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The aim of this paper is to present a novel method of data sample reduction that can
be applied, in particular, to the classification of interval type imprecise information.
Its concept is based on the sensitivity method, inspired by artificial neural networks,
while the goal is to increase the number of apposite classifications, and, consequently,
to increase calculation speed. As evident in this paper, the use of reduction algorithm
eliminates the particular elements of all data sample patterns which have insignificant
or negative influence on the correctness of classification. The methodology was tested
on pseudo-random and real data, as well as by way of comparative analysis with similar
task algorithms. The presented procedure was also tested for use in situations in which
the data sample representing the individual classes had been obtained by the k-means
clustering procedure.

Keywords: Data sample reduction; sensitivity method for artificial neural networks; data
analysis; classification of imprecise information; interval data.

1. Introduction

In current literature, a reducing algorithm dedicated to the issue of the classifying
interval type information practically does not exist. Recently, interest in interval
analysis [Drakengren and Jonsson (1997)] has, however, grown, notably amongst
individuals pushing the boundaries of practical procedure applications [Jaulin et al.
(2001)]. For this reason, the following methodology was designed using advanced
algorithms based on statistical and computational intelligence methods. The basis
here is the assumption that the only accessible information about the investigated
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quantity x ∈ R is that it fulfils the condition x ≤ x ≤ x, and consequently, can be
treated as the interval [x, x].

Classification of imprecise information of an interval type was firstly described
in Zhao et al. [2005], in which the authors used the SVM procedure [Duda et al.
(2000)]. In this algorithm, information containing interval type data was treated as
an additional attribute type of the material under consideration (as a supplement to
the classical continuous-type data). As presented in the cited papers, the algorithm
was described very briefly and rather seems to be used as a means of indicating new
complications than solving the set problem. Another relatively simple method for
classifying interval type information is the procedure for patterns counting, which
consists of reckoning how many elements of the learning sample are contained in
the interval which is under consideration [Kulczycki and Kowalski (2011)].

The main subject of the research presented here is the derivation of a reduction
data sample for application within classification procedures. The tested element is
given as an interval vector, but the data representing each class consists of elements
defined uniformly e.g., deterministic when applying common statistical methods
[Gil and Hryniewicz (2009)] or sharp when utilizing fuzzy logic [Kacprzyk (1997)].
A classification procedure [Duda et al. (2000); Ghost et al. (2006)] has been worked
out for reducing samples inclusive of elements which have negligible or even negative
influence on the correctness of classification. Its concept is based on the sensitivity
method, inspired by artificial neural networks, while the goal is to increase the
number of apposite classifications, as well as, in consequence, to enhance calculation
speed. The concept of classification is based on the Bayes approach, ensuring a
minimum of potential losses arising from misclassification. For a such-formulated
problem, the methodology of statistical kernel estimators is used, as this frees the
investigated procedure from arbitrary assumptions with respect to the ‘shapes’ of
the utilized samples sets.

A reduction of the sample size can be achieved by the way of the employment
of a broad spectrum of diverse kinds of methods. The first such group of algorithms
is based on the idea of random reduction, which consists of rejecting in advance
a certain percentage of elements from the sample set [Han and Kamber (2006)].
Another group of methods is built upon the notion of k-nearest neighbors (k-NN),
as introduced in the work by Pal and Mitra [Mitra et al. (2002)]. These methods
assume the replacement of some elements of data set components by other more
representative sample elements. Another example of such recognized procedures is
directly related to the main methodology used in the employment of the principal
algorithm. As to the use of statistical kernel estimators, the reduction based on
Weighted Parzen Windows (WPW) can be included [Babich and Camps (1996)].
In this procedure, in order to reduce sample size, the algorithm uses information
about the value of the probability density function for each data, as derived from
a learning sample set. In so doing, during the reduction process, data points are
weighted on a sliding basis and the least interesting deleted. The last group of now
commonly utilized reduction procedures are that of the use of algorithms based
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on computational intelligence methods which are dedicated for employment within
data mining procedures [Lukasik and Kulczycki (2011)].

The task of classifying an interval information set as based on a precise data
pattern set, can be interpreted illustratively with the example wherein the patterns
present actual, precisely measured quantities, while the intervals being classified
represent uncertainties and imprecision in plans, estimations or measurements that
are difficult to make. In particular, such pattern sets may consist of very accurate
measurements (in which errors are practically ignored), while the classified interval
constitutes a measurement taken from another, much less accurate apparatus or
carried out in much worse conditions. Another example of the application of this
kind of classification is the possibility of treating precise data as actual information
from the past, e.g. temperature or currency exchange rates, while the classified
element represents a prognosis, which by nature, is limited in precision. In these
cases, the cardinality of the pattern data is often very large. Therefore, it is advisable
to use an intelligent method to reduce the unnecessary or redundant components
inside the pattern sets.

This paper is organized as follows. The first part of the paper is devoted to the
description of the investigated methodology. In the next section, certain preliminary
aspects of the techniques under consideration are presented. The first part of this
section is concentrated upon the statistical kernel estimation methodology used
in this work, after this, a short description of a classification algorithm is to be
introduced. In the following section of this paper, neural network sensitive analysis
is put forward. In the subsequent part, a data reduction algorithm will be described,
then the numerical results based on benchmark and synthetic data sets as generated
by random value generators are to be shown. Finally, some concluding remarks with
respect to the presented approach are set out.

The preliminary version of this investigation was presented as a conference short
paper by Kowalski and Kulczycki [2010].

2. Classification of Imprecise Information

Initially, within this section, statistical kernel estimators methodology will be
shortly described. As shown, this method is useful as an algorithm for pattern
reduction, as well as a procedure for classification. In the second part of this section,
Bayes classification of interval information will be presented.

