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Almost certain time-optimal positional control

Piotr KuLczyckl
Faculty of Electrical Engineering, Cracow University of Technology, Poland

The present paper deals with a time-optimal control of positional objects whose
dynamics are described by a differential inclusion with discontinuous right-hand
side. The contents of this paper consist of a probabilistic concept of solving the above
task. The existence and characteristics of an almost certain time-optimal control are
shown. In compliance with the results obtained, the switching curve, well known from
the (deterministic) classical case, has been ‘blurred’ by a random factor introduced
here to the switching region. The material presented counstitutes a suitable basis for
the creation of technical suboptimal control structures, which can be applied success-
fully in engineering practice. Empirical experiments confirm numerous advantages of
the systems designed, especially in the area of robustness.

1. Introduction

There is a broad class of industrial devices which realize their technological cycles
mainly through a change of the position in particular mechanisms, e.g. machining
attachments, reversing mills, and especially automata and robots (Tourassis 1988).
Such systems are called positional. The dynamics of those devices are described by
the differential inclusion

J(1) € H(3(2), (1), 1) +u(t), (1.1)
where u is a bounded control function, y denotes a positional parameter of the object,
and the function H models the resistance to motion. If one omits this factor, i.e. with
H = {0}, formula (1.1) simply expresses the second law of Newtonian mechanics for
straight-line or rotary motion. In this paper, the time-optimal stabilization of system
(1.1), or the task of reaching the equilibrium state y(¢) = y(¢) = 0 in a minimal and
finite time, will be considered.

The essential element of the above model is the bounded set-valued function H
describing the resistance to motion. For the majority of cases in practice, this function
can be expressed in the form

H(3(0),3(2), 1) = v(3(2), y(2), 1) F (3(0)), (1.2)

where v denotes a bounded real continuous function, and F is almost everywhere a
singleton, representing a bounded real piecewise continuous function which can be
multivalued at the points of discontinuity. For the sake of illustration, a simple
form of such a function might be .

{1} ify(n) >0,

F(3(0) =4 [=s.5] if3(1) =0, (1.3)
{-1} ify() <o,
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where the parameter s > 1 is connected with static friction. Of course, in reality, the
form of the function F can be much more complicated; but, in accordance with the
properties of frictional phenomena, even the above trivial shape makes it possible
to assume the univalence and continuity of the function v.

Naturally, if the forms of the functions F and especially v are more complex, then
the process of synthesis of time-optimal control and analysis of the system obtained,
and also the consecutive identification of its parameters, becomes disproportionately
more difficult. In practice, unless the form of the function v is simple—e.g. a con-
stant function (Hejmo & Kloch 1981) or a function in only the third (time) argument
(Kulczycki 1995a)—the synthesis of the time-optimal control system turns out to be
impossible to realize in a deterministic way.

In this paper a probabilistic concept of solving the time-optimal positional control
problem will be proposed. In the model of resistance to motion adopted here, it is
assumed that the function v introduced in equation (1.2) is the realization of a
given stochastic process V' with almost all the realizations being continuous and
jointly bounded. Therefore, the dependence of the function v on y(#), y(t), and ¢, is
replaced by the dependence on a random factor. Moreover, such a model of resistance
to motion also accommodates its probabilistic dependence on various factors—not
only y(z), y(t), and ¢, but also those which are usually omitted in the deterministic
approach to simplify the model, e.g. temperature. The probabilistic concept also
admits the perturbations and noise occurring in the system.

The random factor introduced to the system by the stochastic process ¥ implies
that the dynamical system will be described by a random differential inclusion.
Because the distribution of the probabilistic measure connected with this process
can be concentrated at only one realization, the random problem thus formulated
is a generalization of a certain deterministic task in which the controlied system is
discontinuous and non-autonomous (Kulczycki 1995a). If, further, the above realiza-
tion is constant and the function F is univalent (i.e. singleton-valued), then the
problem can be reduced to the basic task of the time-optimal positional control
(Hejmo & Kloch 1981). Moreover, when this constant realization has the value
zero, the classical case of time-optimal transfer of a mass {Athans & Falb 1966:
§7.2) is obtained.

