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Abstract. The paper deals with the classification task, where patterns are non-
stationary. The method ensures the minimum expected value of misclassifica-
tions and is independent of patterns' shapes. This procedure eliminates elements 
of patterns with insignificant or even negative influence on the results' accura-
cy. Appropriate modifications follow the classifier parameters, which increases 
the effectiveness of procedure adaptation for nonstationary patterns. The num-
ber of patterns is not methodologically limited in the presented concept.  
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1 Introduction  

Classification constitutes one of the basic procedures of data analysis and exploration 
[Han and Kamber, 2001]. In most of the methods used today, one assumes stationarity 
(unchanged by time) of patterns characterizing particular classes. However, more and 
more often, as models have become more accurate, and investigated phenomena have 
become more complex [Kulczycki et al, 2007], in particular those in which new – 
with the most current being the most valuable – elements are continuously added to 
patterns, this assumption is successfully ignored.  

The concept of the method for classification with nonstationary patterns proposed 
in this paper was conceived on the basis of the sensitivity method used in artificial 
neural networks. As a result of its operation, particular elements of patterns receive 
weights proportional to their significance for correct results. Elements of the smallest 
weights are eliminated. For the sake of the patterns' nonstationarity, their elements 
whose weights are currently small but increase successively are kept. In addition a 
procedure is proposed ensuring that an adaptation to changing conditions is obtained 
by correcting classifier parameters values. Its formula is based on the Bayes approach, 
providing a minimum of potential losses arising from incorrect classification. It is also 
possible to introduce preferences for those classes whose elements – due to potential 
nonsymmetrical conditioning of the task – especially should not be mistakenly as-
signed to others. The classifier was constructed applying the statistical kernel  
estimators methodology, thus freeing the above procedure from arbitrary assumptions 
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regarding patterns' shapes – their identification is an integral part of the algorithm 
presented here.  

The first sections of this paper, i.e. 2-7, briefly describe mathematical apparatus 
and component procedures used in the main part – Section 8 – to synthesize of the 
algorithm for classification with nonstationary case investigated here. The numerical 
verification and comparison with the similarly conditioned support vector machine 
concept [Krasotkina et al, 2011] is the subject of Section 9, followed by final com-
ments and remarks.  

A preliminary version of this paper was presented in part as [Kulczycki and Ko-
walski, 2013a].  

2 Statistical Kernel Estimators  

Consider the n-dimensional random variable X , with a distribution characterized 

by the density f . Its kernel estimator ),0[:ˆ ∞→nf R  is calculated on the basis of 

the random sample  

 1x , mxx ,...,2   , (1) 

and defined – in the basic form – by the formula  
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where the positive coefficient h  is known as a smoothing parameter, while the mea-

surable function ),0[: ∞→nK R  symmetrical with respect to zero, having at this 

point a weak global maximum and fulfilling the condition 1d)( = n xxK
R

 is termed 

a kernel. The monographs [Kulczycki, 2005; Silverman, 1986; Wand and Jones, 
1995] contain a detailed description of the above methodology.  

In this paper the generalized (one-dimensional) Cauchy kernel is applied, in the 
multidimensional case generalized by the product kernel concept [Kulczycki, 2005 – 
Section 3.1.3; Wand and Jones, 1995 – Sections 2.7 and 4.5]. For calculation of the 
smoothing parameter, the simplified method assuming the normal distribution [Kulc-
zycki, 2005 – Section 3.1.5; Wand and Jones, 1995 – Section 3.2.1] can be applied, 
thanks to the positive influence of this parameter correction procedure, presented 
below in Section 7. For general improvement of the kernel estimator quality the mod-
ification of the smoothing parameter [Kulczycki, 2005 – Section 3.1.6; Silverman, 
1986 – Section 5.3.1] will be applied, with the intensity 0≥c ; as its initial standard 
value 5.0=c  can be assumed.  

Details are found in the monographs [Kulczycki, 2005; Silverman, 1986; Wand 
and Jones, 1995].  
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3 Bayes Classification  

Consider J  sets consisting of elements of the space nR :  

 '
1x , ''

2 1
,, mxx   (3) 

 "
1x , ""

2 2
,, mxx   (4) 

   

 "...'
1x , "...'"...'