2.1. Statistical kernel estimators

Consider an n-dimensional random variable, with a distribution having the density
f . Its kernel estimator f̂ : R

n → [0,∞) is based on the m-elements data sample
x1, x2, . . . , xm and can be defined as

f̂(x) =
1

mhn

m∑
i=1

K

(
x − xi

h

)
, (1)
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Fig. 1. Kernel estimator.

where the positive coefficient h is called a ‘smoothing parameter’. The function
K(x) : R

n → [0,∞), measurable, symmetrical relative to zero, with a weak global
maximum at this point, and fulfilling the condition

∫
Rn K(x) dx = 1, is known as a

‘kernel’.
The interpretation of the above definition is illustrated in Fig. 1 for a one-

dimensional random variable and a 8-element pattern sample.
In this approach, the generalized (one-dimensional) Cauchy kernel

K(x) =
2

π(x2 + 1)2
(2)

will be used. Within a multidimensional case, the function (2) will be generalized
by the product kernel notion

K(x) = K




x1

x2

...
xn


 = K(x1) · K(x2) · . . . · K(xn), (3)

where K denotes the one-dimensional Cauchy kernel described above.
The value of the smoothing parameter h can be obtained by way of a very

effective algorithm called the ‘plug-in method’ [Wand and Jones (1995)]. In a
n-dimensional case, the parameter must be denoted as h1, h2, . . . , hn and calcu-
lated separately for each dimension. Accordingly, the smoothing parameter is then
given as

h =
[

W (K)
U(K)2

8
√

π

3m
σ̂9

] 1
5

, (4)
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where

W (K) =
∫

Rn

K(x)2dx, (5)

U(K) =
∫

Rn

x2K(x)dx, (6)

while σ̂ denotes an estimator of standard deviation obtained from sample
x1, x2, . . . , xm. For the Cauchy kernel (2) suggested above, coefficients (5) and (6)
amount to W (K) = 1 and U(K) = 5/4π.

In dealing with practical mathematical applications, significantly better results
are obtained by introducing coefficients individuating parameters h for each ker-
nel K. In such investigations, a modification of the smoothing parameter will be
applied. Moreover, it should be noted that in a classification task, this procedure is
particularly important with regard to ensuring better estimation of the probability
density especially at the borders regions of individual classes.

Consider, therefore, the non-negative modification coefficients

si =

(
f̂∗(xi)

s

)−c

, (7)

for i = 1, 2, . . . , m, where c ≥ 0 is called the ‘modification intensity’, and s denotes
the geometrical mean of the kernel estimators values f̂∗(xi), given in its basic form
(1). When c = 0, the lack of smoothing parameter modification takes place, and
with the increase in value of the parameter c, the intensity of the procedure grows.
Based on the results from the mean-square criterion, the following value has been
recommended

c = 0.5. (8)

Finally, the kernel destiny estimator defined in Eq. (1) can be written in the
following form taking into account the coefficients of modifications smoothing
parameter

f̂(x) =
1

mh1h2...hn

m∑
i=1

1
si
K
(

x1 − xi,1

h1si

)
K
(

x1 − xi,2

h2si

)
...K

(
x1 − xi,n

hnsi

)
(9)

with natural notations as used hence

x =


x1

x2

...

xn

, xi =


xi,1

xi,2

...

xi,n

. (10)

More information concerning statistical kernel estimation methodology can be found
in Kulczycki [2009], Silverman [1986] and Wand and Jones [1995].
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2.2. Bayes classification of interval information

In this subsection, a method of classifying imprecise information will be presented.
The main reduction algorithm described in next part of the on-going paper is par-
ticularly dedicated to being used with the procedure for classifying interval infor-
mation, and the application of both algorithms made mention of herein, results in a
very good classification performance. The effects of numerical verification as shown
in Sec. 5 is a confirmation of this thesis. The classification algorithm is the original
idea of the author of this publication, and it was the main subject of his doctoral
dissertation [Kowalski (2009)] and other scientific research Kulczycki and Kowalski
(2015).

If we denote f̂1, f̂2, . . . , f̂J as particular kernel density estimators associated
with the data samples representing every considered class, according to the Bayes
approach, which ensures a minimum of potential losses due to misclassification, if
samples size m1, m2, . . . , mJ are proportional to the ‘frequency’ of occurrence of
the elements from each class, then the tested element x̃ ∈ R belongs to this class
for which the value m1f̂1(x̃), m2f̂2(x̃), . . . , mJ f̂J(x̃) is the largest. Consequently, in
situations wherein the desired information is given by the interval [x, x], the tested
element belongs to this class for which the value

m1

x − x

∫ x

x

f̂1(x) dx,
m2

x − x

∫ x

x

f̂2(x) dx, . . . ,
mJ

x − x

∫ x

x

f̂J(x) dx (11)

is the largest. In the above formula, the positive constants 1/(x−x) can be omitted
as being negligible for the optimization problem under consideration, therefore,
finally, it can be presented in the following form

m1

∫ x

x

f̂1(x) dx, m2

∫ x

x

f̂2(x) dx, . . . , mJ

∫ x

x

f̂J(x) dx. (12)

Moreover, for every f̂1, f̂2, . . . , f̂J that is fixed∫ x

x

f̂(x) dx = F̂ (x) − F̂ (x), (13)

where F̂ means the primitive of the function f̂ . For the Cauchy Kernel (2) used
here, the following analytical formula can then be obtained

F̂ (x) =
1
m

m∑
i=1

[
(x2 − 2xxi + x2

i + h2) arctan(x−xi

h ) + h(x − xi)
x2 − 2xxi + x2

i + h2
+

π

2

]
(14)

(note that the constant 1/π could be again omitted). The above formula for the
additional procedures that are often employed in the practical applications utilizing
kernel estimators was easily generalized through the modification of the smoothing
parameter s1, s2, . . . , sm [Kulczycki (2008)]. Finally, formulas (12)–(14) define a
complete algorithm of classification in the one-dimensional case.
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In the multidimensional case, when information is represented by the interval
vector

[[x1, x1], [x2, x2], . . . , [xn, xn]]T (15)

the tested element belongs to the class for which the value

m1

∫
E

f̂1(x) dx, m2

∫
E

f̂2(x) dx, . . . , mJ

∫
E

f̂J(x) dx (16)

is the largest. In (16) E = [x1, x1] × [x2 × x2] × · · · × [xn, xn]. According to
the properties of the product kernel used here, calculations of the values of the
n-dimensional integrals stated above, can be decomposed to the n-independent one-
dimensional tasks, due to the dependence∫

E

K(x) dx = [J (x1) − J (x1)][J (x2) − J (x2)] . . . [J (xn) − J (xn)], (17)

where J means the primitive function of the (one-dimensional) kernel K. Taking
into account the formulas (13) and (14) obtained earlier for the one-dimensional
case, it completes the algorithm for classification of interval information in the
multidimensional case.