2. Mathematical background

Let T be an interval with nonempty interior. First, consider a deterministic differen-
tial inclusion: .
£(1) € G(x(2),), (2.1)

where G : R" x T — P(R"), x : T — R", and P(A) denotes the set of subsets of A.
The solutions of differential inclusions in three different senses, which are usually
used in the analysis of discontinuous dynamical systems, are described below.

DermvitioNn 1 The function x, absolutely continuous on every compact subinterval
of the set 7, is a solution of differential inclusion (2.1)

e in the Caratheodory sense (C solution), if it satisfies inclusion (2.1) almost every-
where in 7,
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e in the Filippov sense (F solution), if
x(¢) € FG(x(z),1) almost everywhere in T, (2.2)
e in the Krasovski sense (K solution), if
x(t) € KG(x(2),1) almost everywhere in 7, (2.3)
where the operators F and K are defined by
FG(x(r),)) =) [  convg(jx(r) +eB,)\ 2,1), (2.4)

e>0 ZCR":m(2)=0

KG(x(1),7) = [) convG(x(s) + €B,, 1), (2.5)
e>0
B, denotes the open unit ball in the space R", m(Z) is the Lebesgue measurement of
the set Z, and convC means the convex closed hull of the set C. [

Suppose also that t, € 7 and x; € R”.

Dermuation 2 The C, F or K solutions of the deterministic differential inclusion (2.1)
with an initial condition
x(1o) = Xo (2.6)

are unigue if all C, F, or K solutions, respectively, are identically equal functions. [

Any C solution is a K solution and any F solution is a K solution, but there is no
general relation between C and F of solutions; however, K solutions comprise a
very large class. The result is that differential inclusions having a discontinuous
right-hand side present a considerable difficulty because of the lack of a universal
concept of a solution for them. Of course, if the existence of unique and equal C,
F, and K solutions can be shown, then further analysis is simplified.

The above concepts of solutions will be generalized below to random differential
inclusions. Such a generalization, however, is not unique. In this paper, the concept
of almost certain solutions (with probability 1, first type) will be applied, because
of its obvious interpretation.

Let (@, Z, P) be a probability space. From a practical point of view, its complete-
ness can be assumed without any loss in generality (Rudin, 1974: §1.36). Consider the
random differential inclusion

X(w, 1) € G(w, X(w, 1), 1), (2.7
where G: Q x R” x T — P(R") and X denotes an n-dimensional stochastic process
defined on (@, %, P) and 7.

DerintTioN 3 A stochastic process X is an almost certain C, F, or K solution of
random differential inclusion (2.7) if almost all its realizations are C, F, or K
solutions, respectively, of the corresponding deterministic differential inclusions
obtained by fixing some w € 2. [

Assume also that X; is an n-dimensional random variable defined on (Q, X, P).



66 P. KULCZYCKI

DeriNtTioN 4 The almost certain C, F, or K solution of the random differential
inclusion (2.7), with an initial condition

X(w, ty) = Xp(w) for almost all w € Q, (2.8)

is unique if all almost certain C, F or K solutions, respectively, are an equivalent
stochastic process (i.e. P[{w € Q : X~ (w,?) = X" (w,1)}] = 1forevery t € 7). [J

The generalization of the concept of time-optimal control to random systems is not
unique, either. From a practical point of view, it would be most useful to define a
control that is only a function of time and the state in closed-loop systems, realizing
a minimum of the expected value of the time to reach the target set. Unfortunately,
such a formulation of the problem does not provide hope for its solution.

In what follows, a different definition of the time-optimal control for random
systems is formulated. This control, by analogy to the almost certain solution, will
be called an almost certain time-optimal control. ’

DerFINITION 5 Let G: Q x R” x R” x T — P(R") and suppose that the differential
inclusion

X(w, ) € G(w, X(w, 1), U(w, 1), 1), (2.9)
with initial condition
X(w, ty) = Xp(w) for almost all w € 2, (2.10)

describes the dynamics of a random system submitted to the control /. Then, an
m-dimensional stochastic process U° defined on (2, X, P) and 7 will be called an
almost certain time-optimal control if almost all its realizations are time-optimal
controls for proper deterministic systems obtained at a fixed w € Q. [J

The almost certain time-optimal control ensures realization of the minimum expected
value of the time to reach the target set; however, it depends additionally on the
random factor. The result of this dependence is that the above control is difficult to
apply directly, but it constitutes a useful basis for the creation of technical construc-
tions of suboptimal structures in which the direct dependency of the control function
on the random factor is eliminated. This concept will be considered with great care in
Section 4.