2 ,,
Jmxx    , (5) 

representing assumed classes. The sizes 1m , Jmm ,...,2  should be proportional to 

the “contribution” of particular classes in the population under investigation. Let now 

1f̂ , Jff ˆ,,ˆ
2   denote kernel estimators of a probability distribution density, calcu-

lated successively based on sets (3)-(5) treated as random samples (1) – a short de-
scription of the methodology used for their construction is contained in Section 2. In 
accordance with the classic Bayes approach [Duda et al, 2001], ensuring a minimum 

of expected value of losses, the classified element nx R∈~  should then be given to the 
class for which the value  

 )~(ˆ
11 xfm , )~(ˆ , ... ),~(ˆ

22 xfmxfm JJ  (6) 

is the greatest. The above can be generalized by introducing to expressions (6) the 
positive coefficients 1z , Jzz ,...,2 :  

 )~(ˆ
111 xfmz , )~(ˆ , ... ),~(ˆ

222 xfmzxfmz JJJ   . (7) 

Taking as standard values 1...21 ==== Jzzz , formula (7) brings us to (6). By 

appropriately increasing the value iz , a decrease can be achieved in the probability 

of erroneously assigning elements of the i-th class to other wrong classes (although 
the danger does then exist of increasing the general number of misclassifications). 
Thanks to this, it is possible to favor classes which are in some way noticeable (e.g. in 
diagnostics, those representing faults causing large losses) or more heavily condi-
tioned. For the classification task considered here, these are in natural way classes 
defined by nonstationary patterns – in the case of a significant difference in the speed 
of their changes, it is worth increasing coefficients relating to more varying patterns. 
The initial value 25.1  can be proposed for further research.  
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4 Discrete Derivative  

The task of computing the value of the discrete derivative of the function RR →:g  

consists in calculating the quantity )(' tg  based on values of this function obtained 

for a finite number of the arguments 1t , ktt ,...,2 . For the problem under investiga-

tion a backward derivative will be used, that is where ktt = . As the task considered 

here does not require the differences between subsequent values 1t , ktt ,...,2  to be 

equal, it is therefore advantageous to apply interpolation methods. In the procedure 
worked out here, favorable results were achieved using a classic method based on 
Newton's interpolation polynomial. Detailed formulas are found in the survey article 
[Venter, 2010]. For the purposes of the procedure investigated in this paper, 3=k  
can be taken as a standard value.  

5 Sensitivity Analysis for Learning Data  

When modeling multidimensional problems using artificial neural networks, particu-
lar components of an input vector most often are characterized by diverse significance 
of information, and in consequence influence variously the result of the data 
processing. In order to eliminate superfluous – from the point of view of the investi-
gated task – input vector components, a sensitivity analysis of the network with re-
spect to particular learning data can be performed. As a result one obtains the parame-
ters iS  describing proportionally the influence of the particular inputs (

mi , ... ,2,1= ) on the output value, and then the least significant inputs can be elimi-
nated.  

Detailed description of the above procedure is found in the publications [Engelbrecht 
et al, 1995; Zurada, 1992].  

6 Reducing Patterns' Size 

In practice, some elements of sets (3)-(5), constituting patterns of particular classes, 
may have insignificant or even negative – in the sense of classification correctness – 
influence on quality of obtained results. Their elimination should therefore imply a 
reduction in the number of erroneous assignments, as well as decreasing calculation 
time. To this aim the sensitivity method for learning data, used in artificial neural 
networks, briefly noted in the previous section, will be applied.  

To meet the requirements of this procedure, the definition of the kernel estimator 
will be generalized below with the introduction of the nonnegative coefficients 1w , 

mww , ... ,2 , normed so that mw
m

i i = =1
 and mapped to particular elements of ran-

dom sample (1). The basic form of kernel estimator (2) then takes the form  
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The coefficient iw  value may be interpreted as indicating the significance (weight) 

of the i-th element of the pattern to classification correctness.  
The procedure for reducing patterns sets (3)-(5) consists – in its basic form – of 

two phases: of calculating the weight iw , and then removing those elements of ran-

dom sample (1), for which the respective weights have the lowest values. These tasks 
will subsequently be presented in the next two subsections.  

6.1 Calculation of Weights iw  

In the method designed here, for the purpose of reduction of sets (3)-(5), separate 
neural networks are built for each investigated class.  