3. Data Sample Reduction

This section is the central part of this paper. The aim of this section is to present a
novel method of data sample reduction for the classification of interval information
that was shown in the previous section. Its concept is based on sensitivity analysis,
and was inspired by artificial neural networks research. The main goal of this pro-
cedure application is to increase the number of proper classifications, while reduc-
ing the cardinality of the pattern data, and, consequently, decreasing calculation
load.

Initially, in this section, sensitivity analysis, as used within the area of artificial
neural networks, will be presented. In the second part of this section, the main
algorithm for data sample reduction will be introduced, and its properties will be
discussed.

3.1. Sensitivity analysis in feedforward neural networks

While solving complex tasks using artificial neural networks, particular elements
of an input vector have diverse influence on the appearing phenomena. Thus, the
information introduced by such elements could be important, neutral or even harm-
ful in the considered context. In order to determine the importance, when a desired
goal is being striven for, of particular elements, the sensitivity analysis of a neural
network response for a training data set can be applied [Engelbrecht et al. (1999);
Engelbrecht (2001); Yeung et al. (2010)].

1650018-7
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Consider a three layer neural network [Zurada (1992)] with sigmoid activation
function

F (z0, z1, z2, . . . , zk) =
1

1 + exp(−b
∑k

i=0(wizi))
, (18)

where zi and wi denote ith input and its weight, and the positive coefficient b is
called a ‘shape parameter’. Additionally, assume that

X1 = (z1,0, z1,1, . . . , z1,m),

X2 = (z2,0, z2,1, . . . , z2,q),

X3 = (z3,0),

(19)

are a neuron outgoing signal that forms the input, hidden and output layers, respec-
tively. Moreover, assume in the presented paper, that q is established (for the par-
ticular classification problem under consideration) as an integer part of value

√
m.

In addition, assume that W2 and W3 are also denoted as matrices of the neural
networks hidden and output layers weights, respectively. Hence, training data v, as
a pair, are defined as

v = (X (p)
1 , T (p)), (20)

where T (p) is the target learning vector and p denotes the number of elements in a
learning set (p = 1, 2, . . . , P ).

The main idea of the applied ‘sensitive method’ consists of calculating, after a
learning phase, the values of coefficients representing the influence of each element
of the input data z1, z2, . . . , zm, on the output y. For each neural network input,
the coefficient is defined as

S
(p)
i =

∂y(z1, z2, . . . , zm)
∂zi

, (21)

for i = 1, 2, . . . , m. These coefficients are based on the parameters given above, and
can be calculated as

S
(p)
i = F ′(II)

q∑
k=1

F
′(I)
k w3,1,kw2,k,1, (22)

where F ′(II), F ′(I) are the value of the derivative of the output and the hidden layer
activation function, respectively. To aggregate parameters (22) for all P training
pairs (20), the mean square average sensitivity coefficients are defined by

Si =

√√√√∑P
p=1

(
S

(p)
i

)2

P
. (23)

The final result of this methodology is a proper (with respect to the problem under
investigation) modification of neural network weights and structure, based on the
sensitivity coefficients obtained in such a way.
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3.2. Data reduction procedure

As stated earlier, in many practical tasks, the individual elements of the particular
samples set that is of interest could be important, neutral or even harmful from
the point of view of deriving the appropriate results of the classification procedure
considered here. A sensitivity analysis of neural networks will be used in the follow-
ing so as to show how to improve its quality, as well as, to enhance its calculation
speed.

Consider the generalized definition of the kernel estimator

f̂(x) =
1

mhn

m∑
i=1

wiK

(
x − xi

h

)
, (24)

where the non-negative coefficients w1, w2, . . . , wm are such, that
∑m

i=1 wi = m can
be interpreted as revealing the ‘importance’ of particular elements of the sample
x1, x2, . . . , xm.

For the data reduction procedure, the neural networks were constructed for
every class separately, according to the information presented in Sec. 3.1. Now let
us assume that class index (j = 1, 2, . . . , J) will be fixed. In a learning procedure,
inputs (20) of these networks correspond to particular elements of the samples using
the kernel function (2)

X1 = ((K(xp|x1,h,s1), K(xp|x2,h,s2), . . . , K(xp|xm,h,sm)) (25)

while the outputs are defined as particular values of the kernel estimator (9) for
argument xp, where p index denotes the individual elements of the artificial neural
network learning sample. In this case, the value p is equal to the cardinality of the
sample m.

In so-doing, the following neural network learning parameters were used: max-
imal number of epochs — 100, maximal learning error — 0.015, and, finally the
learning rate (learning speed) parameter — 0.3 (an explanation of the adopting of
the afore-mentioned parameters of the learning process will be put forward in the
next part of this section).

After employing the back-propagation learning algorithm, a sensitivity analysis
takes place according to the method presented in the previous subsection. Using
Eq. (23), coefficients describing sensitivity Si are used to calculate the preliminary
value of the weights

w̃i =

(
1 − Si∑m

j=1 Sj

)
, (26)

in such way, the obtained values are normalized according to the following formula

wi =

(
m

w̃i∑m
j=1 w̃j

)
. (27)

1650018-9
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In formula (26) it is assumed that the constructed neural network is the most
sensitive to outlier elements, as well as to redundant elements. Regarding the gen-
eralized definition of the kernel estimator Eq. (24), for the previous mentioned
values, the lower values w̃i and weights wi are needed. Hence, the values of the
coefficients (27) represent then the ‘importance’ of the sample elements within the
classification problem.