3. Main results

The following theorem provides a mathematical base for the probabilistic concept of
solving the time-optimal control problem investigated in this paper.

THEOREM 1 Assume the following conditions.

(1) to€R, T =[ty,), o € R?, and v_, v, € R such that -l<v_<v <1
(2) the origin of coordinates constitutes a target set;
(3) Uy ={u:T — [-1,1]} represents a set of admissible controls;
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(4) F:R— P([-1,1]) denotes a real piecewise continuous function, except
at a finite number of points at most where it can be multi-valued,
and this function is locally Lipschitz except at points of discontinuity and
multivalence, and such that z F(z) has only nonnegative elements for every
zeR;

(5) (Q,Z, P) is a complete probability space;

(6) V is a real stochastic process defined on (2, X, P) and 7, with almost all realiz-
ations being continuous, satisfying the boundary condition V(w,f) € [v_,v,]
forteT;

(7) a random differential inclusion

X1 (w, 1) = Xs(w, 1), (3.1)
Xy(w, 1) € U(w, £) — V(w, 1) F (X2(w, 1)), (3.2)

with initial condition
(X1 (w, 10), X5(w, 1)) = xo for almost all w € Q, (3.3)

describes the dynamics of the system submitted to the control U.

Then, there exists an almost certain time-optimal control U °, whose realizations take
on the values 1 and —1 and have at most one point of discontinuity. This control
generates a unique almost certain C solution, which is also a unique almost certain
F solution and a unique almost certain K solution.

Proof. Section 3.1 presents the lemma whose thesis determines the truth of the above
theorem with a random factor fixed. Theorem 1 itself will be proved in Section 3.2.
Some comments concerning the assumptions made are given in Section 3.3.

3.1 Lemma

Lemma 1 Assume that 1y, T, xg, v_, v, target set U,, and F satisfy assumptions
(1)—-(4) of Theorem 1. Suppose also that:

(5) v: 7T — [v_,v,] is a continuous function;
(6) a deterministic differential inclusion

x1(8) = x3(), (34)
%(2) € u(t) — v(t) F(x2(1)), (3.5)

with initial condition
(x1(t0), X2(t0)) = Xo, (3.6)

describes the dynamics of the system submitted to the control u.

Then there exists a time-optimal control u® € U,, which takes on the values +1, has at
most one discontinuity point, and generates a unique C solution which is also a
unique F solution and unique K solution.
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Fig. 1. Subdivision of state space into sets {(0,0)}, @,, @_, R_, R_, and illustration of proofin
the case of xy € R_.

Proof. A brief description of the proof, including the facts used subsequently in this
paper, will be given below. See Kulczyski (1995a) for a full proof.

Denote by x__ and x_, the unique C solutions of the system (3.4)—(3.5) with the
terminal condition x(0) = (0,0), defined on the interval (—oo, 0], and generated by
the control u = —1, when v = v_ or v = v, respectively. Let

K__={(&,&) € R*: (&,&) = x__(2) for some € (—00,0)}, (3.7)

K_y ={(¢,&) €R*: (§1,6) = x__(2) for some ¢ € (—00,0)}. (3.8)

Thus these are the sets of all states which can be brought to the origin by the control
u=—1, when v = v_ or v = v,, respectively (Fig. 1). Similarly, denote by x,_ and
x,, unique C solutions of that system, generated by u =1, whenv=v_orv=wv_,
respectively. Define the sets K£._ and X, , analogously to the above ones. Moreover,
consider the following sets:

Q, = {(&,&) € R* : there exist (¢],&) € K, and

(€1,&) € Koo with § <& <&}, (39)
0_ ={(¢1,&) € R : there exist (£],&,) € K__ and
(&1,6) € K_. with § <& < &'} (3.10)

Ry ={(¢,&) € R?\ Q: there exists (£],&) € Qwith & <&},  (3.11)
R_={(61,&) € R?\ Q: there exists (£],&) € Qwith § < &},  (3.12)
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where Q@ = Q, U {(0,0)} U Q_. By virtue of this, the state space has been subdivided
into disjoint and non-empty sets: {(0,0)}, Q., @_, R., R_ (Fig. 1). Now let v be the
given function occurring in assumption 5.