The constructed network has three layers and is unidirectional, with m  inputs 
(corresponding to particular elements of a pattern), a hidden layer whose size is equal 
to the integral part of the number m , and also one output neuron. This network is 
submitted to a learning process using a data set comprising of the values of particular 
kernels for subsequent pattern elements, while the given output constitutes the value 
of the kernel estimator calculated for the pattern element under consideration. The 
network's learning is carried out using backward propagation of errors with momen-
tum factor. On finishing this process, the thus obtained network undergoes sensitivity 
analysis on learning data, in accordance with the method presented in the previous 
section. The resulting coefficients iS  describing sensitivity, calculated in this way, 

constitute the fundament for calculating the preliminary values  
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after which they are normed to 
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The shape of formula (9) results from the fact that the network created here is the 
most sensitive to atypical and redundant elements, which – taking into account the 
form of kernel estimator (8) – implies a necessity to map the appropriately smaller 
values iw~ , and in consequence iw , to them. Coefficients (10) represent – as per the 
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idea presented while introducing the generalized form (8) – the significance of partic-
ular elements of the pattern to accuracy of the classification process. 

6.2 Removal of Pattern Elements 

Empirical research confirmed the natural assumption that the pattern set should be 
relieved of those elements for which 1<iw . (Note that, thanks to normalization 

made by formula (10), the mean value of the coefficients iw  equals 1.)  

7 Correcting the Smoothing Parameter and Modification 
Intensity Values  

The classic universal methods of calculating the smoothing parameter value are often 
not proper for the classification task. This paper will propose a procedure suited to the 
conditioning of the investigated method of classification for nonstationary patterns, in 
particular those enabling successive adaptation with regard to the occurring changes.  

Thus, it can be proposed to introduce 1+n  multiplicative correcting coefficients 
for the values of the parameter defining the intensity of modification procedure c  
and smoothing parameters for particular coordinates 1h , nhh , ... ,2 , with respect to 

optimal ones calculated using the integrated square error criterion. Denote them as 
00 ≥b , 1b , 0 , ... ,2 >nbb , respectively. It is worth noticing that 1 ... 10 ==== nbbb  

means in practice no correction. Next through a comprehensive search using a grid 
with a relatively large discretization value, one finds the most advantageous points 
regarding minimal incorrect classification sense. The final phase is a static optimiza-
tion procedure in the )1( +n -dimensional space, where the initial conditions are the 

points chosen above, while the performance index is given as the number of misclas-
sifications. This is an integer – to find the minimum a modified Hook-Jeeves algo-
rithm [Kelley, 1999] was applied.  

Following experimental research it was assumed that the grid used for primary 
searches has intersections at the points 25.0 , 75.1 , ... , 5.0  for every coordinate. For 
such intersections the value of the performance index is calculated, after which the ob-
tained results are sorted, and the 5 best become subsequent initial conditions for the 
Hook-Jeeves method, where the value of the initial step is taken as 2.0 . After finishing 
every one of the above 5 “runs” of this method, the performance index value for the end 
point is calculated, and finally among them the one with the smallest value is shown.  

Apart from the first step, the above procedure can be used in the simplified ver-
sion, to successively specify current values for the correcting coefficients 0b , 

nbb  , ... ,1  as part of adaptation to changes in nonstationary conditions. To this end 

the Hook-Jeeves algorithm is used only once, taking the coefficients' previous  
values as initial conditions.  
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Finally it is worth noting that the correction of classification parameters is not  
necessary in this procedure. It does, however, increases classification accuracy and 
furthermore enables the use of a simplified method for calculation of smoothing pa-
rameters values, proposed in Section 2.  

8 Classification Method for Nonstationary Patterns  

This section, the most essential in this publication, presents the classification method 
for the nonstationary case, that is when all or some patterns of classes undergo sig-
nificant – considering the investigated task – changes. Here, material presented in 
Sections 2-7 will be used. A block diagram of the calculation procedure is shown in 
Fig. 1. Blocks symbolizing operations performed on all elements of patterns (3)-(5) 
jointly are drawn with a continuous line, while a dashed line denotes operations on 
particular classes, and a dotted line – separate operations for each element of those 
patterns.  

First one should fix the reference sizes of patterns (3)-(5), hereinafter denoted by 
*
1m , **

2 , ... , Jmm . The patterns of these sizes will be the subject of a basic reduction 

procedure, described in Section 6. The sizes of patterns available at the beginning of 
the algorithm must not be smaller than the above referential values. These values can 
however be modified during the procedure's operation, with the natural condition that 
their potential growth does not increase the number of elements newly provided for 

the patterns. For preliminary research, n
Jmmm 225 ... **

2
*
1 ⋅====  can be proposed. 

Lowering these values may worsen the classification quality, whereas an increase 
results in an excessive calculation time.  