By way of empirical research, it can be naturally assumed that elements are
going to be removed for which wi < 1(i = 1, . . . , m). This fixed value can be called
a ‘boundary weight’. Here, it is good to recall that elements wi were normalized
in (27), this implies that the average value will equal 1. The act of decreasing
such assumes that the threshold value in process research results in a significant
reduction in the degree of erasing patterns, and that the number of misclassification
will only gently arise. Moreover, in the neighborhood of a point 1, the effect on the
quality of classification is practically negligible. On the other hand, an increase of the
threshold value results in the rapid growth of the number of misclassifications. This
effect is brought about by the loss of the important and nonredundant information
contained in the set of patterns.

Figure 2 serves to illustrate the above-mentioned procedure. In this example-
research, the classification of two classes was worked out. Each class was represented
by a 50 element pattern obtained from a normally distributed random numbers
generator. Herein, the following parameters are employed: average value 0 for first
class and 2 for the second and standard deviation 1 for both. The validation sample
contains 1,000 interval type elements for each class.

Fig. 2. The number of misclassifications depending on the boundary value w that is in use.

1650018-10
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Fig. 3. The first class patterns with corresponding coefficients wi.

Furthermore, Figs. 3 and 4 show the weights attached to the individual elements
of both sets of patterns, as obtained from the sensitivity analysis of the artificial
neural network. Here, it can be seen that elements with weight of smaller than the
fixed threshold value 1 were assigned to some elements of an atypical nature (out-
liers), as well as to some elements of the areas of increased data density. The latter
were treated by the algorithm as being redundant, and their roles were adopted by
elements considered more representative, those with weights greater than 1. There-
fore, in Figs. 3 and 4, all components intended for reducing (i.e., the coefficient
wi < 1) have been marked with a × symbol, whereas, elements indicated by a dot
(i.e., wi ≥ 1) constitute a new set of patterns, in this case, the patterns employed
within the classification task. Moreover, within the mentioned figures, a solid line
indicates the border defined by threshold value 1. As seen in these graphs, the algo-
rithm for a data reduction mainly focuses on the removal of the redundant, and, in
addition, it focuses upon selected items of atypical nature. The prior mentioned fact
is particularly important when using the main procedure as a preprocessing algo-
rithm for classification tasks. Removal of all or most of the elements with atypical
nature, creates significant change in the boundaries between classes, and, conse-
quently increases the number of misclassifications.

In the following part of this section, the configuration of the neural network
used for sensitivity analysis will be explained. As previously mentioned, for the
data reduction tasks, a three-layered neural network, in which all neurons have a
sigmoidal transfer function (18), is used. As a result of numerical tests, it was found

1650018-11
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Fig. 4. The second class patterns with corresponding coefficients wi.

that the most preferred number of neurons existing in the hidden layer (i.e., the
second) is an integer part of value

√
m, where m describes the numbers of partic-

ular pattern data that have been found within the investigated class. The act of
decreasing such established value induces a significant decrease in the quality of
neural networks learning. Consequently, this implicates that the number of misclas-
sifications will arise. The afore-mentioned outcome greatly reduces the possibility
of applying of such a network.

On the other hand, increasing the number of neurons in the hidden layer results
in a slight decrease in mean square error during training network activity, but
highly increases the duration of the learning process. In this case, in the course
of verification tests, a strong network susceptibility to overfit was reported. The
aforementioned induces much worse results within the sensitivity analysis, which
implies an increase in the error generated by a particular classifier based on the
reduced data.

As a result of a number of numerical simulations, the learning rate (lr) parameter
was established and recommended as 0.3. The learning rate is a training parameter
that controls the size of weight and bias changes in the training procedure. In
Table 1, the influence of this parameter on the speed of learning can be seen.

This table presents the number of iterations (epochs) needed to achieve an estab-
lished learning Mean Squared Error (MSE), with a fixed lr parameter. During these
tests, it was found that the learning wherein the error is reduced below 0.02, gives
the desired results, i.e., appropriate quality data reduction, and, hence, brings about
an improvement of the classification results. Therefore, achieving a MSE learning

1650018-12
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Table 1. Number of epochs in neural training
process.

lr

Learning error 0.9 0.7 0.5 0.3 0.1

0.02 18 15 19 20 26
0.015 98 87 80 59 77
0.01 350 410 286 223 289

error below 0.015 is recommended as being the terminal condition of the applied
neural network training algorithm.

In the table under consideration, for lr parameters larger then 0.3 (i.e., 0.5, 0.7
and 0.9), it is quite quickly evident that an error 0.02 is achieved, but that the
further learning process is characterized by stagnation. In this case, this means
that the error of 0.015 is obtained in a considerably longer time interval than in the
case of the parameter lr being equal to 0.3. For comparison, in the last row of the
table, a learning error of 0.01 was provided. The results obtained here only greatly
underline these explanations.

Table 2. Convergence of the learning process.
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Table 2. (Continued)

lr MSE of learning Gradient of MSE
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Furthermore, increasing the lr parameter results in an increased value of each
coordinates in the vector of weights increment in each iteration of learning process —
as based on the back-propagation algorithm. As a consequence, there is a rapid dip
of error (within the first row of the table) and then the search for a better solution
requires more time (epoch).

On the other hand, a reduction of lr (the last column of the table) increases
the number of iterations needed to obtain the established error. This is a result
of movement in the space of solutions by way of small steps at any one time.
The foregoing comments are a natural result of the use of gradient methods for
optimization of network weights.
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Table 2 introduces plots of the convergence of learning process for the various
parameters lr. In the second and third columns, both diagrams of the MSE error
and its gradient, respectively, are located. Graphs of these plots, in showing the con-
vergence of the learning process, confirm the above thesis. In addition, whereas the
graphs depicting the gradient of the MSE error (during learning of neural network)
indicate that with the recommended parameter lr = 0.3, the greatest variability
comes about in the first 100 epochs. Moreover, the cases of lr parameter in 0.9 or
0.7 indicate that significant changes in the neural network weights are carried out
in a much larger number of iterations: 250 and 200, respectively (thus later than
in the previous case), whereas for lr values of 0.5 and 0.1, the value of the gradient
of not greater than 0.015 is obtained from about the 150 epoch of the neural net-
work training process. In conclusion, for the recommended parameter learning rate,
lr = 0.3, the figure of 100 was adapted as being the maximum number of preferred
iterations (epochs).