The case x, € R_ will be considered first (Fig. 1). The C solution x = (x1, x,) of
system (3.4)—(3.5), fulfilling initial condition (3.6), and generated by the control
u = —1, crosses the set X, _ in a finite time ¢~ and then the set K, also in a finite
time £~. If at the moment ¢~ the value of the control is changed to 1, the second
component of the above C solution reaches zero in a finite time ¢, with 0 < x; ().
A similar situation is encountered when the change occurs at the moment 7~, but
then x;(") < 0. And now, the function g which assigns the coordinate x;(£") of
the point of the axis x, = 0 crossed by this C solution, to the time 7 of changing
the control value, namely ¢ : 7 — x;(¢"), is continuous by the form of equation
(3.4) and the continuity of an integral with parameter. Because a continuous function
g defined on the connected set [1~,#~] takes on all the intermediate values in
[g(£7),q(f%)], there exists ¢, € [¢~,£] such that x;(#") =0, and so x(") = (0,0);
then t; = ¢" is the finite time for the above C solution to reach the origin. To
summarize, if x, € R_, there exists z, such that the C solution generated by the
control

-1 fortelty,ty),

u(r) = { (3.13)

1 for ¢t € [t;,00),

reaches the origin in the finite time z;, with £y < ; < #; and x(z;) € Q. (Fig. 1).
Analogously, if xy € R, there exists 7, such that the C solution generated by the

control
1 fortely,ts),
W (f) = o, 1) (3.14)
-1 for € [t;, 00),

reaches the origin in the finite time #, with 7y < #; < #; and x(z,) € Q_.

Consider now the case x, € Q.. The C solution x = (x;,x,) generated by the
control u =1 reaches the axis x, =0 in a finite time ¢". If x;(¢") =0, so that
x(t") = (0,0), the control sought is

w’(t)=1 fortelty,o0), (3.15)

and then #; = " is the finite time for this C solution to reach the origin. However, if
0 < x;(¢"), a consideration analogous to that of the case xy € R_ establishes the exis-
tence of the control (3.13), where the role of the point x(¢7) is taken by x,. Finally, if
x1(t") < 0, then x(¢") € R_; so, by prolongation of the positive control value, the
consideration for the case x, € R_ can be continued for ¢ > ¢", giving an adequate
control of the form (3.14).

The case x, € Q_ can be considered analogously. In this case, the counterpart of
formula (3.15) is

W(t) =—-1 fortety,0). (3.16)

By combining the above four cases, a control «° of the form (3.13), (3.14), (3.15), or
(3.16) has been assigned to every initial state xo € R? \ {(0,0)}.
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The proof of the optimality of such a control is based on a certain differen-
tial inequality (Hejmo & Kloch 1981). Namely it can be shown that, if z is any
absolutely continuous function and y denotes a C solution of the differential
inclusion with the right-hand-side mapping G: R x 7 — P(R) satisfying certain
assumptions which hold for the above formulated conditions, then the differential
inequality

z(1o) < y(%o), (3.17)
2(t) < G(z(r),7) almost everywhere in 7, (3.18)

where G((, ¢) is an arbitrary element of G((, ), implies the following inequality:
zZ(t) <y(t) forteT. (3.19)

First, consider the initial state x, = (xg1, Xo2) to which the control (3.15) has been
assigned. The optimality of this control will be proved by contradiction. So, let there
exist a control #* € U, which brings the initial state under consideration along the C
solution x* = (x7,x5) to the origin in the time ff such that #f < #. It follows from
formula (3.5) that, for the control (3.15), the function x, is positive, and therefore
the absolutely continuous function x, is strongly increasing; in particular,

X(6f) < x5(2) = 0. (3.20)
The form of the set U, implies that
X3(1) =" (t) = F(x3(0)) (1)

< u°(1) — F(x3(f))v(f) almost everywhere in [ty , 00), (3.21)
where F(£) is an arbitrary element of F(¢). From this and from the dependence

x5(ty) = xgp = x5(ty), on the basis of inequality (3.19),
X5(6) < x,(f) for t € [ty, 00), (3.22)

or especially

0 = x3(28) < %,(1). (3.23)

Inequalities (3.20) and (3.23) constitute a contradiction, which proves the optimality
of the control (3.15) for the initial state under consideration.