The elements of initial patterns (3)-(5) are provided as introductory data. Based on 
these – according to the procedures mentioned in Section 2 – the value of the parame-
ter h  is calculated (for the parameter c  it is initially assumed to be equal 5.0 ). 
Figure 1 shows this action in block A. Next corrections in the parameters h  and c  
values are made by taking the coefficients 0b , nbb  , ... ,1 , as described in Section 7 

(block B in Fig. 1).  
The next procedure, shown by block C, is the calculation of the parameters iw  

values mapped to particular patterns' elements, separately for each class, as in Section 
6.1. Following this, within each class, the values of the parameter iw  are sorted 

(block D), and then – in block E – the appropriate *
1m , **

2 , ... , Jmm  elements of the 

largest values iw  are designated to the classification phase itself. The remaining 

ones undergo further treatment, denoted in block U, which will be presented later, 
after Bayes classification has been dealt with.  
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Fig. 1. Block diagram for classification algorithm 
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The reduced patterns separately go through a procedure newly calculating the val-
ues of parameters iw , presented in Section 6.1 and depicted in block F. According to 

Section 6.2, as block G in Fig. 1 denotes, these patterns' elements for which 1≥iw  

are submitted to further stages of the classification procedure, while those with 
1<iw  are sent to block A for further processing in the next steps of the algorithm, 

after adding new elements of patterns. The final, and also the principal part of the 
procedure worked out here is Bayes classification, presented in Section 3 and marked 
by block H. Obviously many tested elements x~  can be subjected to classification 
separately. After the procedure has been finished, elements of patterns which have 
undergone classification are sent to the beginning of the algorithm to block A, to fur-
ther avail of the next steps, following the addition of new elements of patterns.  

Now – in reference to the end of the paragraph before the last – it remains to con-

sider these patterns' elements, whose values iw  were not counted among the *
1m , 

**
2 ,..., Jmm  largest for particular patterns. Thus, within block U, for each of them the 

derivative '
iw  is calculated. If the element is “too new” and does not possess the 

1−k  previous values iw , then the gaps are filled with zeros (because the values 

iw  generally oscillate around unity, such behavior significantly increases the deriva-

tive value, and in consequence ensures against premature elimination of this element). 

Next for each separate class, the elements '
iw  are sorted (block V). As marked in 

block W, the respective  

 *
1mq , **

2 ,..., Jmqmq  (11) 

elements of each pattern with the largest derivative values, on the additional require-
ment that the value is positive, go back to block A for further calculations carried out 
after the addition of new elements. If the number of elements with positive derivative 

is less than *
1mq , **

2 ,..., Jmqmq , then the number of elements going back may be 

smaller (including even zero). The remaining elements are permanently eliminated 
from the procedure, as shown in block Z. In the above notation q  is a positive con-

stant influencing the proportion of patterns' elements with little, but successively in-
creasing meaning. The standard value of the parameter q  can be proposed to be 

close to 2k , where k  denotes the order of a discrete derivative, multiplied by the 

number of new elements added to the algorithm divided by the reference values, such 
however that 05.0≥q ; an increase in the parameter q  value allows more effective 

conforming to pattern changes, although this potentially increases the calculation 
time, while lowering it may significantly worsen adaptation. In the general case this 
parameter can be different for particular patterns – then formula (11) takes the form  

 *
11mq , **

22 ,..., JJ mqmq   , (12) 

where 1q , Jqq ,...,2  are positive.  
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The above procedure is repeated following the addition of new elements (block A 
in Fig. 1). Besides these elements – as has been mentioned earlier – for particular 

patterns respectively *
1m , **

2 ,..., Jmm  elements of the greatest values iw  are taken, 

as well as up to *
1qm , **

2 ,..., Jqmqm  (or in the generalized case *
11mq , 

**
22 ,..., JJ mqmq ) elements of the greatest derivative '

iw , so successively increasing 

its significance, most often due to the nonstationarity of patterns.  

9 Empirical Verification and Comparison  

The correct functioning and properties of the concept under investigation have been 
comprehensively verified numerically, and also compared with results obtained using 
a related procedure based on a support vector machine (SVM) method. Research was 
carried out for data sets in various configurations and with different properties, partic-
ularly with nonseparated classes, complex patterns, multimodal and consisting in 
detached subsets located alternately. Nonstationarity increased successively either  
in steps or periodically. The standard values of the parameters previously proposed in 
this paper were obtained through research carried out for verification purposes.  