Apart from Table 2, for confirmation for the establishment of these parameters,
Table 3 reveals the values of MSE error that were obtained in 100 training epochs
for a fixed learning speed (lr) parameter.

Algorithm 1 Procedure for reduction data set

1: {main loop}
2: for j = 1 to J do
3: Xj - data pattern set in j class
4: Determine the topology of the ANN
5: Create patterns for learning neural network
6: Train artificial neural network
7: Perform sensitivity analysis for learning data Xj

8: Normalize the sensitivity coefficients wj

9: Sort Xj on the basis of the coefficients wj

10: Eliminate neutral and negative elements from Xj

11: end for
12: return Xred - reduced data pattern sets

What is more, Algorithm 1 reveals all activities that are related to the reduction
algorithm. As mentioned at the beginning of this section, reduction tasks are carried
out separately for each of the considered J classes.

Table 3. The MSE in the 100 epoch of the training
process.

lr rate 0.9 0.7 0.5 0.3 0.1

mse 0.0149 0.0147 0.0141 0.0131 0.0136
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4. Complete Classification Algorithm with Reduced Data Set

In this part of the on-going paper, the authors will present a complete classification
algorithm with reduced data set. In doing so, Fig. 5 illustrates all procedures which
fall within the main algorithm.

Fig. 5. Flowchart of algorithm for classifying interval information with a reduced data set.
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Herein, the proffered flowchart consists of two parts. The first, located above
the dashed line, exhibits all relevant steps related to the construction of the interval
Bayes classifier that incorporates the reduction procedure. The second, located at
the bottom part of Fig. 5, reveals the classification of the new element. Here, the
knowledge developed and presented in Sec. 2 will be employed.

When initializing the algorithm, the patterns representing the class must firstly
be distinguished. In the absence of so-doing, a clustering procedure must be under-
taken. In the algorithm under consideration, the simple and rapid k-means method
[Wu and Kumar (2009)] is recommended, and by way of its use, the collection of
pattern sets representing each class is obtainable.

In the next phase of the algorithm, the parameters of the Kernel Density Esti-
mator, as presented in Sec. 2.1 should be calculated separately within each of
the previously selected classes. Thus, in order to obtain a smoothing coefficient
hj(j = 1, 2, . . . , n), the plug-in procedure should be adopted, and done so in accor-
dance with an assumed type of product kernel (3).

Next, the coefficients of modification of smoothing parameter si (i = 1, 2, . . . , m)
according to an algorithm based on Eqs. (7) and (8), should be computed.

In the subsequent step, the optional procedure of bounded domains for one- or
multi-dimensional case can be used. This operation is very often employed when
the natural domain of a density to be estimated, is not the whole real number
set, but is an interval bounded on one or both sides. For example, the age data
and the length of flowers are measurements of positive quantities, and so it will be
preferable for many purposes to obtain density estimates f̂ , for which f̂(x) is zero
for all negative x. However, the bounded domains can also be realized by the use
of an identical boundary parameter for every coordinate of domain dimension, and
by way of employing different boundary coefficients for each of these. More details
on the use of the bounded domains procedure in problems of classification can be
found in Kowalski [2009].

The next relevant stage in the main procedure is to create a pattern data set
for each class, and to analyze the learning data in accordance with the procedure
set out in Secs. 3.1 and 3.2.

Based on the above step, the sensitivity coefficients Si and the calculated values
of weights wi, a reduction in each of the considered pattern sets takes place. The
detailed course of action in this stage was described in the previous section.

Again, the parameters of the kernel density estimator (9) should be calculated —
due to the change of the content of the pattern data sets. In particular, this should
be done to obtain the smoothing parameters, as well as the coefficients of mod-
ification of the smoothing parameter. The derived values are the starting point
for classifying the new element which contains interval type information. The new
tested (classified) element is then subjected to the classification procedure for either
a one-dimensional or a multi-dimensional problem as described in Sec. 2.2.

More information on the classification of interval information can be found
in Kowalski [2009] and Kulczycki and Kowalski [2011].

1650018-17



2nd Reading

January 20, 2016 16:22 WSPC/0219-8762 196-IJCM 1650018

P. A. Kowalski & P. Kulczycki

5. Numerical Results

The verification of correctness of the method presented in this paper for the neural
reduction of data sets for classifying interval information was conducted by way of
numerical simulation.

The following are the results for data obtained by the use of a random number
generator with a normal distribution and with a given vector of expected value
and covariance matrix (or linear combinations thereof), as derived from the imple-
mented multivariate normal distribution generator based on the concept of Box-
Muller [Brandt (1999)].

The quality assessment methods presented here were obtained by generating
a random number of the assumed distribution, and by way of an analysis of the
results of an assessment of the correctness of the classification procedures for both
data types: interval, and (for comparison) unambiguous. In order to ensure the
repeatability of the results, for each of the pseudo-random sets, the seed value that
defines it, was strictly determined.

After obtaining the sequences of pseudo-random patterns representing the dif-
ferent classes, test data of particular classified items was generated, including, for
comparative purposes, an interval type and, occasionally, an unambiguous type.
Each class corresponds to a set of size 1,000 items. The classified elements were
obtained by way of one of the aforementioned generators, with a normal distribu-
tion of the first pseudo-random number, as well as the second, as taken from a
generator with uniform distribution defining the location of the first as within an
interval of arbitrarily assumed length. This represents a supply of information of
an interval type when no circumstances for the considered imprecision are evident,
although its size is known. Such an interpretation seems to be the most appropriate
for the majority of practical interval analysis applications. The verification tables
show a set of results displaying the following size of patterns: 10, 20, 50, 100, 200,
500 and 1,000. In the mentioned tables, each cell contains the results obtained from
100 runs, giving an average classification error, defined on the basis of these 100
random test samples.

The basic form of the research conducted for the classification method devel-
oped here is built upon the information interval and on patterns that are given
uniformly. With regard to the one-dimensional (i.e., for n = 1) pattern, a first class
was obtained by the use of a pseudo-random number generator with a normal dis-
tribution N(0, 1), while the second class was gained by way of N(2, 1). The final
results of these examples are presented in Table 4. These results will provide com-
parative data in relation to those presented in the subsequent tables, therefore, such
results serve as a foundation example reference.

