎤
⎦ ,

(22)
where again the positive constant 1/mπ has been omitted. Finally it should be
acknowledged that the considered element belongs to the class for which the corre-
sponding expression in formula (19) is the greatest, whereby the integral appearing
there for any j = 1, 2, . . . , J can be effectively calculated using dependences (20)
and (22). The above completes the classification algorithm for the one-dimensional
case.

3.2 The Multidimensional Case

The concept presented in the previous subsection can be naturally generalized for
the multidimensional case, i.e. when n > 1. Thus, if information of interval type is
represented by the interval vector

⎡
⎢⎢⎢⎣

[x1, x1]
[x2, x2]

...

[xn, xn]

⎤
⎥⎥⎥⎦ , (23)

and sets (13)–(15) contain the elements of the space Rn , then one can infer that the
considered element is assigned to the class with the greatest value for the expression

m1

∫

E

f̂1(x)dx, m2

∫

E

f̂2(x)dx, . . . , m J

∫

E

f̂ J (x)dx , (24)

where E = [x1, x1] × [x2, x2] × · · · × [xn, xn]. It is slightly different, though, for
the algorithm for calculating the integrals appearing above. However, thanks to the
properties of the product kernel used here, for any fixed j = 1, 2, . . . , J and the
kernel K , the following dependence is true:

∫

E

K (x)dx = [F (x1) − F (x1)][F (x2) − F (x2)] ... [F (xn) − F (xn)] , (25)

where F denotes the primitive of the function K introduced by definition (5).
Taking into account the definition of the kernel estimator with product kernel (7) as
well as the analytical form of the primitive function contained in formula (22), the
above completes the procedure for classification of interval type information, for the
multidimensional case also.
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3.3 Calculational Complexity of the Algorithm

From the point of view of calculational complexity, it is worth underlining the two-
phased nature of the method presented in this chapter. The first stage contains the
complex procedures for constructing the classifier, which are executed once at the
beginning. The most time-consuming is the algorithm for calculating the smoothing
parameter using the plug-in method of complexity O(nm2). This same complexity
characterizes the calculations for the smoothing parameter modification procedure.

On the contrary, the procedure for calculating the values of the kernel estimator
has the complexity O(nm). Taking into account that the number of the operations
above is equal to the number of assumed classes J , then the calculational complex-
ity of the second phase is linear with respect to all three parameters: n, m and J ,
where m characterizes here the size of particular patterns. It implies a relatively short
calculation time, which after earlier execution of the first phase, in most practical
problems allows for the application of the investigated algorithm in real time, in an
on-line regime.

4 Procedures for Increasing Classification Quality

4.1 Reducing Pattern Size

In practice, some elements of sets (13)–(15), constituting patterns of particular
classes, may have insignificant or even negative—in the sense of classification
correctness—influence on quality of obtained results. Their elimination should there-
fore imply a reduction in the number of erroneous assignations, as well as decreasing
calculation time. To this aim the sensitivitymethod for learning data, used in artificial
neural networks, described in Sect. 2.2, will be applied.

To meet requirements of this procedure, the definition of the kernel estima-
tor will be generalized below with the introduction of nonnegative coefficients
w1, w2, . . . , wm , adjusted by the condition

m∑
i = 1

wi = m , (26)

and mapped to particular elements of the random sample. The basic form of kernel
estimator (3) then takes the form

f̂ (x) = 1

mhn

m∑
i = 1

wi K

(
x − xi

h

)
. (27)
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Formula (7) undergoes analogous generalization. The coefficient wi value may be
interpreted as indicating the significance of the i-th element of the pattern to classi-
fication correctness. Note that if wi ≡ 1, then dependence (27) is regressed to initial
form (3).

In the method designed here, for the purpose of reduction of sets (13)–(15), sepa-
rate neural networks are built for each investigated class. In order to ensure coherence
of the notation below, let now the index j = 1, 2, . . . , J characterizing particular
classes, be arbitrarily fixed.

The constructed network has three layers and is unidirectional, withm inputs (cor-
responding to particular elements of a pattern), a hidden layer whose size is equal
to the integral part of the number

√
m, and also one output neuron. This network is

submitted to a learning process using a data set comprising of the values of particular
kernels for subsequent pattern elements, while the given output constitutes the value
of the kernel estimator calculated for the pattern element under consideration. Apart
from the above topology, as a result of empirical research, the maximum number of
epochs was assumed as 100, the maximum learning error 0.01, the learning speed
0.3, and the momentum coefficient as 0.1. On finishing the learning process, the thus
obtained network undergoes sensitivity analysis on learning data, in accordance with
the method presented in Sect. 2.2. The resulting coefficients S̄i describing sensitiv-
ity, obtained on the basis of formula (11), constitute the fundament for calculating
preliminary values

w̃i =
(
1 − S̄i∑m

j = 1 S̄ j

)
, (28)

after which they are adjusted to the form

wi = m
w̃i∑m

i = 1 w̃i
(29)

to guarantee condition (26). It is worth noting that the form of formulas (10)–(11)
accounting in practice for all coefficients S̄i can not be equal to zero,which guarantees
feasibility of the above operation. The formula for dependence (28) results from the
fact that the network created here is the most sensitive to atypical and redundant
elements, which—taking into account the form of kernel estimator (27)—implies
a necessity to map the appropriately smaller values w̃i , and in consequence wi , to
them. The coefficients (29) characterize—according to the idea presented during
formulation of generalized form (27)—the significance of particular elements of the
pattern, for classification procedure correctness.