The initial state to which the control (3.16) has been assigned can be considered
analogously. A similar situation occurs in the cases when the control is of the form
(3.13) or (3.14), where the proof breaks into two stages, each requiring the use of
inequality (3.19).

Thanks to the results of Hajek (1979), it is readily shown that the control «°
generates unique and equal to each other C, F, and K solutions of system (3.4)—
(3.5) with initial condition (3.6). This concludes the brief description of the proof
of Lemma 1, given in detail by Kulczycki (1995a).

3.2. Proof of Theorem 1

Denote by Q2 the set of those w € Q for which the assumptions of Lemma 1 are
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fuifilled. Let Q¥ = @\ Q7; of course, P(Q2~) = 0. It will be proved that the function
U®:QxT — {-1,1} defined by

u®: T — {-1,1} assigned to xy in Lemma 1 for v= V(w, +)
U(w, ) = ifweQ,

u:7T — {1} if we Q%
(3.24)

is a stochastic process. Because the probability space is complete, the zero-measure
set Q~ does not influence the measurability, and will be omitted in this part of the
proof.

First, consider the case xy € R_. Let J = [t,¢"], where t" = sup,eot'(w) < o0
and t'(w) is a time for the set K, to be crossed by the C solution x of
system (3.4)—(3.5), fulfilling initial condition (3.6), and generated by the control
u° = —1, when v= V(w,-). Suppose that the function p:Q x J — R? is such
that

p(w, ) = x(7). (3.25)
With a fixed ¢ € J, the function p(.,f) may be expressed as the composition
P3 © py o py of the mappings

p1:Q—C(J,R) twe Vw, )T, (3.26)
p2:p(Q) — C(T, R V(w, )1 T = x] T, (3.27)
2 :m(p(Q) R x]T— x(r). (3.28)

For any open set D C C(J,R), there exists a sequence of polynomial functions
v : J — R (i=1,2,..) with rational coefficients, together with a sequence of real
numbers d; (i =1,2,...), such that

D B(v;, d;)

Il Cg

o0
U Unel',j)

{’U € C(ja ) maX('”(I) - U,(l)l) &, ]}

I
—_

I I
(@ 'C8
s

Il
-

1

i

J

i
e
@

1l
—
~.
i

{v € C(J,R): n}7ar§Q(lv(t) —v(0)]) < e}

I
u'Cg

O N weC@R: b -u@l<a}  62)

ltegnNQ

where B(¢, r) is the open ball of centre ¢ and radius r, with B(¢, r) the corresponding
closed ball, in C(7,R), and, for each i € N\ {0}, (¢; ; : j € N\ {0}) is an increasing
sequence of real numbers convergent to d;. As a result:

=L_JU N r{veCTR b -u@l<e)).  (3.30)

j=1lte JNQ
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Because V is a stochastic process, for fixed i, j, and ¢, the set pi* ({ve C(T,R):
[v(?) — v,(f)| < e; ;}) is measurable; so, thanks to the above equality, the set 7 (D)
is measurable, too. The mapping p, is therefore measurable.

The continuity of the mapping p, results from the continuous dependence of a C
solution on a right-hand side of a differential inclusion. Also, the continuity of the
mapping p; is trivial. Thus, the properties of the mappings p;, p,, and p; shown
above implies the measurability of the function p(-, ) for any fixed ¢ € J. Further,
the continuity of the function p(w, +) for any w € Q resuits from the definition of a
C solution. This implies the measurability of the function p with respect to the
product sigma-algebra in Q x J.