Initially, studies were performed for the reduction of pattern size using the algo-
rithm based on the method of neural network sensitivity for training data (see
Sec. 3.1). In the considered case, as a result of the numerical verification, a reduc-
tion of 38% of the total elements found within each pattern was achieved.
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Table 4. Average classification error for the basic concept of Bayes classification.

Interval length

No. of elements 0.00 0.1 0.25 0.5 1.00 2.00 5.00

10 0.1713 0.1720 0.1720 0.1723 0.1729 0.1761 0.1944
20 0.1655 0.1669 0.1669 0.1672 0.1680 0.1713 0.1888
50 0.1602 0.1605 0.1606 0.1609 0.1617 0.1652 0.1848
100 0.1596 0.1601 0.1602 0.1604 0.1615 0.1650 0.1827
200 0.1596 0.1602 0.1604 0.1609 0.1618 0.1650 0.1840
500 0.1591 0.1595 0.1596 0.1602 0.1613 0.1647 0.1844

1,000 0.1579 0.1584 0.1588 0.1591 0.1603 0.1637 0.1833

Table 5. The basic concept of Bayes classification with neural reduction.

Interval length

No. of elements 0.00 0.1 0.25 0.5 1.00 2.00 5.00

10 0.1747 0.1759 0.1766 0.1784 0.1823 0.1853 0.2112
20 0.1616 0.1622 0.1629 0.1637 0.1649 0.1689 0.2087
50 0.1521 0.1529 0.1535 0.1541 0.1546 0.1567 0.2065
100 0.1501 0.1505 0.1509 0.1515 0.1521 0.1545 0.2010
200 0.1482 0.1489 0.1495 0.1501 0.1515 0.1530 0.2001
500 0.1472 0.1478 0.1488 0.1494 0.1507 0.1521 0.1967

1,000 0.1461 0.1466 0.1478 0.1487 0.1499 0.1514 0.1921

The full results of the reduction algorithm are presented in Table 5. Initially,
within the table, cells can be distinguished for displaying a situation in which the
obtained quality was lower than the classification of the basic case (i.e., without
applying the reduction procedure) which is performed in Table 4. This relates only
to patterns with 10 elements in each pattern set. With such an extremely low set
size, this result, however, is satisfactory. This is because, by reducing the data set,
the number of elements have decreased to about 6, and the formed pattern sets of
each class are not adequately representative of the true pattern characteristics. In
succeeding cells, an improved quality of classification can be distinguished. Here,
the first of these, mainly display patterns with cardinality of 20 and 50. These
results were improved by way of reducing the amount of misclassification by 5%,
and subsequent misclassification by 5–10%. It should be noted that the reduction
of patterns not only results in a decrease in misclassification quantities, but, above
all, generates a significant increase in the speed of calculation.

The next subsections present the results of tests carried out on the compiled
methods for the classification of interval type information and neural reduction, as
based on the benchmark data. Due to the specific conditions, such type of data
was not found in publicly available repositories and web pages, although there are
a few sets of interval data that can be found, for example, oil [Sato-Ilic (2003)],
fishdataset [Peng and Li (2006)] or pre-sliding friction rig [Chetwynd et al. (2006)].
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However, these are intended only for clustering procedure tests, or they do not
contain unambiguous reference elements (patterns) suitable for the learning process.

5.1. DataToy 2D

In this subsection, a comparison of the neural reduction algorithm with other similar
reduction procedures using benchmark data is to be shown. The numerical verifi-
cation utilized was designed to assess both the quantities of misclassification, and,
above all, reduced amount of elements in the considered sample.

At the beginning of the comparison, a very simple and intuitively understand-
able percentage reduction algorithm was used. This procedure assumes removal of
a random sample of pre-determined percentage of the elements. Here, the strong
nondeterministic character of this algorithm should be noted. More details on the
‘percentage’ procedure can be found in Han and Kamber [2006].

Another algorithm utilized for verification and clarification is the k-nearest
neighbors (k-NN) procedure. This consists of an iterative designation of k-NN for
the considered element. When appointed in this way, the neighbors are represented
by one point. It is also possible to set out a new point that is representative of
all previously designated neighborhoods. This algorithm is based only on the infor-
mation about the location of the items under consideration, and it does not take
into account, for example, concentration, redundancy or the value of a probability
density function. What is more, another quite strong constraint is the relatively
weak control of the reduced amount of sample items. More information about this
algorithm can be found in the work of Mitra and Pal [Mitra et al. (2002)].

Finally, the last reduction algorithm that we are to compare with the neural
procedure described within this paper, is a reduction function based on the method-
ology of WPW. This method involves a shift of the individual kernels of the kernel
density estimator function of the considered class. During this operation, particular
weights which determine the significance of each item in a sample set are made
available. In using the weights generated earlier in subsequent iterations, we can
remove those items for which the weight is the smallest, and as a result, a reduced
data set representing the class takes place. More details on this topic can be found
in Babich and Camps [1996].

The employed Toy 2D benchmark data is published on the website:
http://www.cse.ust.hk/ twinsen/assgn2.pdf. This site features an example of two-
dimensional random sample which represents the image of an eclipse of the Moon.
Here, the learning sets contain 2,152 elements associated with the first-class, and
2,444 items contained in the second. Moreover, the test sample was drawn from
a two-dimensional regular grid, including 26,130 elements from the first class and
34,371 from the second.

This data set will be used to compare all the above-mentioned reduction meth-
ods. It should be noted that the test data were made-up as intervals, as in the pre-
vious example. The following columns of Table 6 show the results for the interval
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Table 6. The results of the numerical verification for the data found in Toy 2D are given as average
classification error.