Empirical research confirmed the natural assumption that the pattern set should
be relieved of those elements for which wi < 1. (Note that, thanks to adjustments
made by formula (29), the mean value of coefficients wi equals 1.) Decreasing of a
such assumed threshold value resulted in a significant drop in the degree of a pattern
size reduction, while in vicinity of the value 1 the influence on classification quality
was practically unnoticeable, however considerable diminishing implied a sizable
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rise in number of errors. On the other hand, an increase in this value caused a sharp
fall in classification quality, due to a loss of valuable and non-redundant information
included in the pattern.

4.2 Correcting the Smoothing Parameter and Modification
Intensity Values

Subject literature often presents the opinion that the classic universal methods of cal-
culating the smoothing parameter value—most often based on a quadratic criterion—
are not satisfying for the classification task. For example, in the article [6] experimen-
tal research conducted on two classes was presented showing the significant differ-
ence between the value of this parameter when calculated by minimizing integrated
square error, and when obtained by minimizing the number of misclassifications.
However the latter method is difficult in practical use for the multidimensional case,
due to an extraordinarily long calculation time—a problem which becomes more
important the greater the number of classes. Available literature does not propose a
definitive solution for such a task.

This chapter suggest introducing n + 1 multiplicative correcting coefficients
for the values of the parameter defining the intensity of modification procedure c
and smoothing parameters for particular coordinates h1, h2, . . . , hn , with respect
to optimal ones calculated using the integrated square error criterion. Denote them
as b0 ≥ 0, b1, b2, . . . , bn > 0, respectively. It is worth noticing that
b0 = b1 = · · · = bn = 1 means in practice no correction. Next through a com-
prehensive search using a grid with a relatively large discretization value, one finds
the most advantageous points regarding minimal incorrect classification sense. The
final phase is a static optimization procedure in the (n+1)-dimensional space, where
the initial conditions are the points chosen above, while the performance index is
given as

J (b0, b1, . . . , bn) = #{incorrect classi f ications} , (30)

when # denotes the power (size) of a set. The value of the above functional for a fixed
argument is calculated with the help of the classic leave-one-out method. This is an
integer—to find the minimum a modified Hook-Jeeves algorithm [11] was applied.

Following experimental research it was assumed that the grid used for primary
searches has intersections at the points 0.25, 0.5, . . . , 1.75 for every coordinate.
For such intersections the value of functional (30) is calculated, after which the
obtained results are sorted, and the 5 best become subsequent initial conditions for
the Hook-Jeeves method, where the value of the initial step is taken as 0.2. After
finishing every one of the above 5 “runs” of this method, the functional (30) value
for the end point is calculated, and finally among them is shown the one with the
smallest value.
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5 Final Remarks and Conclusions

This chapter presents the complete Bayes algorithm—thereby ensuring minimum
potential losses—for the classification of multidimensional imprecise information
of interval type, where patterns of particular classes are given on the basis of sets
of precisely defined elements, with no limits to the number of classes. In addition
two optional procedures are provided, which improve and enhance the quality of
classification: a reduction in pattern size and a correction of the classifier parameter
values.

Numerical testing wholly confirmed the positive features of the method worked
out. It was carried out with the use of pseudorandom and benchmark data. In par-
ticular, the results show that the classifying algorithm can be used successfully for
inseparable classes of complex multimodal patterns as well as for those consist-
ing of incoherent subsets at alternate locations. This is thanks to the application
of the statistical kernel estimators methodology, which makes the above procedure
independent of the shapes of patterns—their identification is an integral part of the
presented algorithm. As shown by numerical verification, the algorithm has benefi-
cial features in the multidimensional case too. The results also compared positively
to those obtained by applying support vectors machines as well as by the two natural
methods.

In particular, during numerical testing it was established that, after applying the
procedure for reducing pattern sets, presented in Sect. 4.1, the number of wrong clas-
sificationswas lowered by approximately 15%,while the size of patternswas reduced
by approximately 40%. The conjunction of these results is particularly worthy of
attention: while appropriately reducing pattern sizes, which does imply a significant
increase in calculation speed, the classification quality is also importantly improved.
In addition, the procedure of correcting the smoothing parameter and intensity of its
modification, presented in Sect. 4.2, conducted after the reduction of patterns caused
a further decrease in the number of classification errors to approximately 14%.

The taskof classifying interval informationbasedonprecise data canbe interpreted
illustratively with the example where the patterns present actual, precisely measured
quantities, while intervals being classified represent uncertainties and imprecision
in plans, estimations or difficult measurements to make. In particular, pattern sets
may consists of very accurate measurements, in which errors are practically ignored,
while the classified interval constitutes a measurement taken from another, much less
accurate apparatus or carried out in much worse conditions. Another example of the
application of this kind of classification is the possibility of treating precise data as
actual information from the past, e.g. temperature or currency exchange rates, while
the classified element represents a prognosis which by nature is limited in precision.

In particular, the method investigated here can be applied for purposes of the
diagnosis process [5, 12, 14]. Namely, let interval (12) or interval vector (23) rep-
resent a quantity or n quantities, respectively, whose values attest to the current
or—in the case of fault prognosis—predicted technical state of a supervised device.
Because of measurement errors and natural fluctuations, the interval form can be
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justified in many practical tasks. Let also sets (13)–(15) constitute patterns of partic-
ular types of possible faults. The classification procedure presented in this chapter
allows for precise diagnostic readings to be obtained, with regard to interval character
of investigated quantities.
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