Let £ = {(w,0) €2 x T : x(t) € Q.}, or £ = p7'(Q,). Now

Q. = (ntQ )UKy U{(0,0)}] UK. U{(0,0)}]\ {(0,0)} (3.31)

and the set int Q. is open; also the sets K_, U {(0,0)}, £,_ U {(0,0)}, and {(0,0)}
are closed. Hence the set £ is measurable. .

Suppose that (w,7) is a given element of the set £ Then, let £ = (X, %;) be the
C solution of system (3.4)—(3.5) for ¢ > 7, with the initial condition %(7) = x(7),
generated by u = 1, with v(¢) = V(w, ) for t > 7.

Consider the mapping #* : £ — C([0, '], R?) such that

r(w,n)(s)=%(s+7) forse(0,r], (3.32)

where [* = sup,cnt, < oo and ¢, + 7 is the time of crossing the axis x, = 0 by the C
solution £. It has been proved that the domain of this mapping is measurable. The
remaining condition for the measurability of the mapping r* can be shown
analogously to the above by the composition of the mappings r; and r,, which are
the counterparts of p; and p,. Further, define the mapping 73 : ¥*(£) — R by

r3(®) = &%t + 7). (3.33)

Of course r; is continuous; therefore, the mapping r : £ — R defined hereby as the
composition r3 o ¢, is measurable.

Denote by £, C Eand E_ C £ the sets of those elements (w, 7) for which the C solu-
tions £ that are their images under the mapping r* cross the positive and negative part
of the x; axis respectively. From the equality

E\(E.UE) =r0) (3.34)

and the measurability of the mapping r, it follows that the set £ \ (£, U £_) is measur-
ablein 2 x J.
Now let ¢ : Q@ — R be a function defined by

o(w) = &, (3.35)

where ¢, is the time of change of value of the function ° of the form (3.13), assigned in
Lemma 1 to the initial state under consideration, when v = ¥V(w, «). The graph of the
function o is the set £ \ (£, U E_), measurable in Q x J; therefore, o is measurable.

Next, suppose that ¢ € T is fixed. The function U°(-,7) takes on only the values



ALMOST CERTAIN TIME-OPTIMAL POSITIONAL CONTROL 73

=+1; so, in order to show its measurability, it is enough to prove the measurability of
the set U°(+, 7)™ ({—1}). The form of the control defined by formula (3.13) then yields

U°(-, )7 ({=13) = 71((1, 00)); (3.36)

thus, the measurability of the function o clearly implies the measurability of the above
set. Finally, for xq € R_, the measurability of the function U°(., ¢) for any ¢ € T, has
been shown.

In the case of xq € R, the proof is analogous.

Now let xy € Q.. The proof of the measurability of the function U°(.,¢) for any
fixed ¢ € 7 is similar; however, one should take into consideration separately the
subsets of those w € 2 for which the C solutions of systems (3.4)—(3.5), with (3.6),
u=1, and v = V(w, +), cross the positive and negative parts of the x; axis (which
are connected here with a different form of the control: (3.13) and (3.14), respectively).

If xy € @_, the proof is analogous to the above one.

So, it has been shown that the function U°(., ¢) is measurable for any ¢ € T; there-
fore, U° is a stochastic process. Thus the existence of the almost certain time-optimal
control has been proved.

Now define the function X : @ x 7 — R? as follows:

o ifwe @, then X(w, -) = x : T — R given as the C solution of system (3.5)—(3.6)
with (3.7), u° = U%(w, +), v = V(w, +);
e ifwe QF, then X(w, ) =x:T7 — {(0,0)}.

That a so-defined function is a stochastic process can be proved similarly. The only
difference consists of the fact that, contrary to ¥(w, -), the functions U°(w, +) are
only piecewise continuous. But it is possible to approximate them by sequences of
continuous functions and profit from a continuous dependence of C solutions on a
right-hand side of a differential inclusion.

So, the function X is the sought almost certain C solution generated in system
(3.1)-(3.2) by the control U° defined by formula (3.24). The existence of almost
certain F or K solutions can be shown identically.

The uniqueness of almost certain C, F, and K solutions of differential inclusion
(3.1)—(3.2) with initial condition (3.3) clearly resuits from the uniqueness of the deter-
ministic solutions at a fixed w € Q7, implied by the thesis of Lemma 1. Of course,
from the same lemma, they are also equal to each other.