Interval length

Reduction type Reduc. 0.00 × 0.00 0.10 × 0.10 0.25 × 0.25 0.50 × 0.50 1.00 × 1.00 2.00 × 2.00

No reduction 0% 0.0681 0.0737 0.0750 0.0766 0.0828 0.1097
Neural reduction 37% 0.0633 0.0729 0.0740 0.0750 0.0823 0.1055
Random 10% 10% 0.0630 0.0782 0.0795 0.0826 0.0955 0.1230
Random 20% 20% 0.0667 0.0756 0.0766 0.0785 0.0892 0.1198
Random 30% 30% 0.0640 0.0791 0.0796 0.0826 0.0955 0.1250

Random 40% 40% 0.0781 0.0837 0.0848 0.0866 0.0898 0.1366
k-NN (k = 1) 26% 0.0622 0.0745 0.0754 0.0784 0.0889 0.1187
k-NN (k = 2) 59% 0.0636 0.0751 0.0759 0.0786 0.0903 0.1209
WPW (itr = 230) 10% 0.0675 0.0742 0.0754 0.0771 0.0832 0.1098
WPW (itr = 460) 20% 0.0676 0.0750 0.0758 0.0777 0.0838 0.1100
WPW (itr = 689) 30% 0.0677 0.0753 0.0760 0.0780 0.0842 0.1121
WPW (itr = 919) 40% 0.0685 0.0755 0.0765 0.0786 0.0846 0.1122

depending on its length, from 0.1 to 2.0, respectively. Again, for comparison, the
results of a reduction of the unambiguous data was provided. In the second column
of Table 6, information about the percentage fraction of the removed (reduced) ele-
ments from the learning sets is set out. The following rows correspond to the results
obtained for the considered methods of reduction. Initially, the results obtained
for the nonreduced data are shown. In the subsequent rows, the results derived
from the neural method of reduction (as described in this paper) are revealed. Fol-
lowing these, inside the table, the results of a method of reducing the percentage
(based on the approved percentage of reduction of 10% to 40%, respectively), are
displayed. The middle part of the table then reveals the results gained for employing
the k-NN procedure for k = 1 and k = 2. Finally, the bottom rows of Table 6 dis-
play the results derived from utilizing the WPW method. The variable parameter
employed here is the duration of the algorithm expressed in the number of iterations
(from 10 to 40).

From the consequences of an applied numerical verification (again seen in
Table 6), we may conclude that the neural method gives very good results in com-
parison with the other standard reduction procedures used in manipulating data.
As seen, the algorithm of ‘percentage’ reduction for a small fraction of the deleted
elements (10%) gives quite acceptable results. Moreover, with regard to unambigu-
ous data (interval length = 0), even better effects than the neuronal reduction can
be observed (note that the main algorithm removes from the sample 37% of all the
original items). Yet, with respect to the situation of dealing with interval data, it is
also evident that there is a significant deterioration in the quality of classification in
relation to both the basic classification algorithm and neural methods of reduction.
In addition, further increasing the number of items removed from the sample results
in an even more relatively strong deterioration of the classification.
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In a comparison to the results obtained by the use of the k-NN algorithm, a
similar observation can be seen for the unambiguous and the interval data as well.
However, if the number of neighbors is k = 2, the results are better than the previous
random method for the 40% reduction of the items. Hence, it can be said that the
decision as to which elements will be removed from the sample is to be taken not
randomly, but should be based only on their proper locations within the sample.
Finally, it must be pointed out that the most advanced algorithm considered here,
also gives poorer results than proposed in this paper neural reduction algorithm,
both for the 10% and the 40% reduction as well.

5.2. Data synthetic two-class problem

In the following research, the data set was obtained from a well-known example
described and referred to in the monograph [Ripley (1996)]. The data set contained
within this Synthetic Two-Class Problem consists of two predefined subsets, that of
learning and testing for each of the two classes, and incorporates, respectively, 250
and 1,000 elements.

The investigation in this subsection is a continuation of the discussion presented
in the previous part of the paper. It also concerns the methods used for creating
interval data as based on unambiguous data. Table 7 presents the results of a series
of comparative tests for the Synthetic Two-Class Problem. The conclusions that can
be drawn on the basis of these numerical simulations are very consistent with the
previous one.

A notable feature in these studies is the appreciable much greater intensity in the
differences between the methods described than that within the previous section.
Most likely this is due to a significant disproportional cardinality within both sets of
tests. In the first case, the learning sample has about 2,200 elements per one class,
while in the second, evident are only 125 items per class. In addition, an even more

Table 7. The results of the numerical verification for the Synthetic Two-Class Problem.

Interval length

Reduction type Reduc. 0.00 × 0.00 0.10 × 0.10 0.25 × 0.25 0.50 × 0.50 1.00 × 1.00 2.00 × 2.00

No reduction 0% 0.142 0.141 0.148 0.147 0.181 0.258
Neural reduction 36% 0.089 0.082 0.082 0.088 0.106 0.148
Random 10% 10% 0.110 0.101 0.098 0.102 0.117 0.163
Random 20% 20% 0.176 0.181 0.182 0.183 0.187 0.211
Random 30% 30% 0.184 0.185 0.187 0.188 0.191 0.218

Random 40% 40% 0.202 0.205 0.201 0.204 0.207 0.234
k-NN (k = 1) 27% 0.094 0.087 0.089 0.090 0.111 0.152
k-NN (k = 2) 60% 0.187 0.187 0.187 0.195 0.199 0.219
WPW (itr = 13) 10% 0.092 0.094 0.110 0.153 0.261 0.325
WPW (itr = 25) 20% 0.093 0.088 0.085 0.089 0.112 0.155
WPW (itr = 37) 30% 0.095 0.093 0.092 0.096 0.110 0.152
WPW (itr = 50) 40% 0.096 0.089 0.085 0.092 0.112 0.157
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singular note is the fact that the method of neural reduction has a very favorable
influence upon the quality classification of interval type information, yet it can be
considered as having only a good effect, when compared to other methods, upon
the classification of unambiguous data.

5.3. Reduction of data as obtained in the clustering process

If there are no previously distinguished classes before the learning process, the
data set should be divided into smaller groups by way of employing the clustering
process. This situation was also examined during the previous discussed numerical
verification, both for the procedure for classifying inaccurate information, as well
as with the use of the neural data sample size reduction algorithm. In exemplifying
this, the data used in the one-dimensional example (described at the beginning
of this section) were divided into two disjoint subsets by way of employing the
algorithm k-means. In this way, the prototypes of two classes were distinguished.