The following are the results obtained for a simple but representative case, enabl-
ing a telling illustration and interpretation of the procedure summaries in Section 8. 
For visual purposes the two dimensional space ( 2=n ) and the two classes ( 2=J ) 
will be used. For both classes, the patterns begin with 100 elements ( 10021 == mm

), obtained using a generator with normal distribution with the unique variance. The 
expected value of the first – stationary – class is located permanently in the origin of 

the space 2R , while for the second – nonstationary – following an initial period of no 
movement, encircles it with the radius 3, adding 10 new elements every 10 degrees 
before coming to a stop in its original location. According to the suggestions formu-

lated earlier, it was also assumed 100*
2

*
1 == mm  and 2.0=q .  

Figure 2 illustrates the number of misclassifications in a typical course of a proce-
dure created in this paper. From the beginning, up to step 18, the second class is inva-
riable. First a slight increase in the number of erroneous classifications occurs – in 
every step around 10% new elements of patterns are added, which worsens the  
working conditions for the neural network. Finally, however, once the patterns are 
stabilized, the number of misclassifications settles at the level 0.08. In step 18 the 
aforementioned orbital movement of the second class begins. First the number of 
erroneous classifications rises to around 0.12, and then – after the kernels, which were 

not previously removed due solely to a positive derivative '
iw , have received the 

appropriate meaning – the number of misclassifications drops and levels off at 0.105. 
In step 54, where the second class stops, occurrences similar to the above take place, 
when the number of classification errors returns to its initial level of 0.08.  
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Fig. 2. Typical course using the investigated procedure ( 11 =z , 12 =z ) 

Thanks to the generalization of formula (6) to (7), the classification quality can in-
crease by mapping to the classes with nonstationary patterns greater values of the 
coefficients iz . Figure 3 shows the results obtained with 11 =z  and 25.12 =z . It is 

worth noting that the total number of misclassifications lowered with respect to that 
obtained for the basic case in Fig. 2. This especially concerns local maximums exist-
ing after the second class starts and stops moving (steps 18 and 54).  

 
Fig. 3. Course with differing values of the coefficients iz :  11 =z , 25.12 =z  
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The procedure worked out and described here was compared with a method based 
on the support vector machine (SVM) concept, presented in the publication [Kra-
sotkina et al, 2011], taken as the closest regarding the conditioning considered in this 
paper research task. The obtained results are shown in Fig. 4 – they were achieved in 
conditions identical to Fig. 3, with which they will be compared. Although in condi-
tions of stationarity of the second pattern (steps before 18 and after 54) the number of 
misclassifications leveled off at 0.08, in the case using the SVM, however, starts at 
0.10, instead of 0.07 as in the procedure investigated here (compare Fig. 3 and 4). 
When the second pattern changes (steps 18-54) the amount of errors generated by the 
SVM settles at the level 0.12, or even slightly higher than that of local maximums 
appearing in the method presented in this paper after steps 18 and 54 (compare again 
Fig. 3 and 4). It should be underlined, though, that when the second class is moving, 
the number of misclassifications does not fall to the level 105.01.0 −  (Fig. 4), as is 
the case with the procedure worked out here (Fig. 3). Thus one can see that the con-
cept method in this paper has an advantage over the SVM procedure, especially in 
conditions of gradual change. Taking into account the fact that its idea is based on 
derivatives of a predictive nature, this observation is completely understandable.  

 
Fig. 4. Course using the SVM method 

To summarize: numerical testing wholly confirmed the positive features of the me-
thod worked out. In particular, the results show that the classifying algorithm can be 
used successfully for inseparable classes of complex multimodal patterns as well as 
for those consisting of incoherent subsets at alternate locations. The examined nonsta-
tionarity increased successively, and was periodical as well as occurring in steps. For 
the former type, the procedure presented in this paper proved to be particularly advan-
tageous and useful.  
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10 Final Comments and Remarks 

This paper presented a classification procedure which allows for nonstationarity of 
patterns and successive supply of new elements to them. Neither the number of 
classes itself, nor the number of nonstationary ones are methodologically limited. The 
concept is based on the Bayes approach, which allows for the minimization of ex-
pected loss value arising from erroneous classifications, as well as actively influen-
cing the proportion of probabilities of classification errors between particular classes. 
The use of kernel estimators frees the algorithm from patterns' shapes. The procedure 
operation is based on the sensitivity method used with artificial neural networks. It 
enables the removal of those elements of patterns, which are of insignificant or even 
negative influence on accuracy of results. However, it retains for further calculation 
some of these elements which due to nonstationarity successively increase their posi-
tive impact. Appropriate adaptation is also performed on classifier parameters.  

A broad description of the presented method – in particular the full set of formulas – 
is contained in the paper [Kulczycki and Kowalski, 2013b] which will appear soon.  
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