Thus, the thesis of Theorem 1 has finally been proved.

3.3. Some comments on the assumptions made

The assumption that z F(z) can be only nonnegative has been formulated in Theorem
1 merely for the sake of clarity of notation. Anyway this inequality is physically justi-
fied, because positive values of the stochastic process V make it consistent with the
property of energy dissipation.

The condition [v_,v,] C (—1,1) ensures controllability of the system. The assump-
tion that the function F fulfills a Lipschitz condition where it is univalent and continuous
has been introduced to guarantee the uniqueness and equality of C, F, and K solutions.

In assumption (6) of Theorem 1, the stochastic process V has almost all realizations
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continuous and jointly bounded by the inequality v_ < V(w,?) <v_for € 7. On
the basis of an analytical description of a given stochastic process, it is easy to deter-
mine whether it satisfies the above conditions. However, such a description is hardly
available in practice. Usually, using the formulated hypotheses (e.g. stationarity and
Markov properties), empirical distributions induced by the tested process on the
spaces R” for n = 1,2, ..., or the so-called finite-dimensional distributions, are calcu-
lated. Due to identification errors, the question occurs of whether there even exists a
stochastic process with the measured distributions—and, if so, whether it satisfies the
assumed conditions of continuity and boundedness. If certain conditions, which are
so insignificantly weak that they can be treated as a test for the correctness of
measurement of the finite-dimensional distributions, are satisfied, then the Kolmo-
gorov theorem ensures the existence of a suitable separable stochastic process. The
assumption of boundedness of almost all its realizations can be examined by one-
dimensional distributions; and another theorem, also originating from Kolmogorov,
formulates a sufficient condition for the continuity of almost all realizations of a
stochastic process on the basis of properties of two-dimensional distributions. To
summarize, the assumptions formulated in Theorem 1 with respect to the stochastic
process V are thus mutually independent and identifiable on the basis of finite-dimen-
sional distributions (Wong 1971: Ch. 2).

It is worthwhile noticing that the thesis of Lemma 1 is also true if the function v is
only piecewise continuous (Kulczycki 1995a). But the analogous generalization of
Theorem 1 has no practical meaning, because a stochastic process with almost all
realizations being piecewise continuous and jointly bounded is not identifiable
using finite-dimensional distributions.

4. Conclusions

The subject of this paper has been a probabilistic way of solving the problem of time-
optimal control of discontinuous positional systems. The existence and characteristics
of the so-called almost certain time-optimal control are shown in Theorem 1 with
Lemma 1. The state space has been subdivided here into the sets R_,R,,Q_, @_,
with the origin being a target (Fig. 1). The borderlines are the sets
K__,K_,,K._,K_,, defined constructively in the proof of Lemma 1. Thus, if
Xy € R_, then almost all realizations of that control have the form of the control
sequence (—1,1), where the change of the value, i.e. switching of the control,
occurs when the system state belongs to the set Q. Similarly if xo € R., such a
sequence takes on the form (1, —1) and the switching exists when the state is included
in the set Q_. In the cases x; € Q_ and x € Q. , both the above controls are possible,
but can be simply —1 or 1, respectively. The precise shape of a control sequence, espe-
cially the rigorous time of switching, is dependent on the random factor. Because the
switching of the control can appear only when the system state belongs to the closed
region @ = Q_U{(0,0)} U O_, this set will be called a switching region.

In compliance with the above results, the switching curve v, well known from the
classical (deterministic) case of time-optimal transfer of a mass (Athans & Falb 1966:
§ 7.2), has been generalized here to the switching region Q. It should be stated that
v C Q only if 0 € [v_, v, ]—which, however, is never true in practice. Moreover, if
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the distribution connected with the stochastic process ¥ reduces to the deterministic
case v_ =v,, then K,_ =K, and K__ = K_,; in this case, the switching area Q
simplifies to the switching curve, which was considered by Hejmo & Kloch (1981).
Of course, an artificial additional condition, such as v_ =wv, =0 implies that
Q@ = ~. These facts were mentioned in the Introduction.