The results of the algorithm for the basic concept of classification are shown in
Table 8, while Table 9 displays the results after employing the application procedure
of the neural reduction of sample size. As expected, the results presented in the first
table are only slightly better when compared to the original data from Table 4. This
is due to the larger merging character of pattern classes obtained during the use of
a clustering procedure. What is more, the learning data obtained in this manner
are characterized by a lack of both outliers and atypical items, e.g., those which can
be found in the middle of the second class.

From the foregoing considerations, it can be concluded that in this case, the
precision of the reducing algorithm will not be the most important factor. The
confirmation of this thesis is evidenced in the results given in Table 9, which presents
the classification error for the data obtained in the process of clustering. Here,
one can easily see the significant improvement in classification with respect to the
unreduced data displayed in Table 8, and, consequently, to the basic case as shown
in Table 4, as well as to basic concept with reduced data as seen in Table 5.

On summarizing the results presented in the section concerning numerical verifi-
cation, it can be concluded that they have confirmed the correctness of the compiled

Table 8. The basic concept of Bayes classification as used on data obtained by way
of the clustering process.

Interval length

No. of elements 0.00 0.1 0.25 0.5 1.00 2.00 5.00

10 0.1744 0.1675 0.1677 0.1681 0.1692 0.1732 0.2050
20 0.1661 0.1627 0.1626 0.1627 0.1638 0.1685 0.2004
50 0.1587 0.1572 0.1572 0.1573 0.1588 0.1639 0.1991
100 0.1563 0.1557 0.1556 0.1560 0.1574 0.1629 0.1981
200 0.1558 0.1553 0.1551 0.1552 0.1564 0.1619 0.1970
500 0.1547 0.1546 0.1546 0.1547 0.1566 0.1624 0.1981

1,000 0.1529 0.1529 0.1529 0.1533 0.1546 0.1602 0.1968
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Table 9. The basic concept of Bayes classification employing neural reduction on
the data obtained through the clustering process.

Interval length

No. of elements 0.00 0.1 0.25 0.5 1.00 2.00 5.00

10 0.1745 0.1681 0.1681 0.1682 0.1690 0.1735 0.2087
20 0.1602 0.1549 0.1549 0.1551 0.1561 0.1608 0.1944
50 0.1497 0.1474 0.1473 0.1474 0.1485 0.1543 0.1916
100 0.1473 0.1461 0.1461 0.1463 0.1482 0.1536 0.1890
200 0.1460 0.1457 0.1456 0.1456 0.1465 0.1523 0.1877
500 0.1448 0.1446 0.1447 0.1450 0.1464 0.1525 0.1882

1,000 0.1430 0.1430 0.1431 0.1431 0.1445 0.1504 0.1866

herein neural reduction method dedicated for the classification procedure of impre-
cise interval-type information. As seen, the results gained by undertaking this pro-
cedure were compared with a case in which classified information was derived from
unambiguous testing data, and also with the results of the use of other algorithms
employed in reducing sample size.

A verification of numerical procedures also confirmed the usefulness of reducing
pattern size in both terms: in improving the quality of classification as well as in
inducing a significant decrease in calculation time. In dealing with cases of size
patterns incorporating 200–1000 elements, the presented algorithm obtained an
average of 10% reduction errors, while reducing the patterns to an amount that
approximates 38% of the original. Furthermore, it enabled a consequent reduction in
calculation time directly related to the classification, in a similar order of magnitude.

In all the conducted investigations, both with and without neural reduction, an
increase of pattern sizes resulted in a decrease of both the average classification error
and its standard deviation. This, in practice, allows the progressive improvement
of the quality of classification as new data is obtained. However, with an increasing
length of the interval, the classification error increases to minor degree. To a certain
limit, this is reasonable in the context of the data structure.

The above conclusions are worth accentuating from the application point of
view. This is because utilizing the aforementioned procedure makes it possible to
increase the quality of the classification during the progression of the information
available in the form of larger number patterns and more accurate classification.
Moreover, employing a reducing algorithm provides further increases in the accuracy
of classification by removing items that have a neutral or negative character. In most
practical problems, it is necessary to establish a compromise between the quantity
of available data and the quality of results, but in this case, by using the neural
reduction algorithm, it is possible to attach to a patterns set, from the new data,
only those elements that have a significant impact on the problem of classification.
More details regarding the employment of numerical verifications of classification
with data reduction procedure can be found in Kowalski [2009].
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6. Summary and Conclusions

The subject of the investigations presented here was a procedure for reducing a data
sample applied to a classification algorithm where the classified element is given
as the interval vector, while the data representing pattern of each class consists
of elements defined uniformly. The classification procedure has been worked out
by way of employing a data reducing procedure based on the sensitivity method
inspired by artificial neural networks. Herein, its goal is to increase the number of
proper classifications, as well as, consequently, enhance calculation speed.

As seen within this paper, in particular, during numerical testing, it was estab-
lished that, after applying the procedure for reducing pattern sets, the number of
wrong classifications was lowered by approximately 10%, while the size of patterns
was reduced by approximately 38%. The conjunction of these results is particu-
larly worthy of attention: while appropriately reducing pattern sizes (which does
imply a significant increase in calculation speed), the classification quality is also
importantly improved.

The proposed reduction method has been analyzed in terms of properties of the
recommended neural network parameters, in addition, the analysis of the conver-
gence of the learning algorithm, presenting both the MSE error and its gradient
has been discussed. What is more, the presented neural reduction algorithm was
compared with a very simple and natural random reduction process, as well as with
the k − NN procedure, and also with the reduction algorithm inspired by WPW
methodology. In all these cases, the investigated reduction method based on neural
networks sensitivity analysis provided much better results. Additionally, as evident
in the proofs provided within this paper, in utilizing the neural reduction algorithm,
there is no need to arbitrarily ascribe parameters to an algorithm. This, hence, is
another positive aspect held within the procedure described herein.
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