In many technical problems, the form of the applied model of resistance to motion
has great influence on the complexity or even the feasibility of a successful analysis. In
this paper the function %, defined in the Introduction and representing the model of
motion resistances, has been decomposed into two factors: F(y(¢)) and ¥ (w, #). The
former, being deterministic, has no great influences on the complexity of a theoretical
analysis, and so makes it possible to incorporate the properties of discontinuity and
multivalence of friction phenomena. The latter, thanks to its probabilistic nature,
includes (among others) approximations and identification errors (of the first
factor, too), the dependence of motion resistances on position, time, and temperature,
as well as perturbations and noise naturally occurring in real systems. The switching
curve which is implied by the first—deterministic—factor, has been ‘blurred’ by the
second-—random—one to a switching region.

Finally, some practical suggestions of application of the results presented here will
be given below. Besides specific cases, the direct realization of the system generating
the almost certain time-optimal control U° encounters difficulties. The exact value of
this control is in fact dependent on a random factor, which is unknown a priori.
However, the presented material constitutes a suitable basis for the creation of tech-
nical constructions of suboptimal control structures in which such a dependence is
eliminated.

For example, in the case of open-loop systems, the expectation of the stochastic
process U° can be used in the construction of the suboptimal control. If the limita-
tions of the actuator allow only extreme values of the set of admissible controls,
then it is possible to apply the control sequences (—1,1) or (1,—1), where the time
of switching is the expectation of the sign clranges in particular realizations of the
stochastic process U°. In both cases, C, F, and K solutions exist in the system.

Naturally, from a practical point of view, closed-loop structures of controllers are
preferable. Similarly to the classical case, the time-optimal control considered in this
paper can be defined as a feedback controller by

1 if X(w,1) € Ry,
(X(w, 1) =
U* (X(w.0) {—1 if X(w,1) € R_,

and then, for X(w, f) € Q_U @, this function can be additionally defined—without
direction dependence on a random factor, but only in a suboptimal way—e.g.

S _f d ifXw)eg,,
U (X(w, 1)) = { —d if X(w, 1) € Q_,

where 0 < d < 1. In practice the value of the parameter 4 can be obtained heuristi-
cally. Usually this vaiue should be close to 1, but it can also vary in the area Q,
taking on the value d, such that

d, <1 —{ve.—v.) (4.3)

4.1)

4.2)



76 P. KULCZYCKI

on the sets X _ and K__, and increasing continuously up to the value 1 on the sets
K.+ and K_,. This makes it possible to achieve a result similar to the bicycle-
racing track or bobsleigh track, which are horizontal on the interior part, and
become more vertical the farther they go to the outside edge. From a theoretical
point of view, the proposed idea constitutes a transposition of the so-called ‘admis-
sible adaptive law’ (Polycarpou & Ioannou 1993) for random systems. Inequality
(4.3) and the above postulated continuity of variation of the parameter d have the
goal of allowing the existence of C solutions. However, assigning the value of the
parameter d can be conducted similarly to the ‘admissible adaptation’, but addition-
ally taking into account a random factor. In particular, the value of the parameter d
should be equal to 1 even in the neighbourhood of the sets K, | and K__, to neutralize
the most unfavourable realizations of that factor.

Analogously to the first pair of examples, if constraints of an actuator limit the
control to the extreme values of the admissible set, the results of Theorem 1 may
be modified according to the physical observation that the influence of motion
resistance in both periods of time—before and after the switching—can be averaged.
Thus, after performing a detailed analysis of the sensitivity of the control system to
the values of motion resistances, one can use elements of statistical decision theory,
where a loss function is connected with extending the time of reaching the target if
the control switching has been too late or too early. Kulczycki (1995b) provides a
detailed description of such a concept of a feedback controller. It is worth noticing
that, in the general case, there are no C solutions in the system obtained, whereas
F and K solutions are nonunique.

The probabilistic concept of the control systems designed in the present paper have
been successfully empirically verified (Kulezycki 1993a). During the real-time control
in industrial process, a convenient method, based on neural networks and investi-
gated by Kulczycki & Schieler (1993), can be profitably used. It should be underlined
that the control system constructed turned out to be only slightly sensitive to the
inaccuracy resulting from identification and perturbations; this is a very valuable
property of random control systems (Kulczycki 1993b).
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